xref: /netbsd-src/sys/arch/mac68k/mac68k/pmap_bootstrap.c (revision 81e0d2b0af8485d94ed5da487d4253841a2e6e45)
1 /*	$NetBSD: pmap_bootstrap.c,v 1.62 2005/02/05 23:50:05 chs Exp $	*/
2 
3 /*
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * the Systems Programming Group of the University of Utah Computer
9  * Science Department.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)pmap_bootstrap.c	8.1 (Berkeley) 6/10/93
36  */
37 
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: pmap_bootstrap.c,v 1.62 2005/02/05 23:50:05 chs Exp $");
40 
41 #include "opt_ddb.h"
42 #include "opt_kgdb.h"
43 #include "zsc.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/reboot.h>
48 
49 #include <uvm/uvm_extern.h>
50 
51 #include <machine/pte.h>
52 #include <mac68k/mac68k/clockreg.h>
53 #include <machine/vmparam.h>
54 #include <machine/cpu.h>
55 #include <machine/pmap.h>
56 #include <machine/autoconf.h>
57 
58 #include <ufs/mfs/mfs_extern.h>
59 
60 #include <mac68k/mac68k/macrom.h>
61 
62 #define PA2VA(v, t)	(t)((u_int)(v) - firstpa)
63 
64 extern char *etext;
65 extern int Sysptsize;
66 extern char *extiobase, *proc0paddr;
67 extern st_entry_t *Sysseg;
68 extern pt_entry_t *Sysptmap, *Sysmap;
69 
70 extern int physmem;
71 extern paddr_t avail_start;
72 extern paddr_t avail_end;
73 extern vaddr_t virtual_avail, virtual_end;
74 extern vsize_t mem_size;
75 extern int protection_codes[];
76 
77 #if NZSC > 0
78 extern	int	zsinited;
79 #endif
80 
81 /*
82  * These are used to map the RAM:
83  */
84 int	numranges;	/* = 0 == don't use the ranges */
85 u_long	low[8];
86 u_long	high[8];
87 u_long	maxaddr;	/* PA of the last physical page */
88 int	vidlen;
89 #define VIDMAPSIZE	btoc(vidlen)
90 extern u_int32_t	mac68k_vidphys;
91 extern u_int32_t	videoaddr;
92 extern u_int32_t	videorowbytes;
93 extern u_int32_t	videosize;
94 static u_int32_t	newvideoaddr;
95 
96 extern caddr_t	ROMBase;
97 
98 /*
99  * Special purpose kernel virtual addresses, used for mapping
100  * physical pages for a variety of temporary or permanent purposes:
101  *
102  *	CADDR1, CADDR2:	pmap zero/copy operations
103  *	vmmap:		/dev/mem, crash dumps, parity error checking
104  *	msgbufaddr:	kernel message buffer
105  */
106 caddr_t		CADDR1, CADDR2, vmmap;
107 extern caddr_t	msgbufaddr;
108 
109 void	pmap_bootstrap(paddr_t, paddr_t);
110 void	bootstrap_mac68k(int);
111 
112 /*
113  * Bootstrap the VM system.
114  *
115  * This is called with the MMU either on or off.  If it's on, we assume
116  * that it's mapped with the same PA <=> LA mapping that we eventually
117  * want.  The page sizes and the protections will be wrong, anyway.
118  *
119  * nextpa is the first address following the loaded kernel.  On a IIsi
120  * on 12 May 1996, that was 0xf9000 beyond firstpa.
121  */
122 void
123 pmap_bootstrap(paddr_t nextpa, paddr_t firstpa)
124 {
125 	paddr_t kstpa, kptpa, vidpa, iiopa, rompa, kptmpa, lkptpa, p0upa;
126 	u_int nptpages, kstsize;
127 	paddr_t avail_next;
128 	int avail_remaining;
129 	int avail_range;
130 	int i;
131 	st_entry_t protoste, *ste;
132 	pt_entry_t protopte, *pte, *epte;
133 	extern char start[];
134 
135 	vidlen = m68k_round_page(((videosize >> 16) & 0xffff) * videorowbytes +
136 	    m68k_page_offset(mac68k_vidphys));
137 
138 	/*
139 	 * Calculate important physical addresses:
140 	 *
141 	 *	kstpa		kernel segment table	1 page (!040)
142 	 *						N pages (040)
143 	 *
144 	 *	kptpa		statically allocated
145 	 *			kernel PT pages		Sysptsize+ pages
146 	 *
147 	 *	vidpa		internal video space for some machines
148 	 *			PT pages		VIDMAPSIZE pages
149 	 *
150 	 *	rompa 		ROM space
151 	 *			PT pages		ROMMAPSIZE pages
152 	 *
153 	 *	iiopa		internal IO space
154 	 *			PT pages		IIOMAPSIZE pages
155 	 *
156 	 * [ Sysptsize is the number of pages of PT, IIOMAPSIZE and
157 	 *   NBMAPSIZE are the number of PTEs, hence we need to round
158 	 *   the total to a page boundary with IO maps at the end. ]
159 	 *
160 	 *	kptmpa		kernel PT map		1 page
161 	 *
162 	 *	lkptpa		last kernel PT page	1 page
163 	 *
164 	 *	p0upa		proc 0 u-area		UPAGES pages
165 	 *
166 	 */
167 	if (mmutype == MMU_68040)
168 		kstsize = MAXKL2SIZE / (NPTEPG/SG4_LEV2SIZE);
169 	else
170 		kstsize = 1;
171 	kstpa = nextpa;
172 	nextpa += kstsize * PAGE_SIZE;
173 	kptpa = nextpa;
174 	nptpages = Sysptsize +
175 		(IIOMAPSIZE + ROMMAPSIZE + VIDMAPSIZE + NPTEPG - 1) / NPTEPG;
176 	nextpa += nptpages * PAGE_SIZE;
177 	vidpa = nextpa - VIDMAPSIZE * sizeof(pt_entry_t);
178 	rompa = vidpa  - ROMMAPSIZE * sizeof(pt_entry_t);
179 	iiopa = rompa  - IIOMAPSIZE * sizeof(pt_entry_t);
180 	kptmpa = nextpa;
181 	nextpa += PAGE_SIZE;
182 	lkptpa = nextpa;
183 	nextpa += PAGE_SIZE;
184 	p0upa = nextpa;
185 	nextpa += USPACE;
186 
187 
188 	for (i = 0; i < numranges; i++)
189 		if (low[i] <= firstpa && firstpa < high[i])
190 			break;
191 	if (i >= numranges || nextpa > high[i]) {
192 		if (mac68k_machine.do_graybars) {
193 			printf("Failure in NetBSD boot; ");
194 			if (i < numranges)
195 				printf("nextpa=0x%lx, high[%d]=0x%lx.\n",
196 				    nextpa, i, high[i]);
197 			else
198 				printf("can't find kernel RAM segment.\n");
199 			printf("You're hosed!  Try booting with 32-bit ");
200 			printf("addressing enabled in the memory control ");
201 			printf("panel.\n");
202 			printf("Older machines may need Mode32 to get that ");
203 			printf("option.\n");
204 		}
205 		panic("Cannot work with the current memory mappings.");
206 	}
207 
208 	/*
209 	 * Initialize segment table and kernel page table map.
210 	 *
211 	 * On 68030s and earlier MMUs the two are identical except for
212 	 * the valid bits so both are initialized with essentially the
213 	 * same values.  On the 68040, which has a mandatory 3-level
214 	 * structure, the segment table holds the level 1 table and part
215 	 * (or all) of the level 2 table and hence is considerably
216 	 * different.  Here the first level consists of 128 descriptors
217 	 * (512 bytes) each mapping 32mb of address space.  Each of these
218 	 * points to blocks of 128 second level descriptors (512 bytes)
219 	 * each mapping 256kb.  Note that there may be additional "segment
220 	 * table" pages depending on how large MAXKL2SIZE is.
221 	 *
222 	 * XXX cramming two levels of mapping into the single "segment"
223 	 * table on the 68040 is intended as a temporary hack to get things
224 	 * working.  The 224mb of address space that this allows will most
225 	 * likely be insufficient in the future (at least for the kernel).
226 	 */
227 	if (mmutype == MMU_68040) {
228 		int num;
229 
230 		/*
231 		 * First invalidate the entire "segment table" pages
232 		 * (levels 1 and 2 have the same "invalid" value).
233 		 */
234 		pte = PA2VA(kstpa, u_int *);
235 		epte = &pte[kstsize * NPTEPG];
236 		while (pte < epte)
237 			*pte++ = SG_NV;
238 		/*
239 		 * Initialize level 2 descriptors (which immediately
240 		 * follow the level 1 table).  We need:
241 		 *	NPTEPG / SG4_LEV3SIZE
242 		 * level 2 descriptors to map each of the nptpages+1
243 		 * pages of PTEs.  Note that we set the "used" bit
244 		 * now to save the HW the expense of doing it.
245 		 */
246 		num = (nptpages + 1) * (NPTEPG / SG4_LEV3SIZE);
247 		pte = &(PA2VA(kstpa, u_int *))[SG4_LEV1SIZE];
248 		epte = &pte[num];
249 		protoste = kptpa | SG_U | SG_RW | SG_V;
250 		while (pte < epte) {
251 			*pte++ = protoste;
252 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
253 		}
254 		/*
255 		 * Initialize level 1 descriptors.  We need:
256 		 *	roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE
257 		 * level 1 descriptors to map the `num' level 2's.
258 		 */
259 		pte = PA2VA(kstpa, u_int *);
260 		epte = &pte[roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE];
261 		protoste = (u_int)&pte[SG4_LEV1SIZE] | SG_U | SG_RW | SG_V;
262 		while (pte < epte) {
263 			*pte++ = protoste;
264 			protoste += (SG4_LEV2SIZE * sizeof(st_entry_t));
265 		}
266 		/*
267 		 * Initialize the final level 1 descriptor to map the last
268 		 * block of level 2 descriptors.
269 		 */
270 		ste = &(PA2VA(kstpa, u_int*))[SG4_LEV1SIZE-1];
271 		pte = &(PA2VA(kstpa, u_int*))[kstsize*NPTEPG - SG4_LEV2SIZE];
272 		*ste = (u_int)pte | SG_U | SG_RW | SG_V;
273 		/*
274 		 * Now initialize the final portion of that block of
275 		 * descriptors to map the "last PT page".
276 		 */
277 		pte = &(PA2VA(kstpa, u_int*))
278 				[kstsize*NPTEPG - NPTEPG/SG4_LEV3SIZE];
279 		epte = &pte[NPTEPG/SG4_LEV3SIZE];
280 		protoste = lkptpa | SG_U | SG_RW | SG_V;
281 		while (pte < epte) {
282 			*pte++ = protoste;
283 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
284 		}
285 		/*
286 		 * Initialize Sysptmap
287 		 */
288 		pte = PA2VA(kptmpa, u_int *);
289 		epte = &pte[nptpages+1];
290 		protopte = kptpa | PG_RW | PG_CI | PG_V;
291 		while (pte < epte) {
292 			*pte++ = protopte;
293 			protopte += PAGE_SIZE;
294 		}
295 		/*
296 		 * Invalidate all but the last remaining entries in both.
297 		 */
298 		epte = &(PA2VA(kptmpa, u_int *))[NPTEPG-1];
299 		while (pte < epte) {
300 			*pte++ = PG_NV;
301 		}
302 		/*
303 		 * Initialize the last to point to the page
304 		 * table page allocated earlier.
305 		 */
306 		*pte = lkptpa | PG_RW | PG_CI | PG_V;
307 	} else {
308 		/*
309 		 * Map the page table pages in both the HW segment table
310 		 * and the software Sysptmap.  Note that Sysptmap is also
311 		 * considered a PT page hence the +1.
312 		 */
313 		ste = PA2VA(kstpa, u_int*);
314 		pte = PA2VA(kptmpa, u_int*);
315 		epte = &pte[nptpages+1];
316 		protoste = kptpa | SG_RW | SG_V;
317 		protopte = kptpa | PG_RW | PG_CI | PG_V;
318 		while (pte < epte) {
319 			*ste++ = protoste;
320 			*pte++ = protopte;
321 			protoste += PAGE_SIZE;
322 			protopte += PAGE_SIZE;
323 		}
324 		/*
325 		 * Invalidate all but the last remaining entries in both.
326 		 */
327 		epte = &(PA2VA(kptmpa, u_int *))[NPTEPG-1];
328 		while (pte < epte) {
329 			*ste++ = SG_NV;
330 			*pte++ = PG_NV;
331 		}
332 		/*
333 		 * Initialize the last to point to point to the page
334 		 * table page allocated earlier.
335 		 */
336 		*ste = lkptpa | SG_RW | SG_V;
337 		*pte = lkptpa | PG_RW | PG_CI | PG_V;
338 	}
339 	/*
340 	 * Invalidate all entries in the last kernel PT page
341 	 * (u-area PTEs will be validated later).
342 	 */
343 	pte = PA2VA(lkptpa, u_int *);
344 	epte = &pte[NPTEPG];
345 	while (pte < epte)
346 		*pte++ = PG_NV;
347 
348 	/*
349 	 * Initialize kernel page table.
350 	 * Start by invalidating the `nptpages' that we have allocated.
351 	 */
352 	pte = PA2VA(kptpa, u_int *);
353 	epte = &pte[nptpages * NPTEPG];
354 	while (pte < epte)
355 		*pte++ = PG_NV;
356 
357 	/*
358 	 * Validate PTEs for kernel text (RO).
359 	 * Pages up to "start" must be writable for the ROM.
360 	 */
361 	pte = &(PA2VA(kptpa, u_int *))[m68k_btop(KERNBASE)];
362 	epte = &pte[m68k_btop(m68k_round_page(start))];
363 	protopte = firstpa | PG_RW | PG_V;
364 	while (pte < epte) {
365 		*pte++ = protopte;
366 		protopte += PAGE_SIZE;
367 	}
368 	epte = &pte[m68k_btop(m68k_trunc_page(&etext))];
369 	protopte = (protopte & ~PG_PROT) | PG_RO;
370 	while (pte < epte) {
371 		*pte++ = protopte;
372 		protopte += PAGE_SIZE;
373 	}
374 	/*
375 	 * Validate PTEs for kernel data/bss, dynamic data allocated
376 	 * by us so far (nextpa - firstpa bytes), and pages for proc0
377 	 * u-area and page table allocated below (RW).
378 	 */
379 	epte = &(PA2VA(kptpa, u_int *))[m68k_btop(nextpa - firstpa)];
380 	protopte = (protopte & ~PG_PROT) | PG_RW;
381 	/*
382 	 * Enable copy-back caching of data pages
383 	 */
384 	if (mmutype == MMU_68040)
385 		protopte |= PG_CCB;
386 	while (pte < epte) {
387 		*pte++ = protopte;
388 		protopte += PAGE_SIZE;
389 	}
390 	/*
391 	 * Finally, validate the internal IO space, ROM space, and
392 	 * framebuffer PTEs (RW+CI).
393 	 */
394 	pte = PA2VA(iiopa, u_int *);
395 	epte = PA2VA(rompa, u_int *);
396 	protopte = IOBase | PG_RW | PG_CI | PG_V;
397 	while (pte < epte) {
398 		*pte++ = protopte;
399 		protopte += PAGE_SIZE;
400 	}
401 
402 	pte = PA2VA(rompa, u_int *);
403 	epte = PA2VA(vidpa, u_int *);
404 	protopte = ((u_int) ROMBase) | PG_RO | PG_V;
405 	while (pte < epte) {
406 		*pte++ = protopte;
407 		protopte += PAGE_SIZE;
408 	}
409 
410 	if (vidlen) {
411 		pte = PA2VA(vidpa, u_int *);
412 		epte = pte + VIDMAPSIZE;
413 		protopte = m68k_trunc_page(mac68k_vidphys) |
414 		    PG_RW | PG_V | PG_CI;
415 		while (pte < epte) {
416 			*pte++ = protopte;
417 			protopte += PAGE_SIZE;
418 		}
419 	}
420 
421 	/*
422 	 * Calculate important exported kernel virtual addresses
423 	 */
424 	/*
425 	 * Sysseg: base of kernel segment table
426 	 */
427 	Sysseg = PA2VA(kstpa, st_entry_t *);
428 	/*
429 	 * Sysptmap: base of kernel page table map
430 	 */
431 	Sysptmap = PA2VA(kptmpa, pt_entry_t *);
432 	/*
433 	 * Sysmap: kernel page table (as mapped through Sysptmap)
434 	 * Immediately follows `nptpages' of static kernel page table.
435 	 */
436 	Sysmap = (pt_entry_t *)m68k_ptob(nptpages * NPTEPG);
437 
438 	IOBase = (u_long)m68k_ptob(nptpages * NPTEPG -
439 	    (IIOMAPSIZE + ROMMAPSIZE + VIDMAPSIZE));
440 
441 	ROMBase = (char *)m68k_ptob(nptpages * NPTEPG -
442 	    (ROMMAPSIZE + VIDMAPSIZE));
443 
444 	if (vidlen) {
445 		newvideoaddr = (u_int32_t)m68k_ptob(nptpages * NPTEPG -
446 		    VIDMAPSIZE) + m68k_page_offset(mac68k_vidphys);
447 	}
448 
449 	/*
450 	 * Setup u-area for process 0.
451 	 */
452 	/*
453 	 * Zero the u-area.
454 	 * NOTE: `pte' and `epte' aren't PTEs here.
455 	 */
456 	pte = PA2VA(p0upa, u_int *);
457 	epte = (u_int *)(PA2VA(p0upa, u_int) + USPACE);
458 	while (pte < epte)
459 		*pte++ = 0;
460 	/*
461 	 * Remember the u-area address so it can be loaded in the
462 	 * proc struct p_addr field later.
463 	 */
464 	proc0paddr = PA2VA(p0upa, char *);
465 
466 	/*
467 	 * VM data structures are now initialized, set up data for
468 	 * the pmap module.
469 	 *
470 	 * Note about avail_end: msgbuf is initialized just after
471 	 * avail_end in machdep.c.  Since the last page is used
472 	 * for rebooting the system (code is copied there and
473 	 * excution continues from copied code before the MMU
474 	 * is disabled), the msgbuf will get trounced between
475 	 * reboots if it's placed in the last physical page.
476 	 * To work around this, we move avail_end back one more
477 	 * page so the msgbuf can be preserved.
478 	 */
479 	avail_next = avail_start = m68k_round_page(nextpa);
480 	avail_remaining = 0;
481 	avail_range = -1;
482 	for (i = 0; i < numranges; i++) {
483 		if (low[i] <= avail_next && avail_next < high[i]) {
484 			avail_range = i;
485 			avail_remaining = high[i] - avail_next;
486 		} else if (avail_range != -1) {
487 			avail_remaining += (high[i] - low[i]);
488 		}
489 	}
490 	physmem = m68k_btop(avail_remaining + nextpa - firstpa);
491 
492 	maxaddr = high[numranges - 1] - m68k_ptob(1);
493 	high[numranges - 1] -= (m68k_round_page(MSGBUFSIZE) + m68k_ptob(1));
494 	avail_end = high[numranges - 1];
495 	mem_size = m68k_ptob(physmem);
496 	virtual_avail = VM_MIN_KERNEL_ADDRESS + (nextpa - firstpa);
497 	virtual_end = VM_MAX_KERNEL_ADDRESS;
498 
499 	/*
500 	 * Initialize protection array.
501 	 * XXX don't use a switch statement, it might produce an
502 	 * absolute "jmp" table.
503 	 */
504 	{
505 		int *kp;
506 
507 		kp = (int *)&protection_codes;
508 		kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_NONE] = 0;
509 		kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_NONE] = PG_RO;
510 		kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO;
511 		kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO;
512 		kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW;
513 		kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW;
514 		kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW;
515 		kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW;
516 	}
517 
518 	/*
519 	 * Kernel page/segment table allocated in locore,
520 	 * just initialize pointers.
521 	 */
522 	{
523 		struct pmap *kpm = (struct pmap *)&kernel_pmap_store;
524 
525 		kpm->pm_stab = Sysseg;
526 		kpm->pm_ptab = Sysmap;
527 		simple_lock_init(&kpm->pm_lock);
528 		kpm->pm_count = 1;
529 		kpm->pm_stpa = (st_entry_t *)kstpa;
530 		/*
531 		 * For the 040 we also initialize the free level 2
532 		 * descriptor mask noting that we have used:
533 		 *	0:		level 1 table
534 		 *	1 to `num':	map page tables
535 		 *	MAXKL2SIZE-1:	maps last-page page table
536 		 */
537 		if (mmutype == MMU_68040) {
538 			int num;
539 
540 			kpm->pm_stfree = ~l2tobm(0);
541 			num = roundup((nptpages + 1) * (NPTEPG / SG4_LEV3SIZE),
542 				      SG4_LEV2SIZE) / SG4_LEV2SIZE;
543 			while (num)
544 				kpm->pm_stfree &= ~l2tobm(num--);
545 			kpm->pm_stfree &= ~l2tobm(MAXKL2SIZE-1);
546 			for (num = MAXKL2SIZE;
547 			     num < sizeof(kpm->pm_stfree)*NBBY;
548 			     num++)
549 				kpm->pm_stfree &= ~l2tobm(num);
550 		}
551 	}
552 
553 	/*
554 	 * Allocate some fixed, special purpose kernel virtual addresses
555 	 */
556 	{
557 		vaddr_t va = virtual_avail;
558 
559 		CADDR1 = (caddr_t)va;
560 		va += PAGE_SIZE;
561 		CADDR2 = (caddr_t)va;
562 		va += PAGE_SIZE;
563 		vmmap = (caddr_t)va;
564 		va += PAGE_SIZE;
565 		msgbufaddr = (caddr_t)va;
566 		va += m68k_round_page(MSGBUFSIZE);
567 		virtual_avail = va;
568 	}
569 }
570 
571 void
572 bootstrap_mac68k(int tc)
573 {
574 #if NZSC > 0
575 	extern void zs_init(void);
576 #endif
577 	extern int *esym;
578 	paddr_t nextpa;
579 	caddr_t oldROMBase;
580 
581 	if (mac68k_machine.do_graybars)
582 		printf("Bootstrapping NetBSD/mac68k.\n");
583 
584 	oldROMBase = ROMBase;
585 	mac68k_vidphys = videoaddr;
586 
587 	if (((tc & 0x80000000) && (mmutype == MMU_68030)) ||
588 	    ((tc & 0x8000) && (mmutype == MMU_68040))) {
589 		if (mac68k_machine.do_graybars)
590 			printf("Getting mapping from MMU.\n");
591 		(void) get_mapping();
592 		if (mac68k_machine.do_graybars)
593 			printf("Done.\n");
594 	} else {
595 		/* MMU not enabled.  Fake up ranges. */
596 		numranges = 1;
597 		low[0] = 0;
598 		high[0] = mac68k_machine.mach_memsize * (1024 * 1024);
599 		if (mac68k_machine.do_graybars)
600 			printf("Faked range to byte 0x%lx.\n", high[0]);
601 	}
602 	nextpa = load_addr + m68k_round_page(esym);
603 
604 	if (mac68k_machine.do_graybars)
605 		printf("Bootstrapping the pmap system.\n");
606 
607 	pmap_bootstrap(nextpa, load_addr);
608 
609 	if (mac68k_machine.do_graybars)
610 		printf("Pmap bootstrapped.\n");
611 
612 	if (!vidlen)
613 		panic("Don't know how to relocate video!");
614 
615 	if (mac68k_machine.do_graybars)
616 		printf("Moving ROMBase from %p to %p.\n", oldROMBase, ROMBase);
617 
618 	mrg_fixupROMBase(oldROMBase, ROMBase);
619 
620 	if (mac68k_machine.do_graybars)
621 		printf("Video address 0x%lx -> 0x%lx.\n",
622 		    (unsigned long)videoaddr, (unsigned long)newvideoaddr);
623 
624 	mac68k_set_io_offsets(IOBase);
625 
626 	/*
627 	 * If the serial ports are going (for console or 'echo'), then
628 	 * we need to make sure the IO change gets propagated properly.
629 	 * This resets the base addresses for the 8530 (serial) driver.
630 	 *
631 	 * WARNING!!! No printfs() (etc) BETWEEN zs_init() and the end
632 	 * of this function (where we start using the MMU, so the new
633 	 * address is correct.
634 	 */
635 #if NZSC > 0
636 	if (zsinited != 0)
637 		zs_init();
638 #endif
639 
640 	videoaddr = newvideoaddr;
641 }
642 
643 void
644 pmap_init_md(void)
645 {
646 	vaddr_t addr;
647 
648 	addr = (vaddr_t)IOBase;
649 	if (uvm_map(kernel_map, &addr,
650 		    m68k_ptob(IIOMAPSIZE + ROMMAPSIZE + VIDMAPSIZE),
651 		    NULL, UVM_UNKNOWN_OFFSET, 0,
652 		    UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE,
653 				UVM_INH_NONE, UVM_ADV_RANDOM,
654 				UVM_FLAG_FIXED)) != 0)
655 		panic("pmap_init_md: uvm_map failed");
656 }
657