xref: /netbsd-src/sys/arch/mac68k/mac68k/pmap_bootstrap.c (revision 76dfffe33547c37f8bdd446e3e4ab0f3c16cea4b)
1 /*	$NetBSD: pmap_bootstrap.c,v 1.29 1996/10/15 06:41:48 scottr Exp $	*/
2 
3 /*
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * the Systems Programming Group of the University of Utah Computer
9  * Science Department.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the University of
22  *	California, Berkeley and its contributors.
23  * 4. Neither the name of the University nor the names of its contributors
24  *    may be used to endorse or promote products derived from this software
25  *    without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
28  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
29  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
30  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
31  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
33  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37  * SUCH DAMAGE.
38  *
39  *	@(#)pmap_bootstrap.c	8.1 (Berkeley) 6/10/93
40  */
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/msgbuf.h>
45 #include <sys/reboot.h>
46 
47 #include <vm/vm.h>
48 
49 #include <machine/pte.h>
50 #include <mac68k/mac68k/clockreg.h>
51 #include <machine/vmparam.h>
52 #include <machine/cpu.h>
53 #include <machine/pmap.h>
54 #include <machine/autoconf.h>
55 
56 #include <ufs/mfs/mfs_extern.h>
57 
58 #include "macrom.h"
59 
60 #define PA2VA(v, t)	(t)((u_int)(v) - firstpa)
61 
62 extern char *etext;
63 extern int Sysptsize;
64 extern char *extiobase, *proc0paddr;
65 extern st_entry_t *Sysseg;
66 extern pt_entry_t *Sysptmap, *Sysmap;
67 
68 extern int maxmem, physmem;
69 extern int avail_remaining, avail_range, avail_end;
70 extern vm_offset_t avail_start, avail_next;
71 extern vm_offset_t virtual_avail, virtual_end;
72 extern vm_size_t mem_size;
73 extern int protection_codes[];
74 
75 extern vm_offset_t reserve_dumppages __P((vm_offset_t));
76 
77 /*
78  * These are used to map the RAM:
79  */
80 int		numranges; /* = 0 == don't use the ranges */
81 u_long	low[8];
82 u_long	high[8];
83 extern int		nbnumranges;
84 extern u_long	nbphys[];
85 extern u_long	nblog[];
86 extern   signed long	nblen[];
87 #define VIDMAPSIZE	btoc(mac68k_round_page(vidlen))
88 extern u_int32_t	mac68k_vidlog;
89 extern u_int32_t	mac68k_vidphys;
90 extern u_int32_t	videoaddr;
91 extern u_int32_t	videorowbytes;
92 extern u_int32_t	videosize;
93 static int		vidlen;
94 static u_int32_t	newvideoaddr;
95 
96 extern caddr_t	ROMBase;
97 
98 /*
99  * Special purpose kernel virtual addresses, used for mapping
100  * physical pages for a variety of temporary or permanent purposes:
101  *
102  *	CADDR1, CADDR2:	pmap zero/copy operations
103  *	vmmap:		/dev/mem, crash dumps, parity error checking
104  *	msgbufp:	kernel message buffer
105  */
106 caddr_t		CADDR1, CADDR2, vmmap;
107 struct msgbuf	*msgbufp;
108 
109 /*
110  * Bootstrap the VM system.
111  *
112  * This is called with the MMU either on or off.  If it's on, we assume
113  * that it's mapped with the same PA <=> LA mapping that we eventually
114  * want.  The page sizes and the protections will be wrong, anyway.
115  *
116  * nextpa is the first address following the loaded kernel.  On a IIsi
117  * on 12 May 1996, that was 0xf9000 beyond firstpa.
118  */
119 void
120 pmap_bootstrap(nextpa, firstpa)
121 	vm_offset_t nextpa;
122 	register vm_offset_t firstpa;
123 {
124 	vm_offset_t kstpa, kptpa, vidpa, iiopa, rompa;
125 	vm_offset_t kptmpa, lkptpa, p0upa;
126 	u_int nptpages, kstsize;
127 	int i;
128 	register st_entry_t protoste, *ste;
129 	register pt_entry_t protopte, *pte, *epte;
130 
131 	vidlen = ((videosize >> 16) & 0xffff) * videorowbytes + PGOFSET;
132 
133 	/*
134 	 * Calculate important physical addresses:
135 	 *
136 	 *	kstpa		kernel segment table	1 page (!040)
137 	 *						N pages (040)
138 	 *
139 	 *	kptpa		statically allocated
140 	 *			kernel PT pages		Sysptsize+ pages
141 	 *
142 	 *	vidpa		internal video space for some machines
143 	 *			PT pages		VIDMAPSIZE pages
144 	 *
145 	 *	rompa 		ROM space
146 	 *			PT pages		ROMMAPSIZE pages
147 	 *
148 	 *	iiopa		internal IO space
149 	 *			PT pages		IIOMAPSIZE pages
150 	 *
151 	 * [ Sysptsize is the number of pages of PT, IIOMAPSIZE and
152 	 *   NBMAPSIZE are the number of PTEs, hence we need to round
153 	 *   the total to a page boundary with IO maps at the end. ]
154 	 *
155 	 *	kptmpa		kernel PT map		1 page
156 	 *
157 	 *	lkptpa		last kernel PT page	1 page
158 	 *
159 	 *	p0upa		proc 0 u-area		UPAGES pages
160 	 *
161 	 */
162 	if (mmutype == MMU_68040)
163 		kstsize = MAXKL2SIZE / (NPTEPG/SG4_LEV2SIZE);
164 	else
165 		kstsize = 1;
166 	kstpa = nextpa;
167 	nextpa += kstsize * NBPG;
168 	kptpa = nextpa;
169 	nptpages = Sysptsize +
170 		(IIOMAPSIZE + ROMMAPSIZE + VIDMAPSIZE + NPTEPG - 1) / NPTEPG;
171 	nextpa += nptpages * NBPG;
172 	vidpa = nextpa - VIDMAPSIZE * sizeof(pt_entry_t);
173 	rompa = vidpa  - ROMMAPSIZE * sizeof(pt_entry_t);
174 	iiopa = rompa  - IIOMAPSIZE * sizeof(pt_entry_t);
175 	kptmpa = nextpa;
176 	nextpa += NBPG;
177 	lkptpa = nextpa;
178 	nextpa += NBPG;
179 	p0upa = nextpa;
180 	nextpa += USPACE;
181 
182 	if (nextpa > high[0]) {
183 		printf("Failure in NetBSD boot; nextpa=0x%lx, high[0]=0x%lx.\n",
184 			nextpa, high[0]);
185 		printf("You're hosed!  Try booting with 32-bit addressing ");
186 		printf("enabled in the memory control panel.\n");
187 		printf("Older machines may need Mode32 to get that option.\n");
188 		panic("Cannot work with the current memory mappings.\n");
189 	}
190 
191 	/*
192 	 * Initialize segment table and kernel page table map.
193 	 *
194 	 * On 68030s and earlier MMUs the two are identical except for
195 	 * the valid bits so both are initialized with essentially the
196 	 * same values.  On the 68040, which has a mandatory 3-level
197 	 * structure, the segment table holds the level 1 table and part
198 	 * (or all) of the level 2 table and hence is considerably
199 	 * different.  Here the first level consists of 128 descriptors
200 	 * (512 bytes) each mapping 32mb of address space.  Each of these
201 	 * points to blocks of 128 second level descriptors (512 bytes)
202 	 * each mapping 256kb.  Note that there may be additional "segment
203 	 * table" pages depending on how large MAXKL2SIZE is.
204 	 *
205 	 * XXX cramming two levels of mapping into the single "segment"
206 	 * table on the 68040 is intended as a temporary hack to get things
207 	 * working.  The 224mb of address space that this allows will most
208 	 * likely be insufficient in the future (at least for the kernel).
209 	 */
210 	if (mmutype == MMU_68040) {
211 		register int num;
212 
213 		/*
214 		 * First invalidate the entire "segment table" pages
215 		 * (levels 1 and 2 have the same "invalid" value).
216 		 */
217 		pte = PA2VA(kstpa, u_int *);
218 		epte = &pte[kstsize * NPTEPG];
219 		while (pte < epte)
220 			*pte++ = SG_NV;
221 		/*
222 		 * Initialize level 2 descriptors (which immediately
223 		 * follow the level 1 table).  We need:
224 		 *	NPTEPG / SG4_LEV3SIZE
225 		 * level 2 descriptors to map each of the nptpages+1
226 		 * pages of PTEs.  Note that we set the "used" bit
227 		 * now to save the HW the expense of doing it.
228 		 */
229 		num = (nptpages + 1) * (NPTEPG / SG4_LEV3SIZE);
230 		pte = &(PA2VA(kstpa, u_int *))[SG4_LEV1SIZE];
231 		epte = &pte[num];
232 		protoste = kptpa | SG_U | SG_RW | SG_V;
233 		while (pte < epte) {
234 			*pte++ = protoste;
235 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
236 		}
237 		/*
238 		 * Initialize level 1 descriptors.  We need:
239 		 *	roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE
240 		 * level 1 descriptors to map the `num' level 2's.
241 		 */
242 		pte = PA2VA(kstpa, u_int *);
243 		epte = &pte[roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE];
244 		protoste = (u_int)&pte[SG4_LEV1SIZE] | SG_U | SG_RW | SG_V;
245 		while (pte < epte) {
246 			*pte++ = protoste;
247 			protoste += (SG4_LEV2SIZE * sizeof(st_entry_t));
248 		}
249 		/*
250 		 * Initialize the final level 1 descriptor to map the last
251 		 * block of level 2 descriptors.
252 		 */
253 		ste = &(PA2VA(kstpa, u_int*))[SG4_LEV1SIZE-1];
254 		pte = &(PA2VA(kstpa, u_int*))[kstsize*NPTEPG - SG4_LEV2SIZE];
255 		*ste = (u_int)pte | SG_U | SG_RW | SG_V;
256 		/*
257 		 * Now initialize the final portion of that block of
258 		 * descriptors to map the "last PT page".
259 		 */
260 		pte = &(PA2VA(kstpa, u_int*))
261 				[kstsize*NPTEPG - NPTEPG/SG4_LEV3SIZE];
262 		epte = &pte[NPTEPG/SG4_LEV3SIZE];
263 		protoste = lkptpa | SG_U | SG_RW | SG_V;
264 		while (pte < epte) {
265 			*pte++ = protoste;
266 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
267 		}
268 		/*
269 		 * Initialize Sysptmap
270 		 */
271 		pte = PA2VA(kptmpa, u_int *);
272 		epte = &pte[nptpages+1];
273 		protopte = kptpa | PG_RW | PG_CI | PG_V;
274 		while (pte < epte) {
275 			*pte++ = protopte;
276 			protopte += NBPG;
277 		}
278 		/*
279 		 * Invalidate all but the last remaining entries in both.
280 		 */
281 		epte = &(PA2VA(kptmpa, u_int *))[NPTEPG-1];
282 		while (pte < epte) {
283 			*pte++ = PG_NV;
284 		}
285 		pte = &(PA2VA(kptmpa, u_int *))[NPTEPG-1];
286 		*pte = lkptpa | PG_RW | PG_CI | PG_V;
287 	} else {
288 		/*
289 		 * Map the page table pages in both the HW segment table
290 		 * and the software Sysptmap.  Note that Sysptmap is also
291 		 * considered a PT page hence the +1.
292 		 */
293 		ste = PA2VA(kstpa, u_int*);
294 		pte = PA2VA(kptmpa, u_int*);
295 		epte = &pte[nptpages+1];
296 		protoste = kptpa | SG_RW | SG_V;
297 		protopte = kptpa | PG_RW | PG_CI | PG_V;
298 		while (pte < epte) {
299 			*ste++ = protoste;
300 			*pte++ = protopte;
301 			protoste += NBPG;
302 			protopte += NBPG;
303 		}
304 		/*
305 		 * Invalidate all but the last remaining entries in both.
306 		 */
307 		epte = &(PA2VA(kptmpa, u_int *))[NPTEPG-1];
308 		while (pte < epte) {
309 			*ste++ = SG_NV;
310 			*pte++ = PG_NV;
311 		}
312 		/*
313 		 * Initialize the last to point to point to the page
314 		 * table page allocated earlier.
315 		 */
316 		*ste = lkptpa | SG_RW | SG_V;
317 		*pte = lkptpa | PG_RW | PG_CI | PG_V;
318 	}
319 	/*
320 	 * Invalidate all but the final entry in the last kernel PT page
321 	 * (u-area PTEs will be validated later).  The final entry maps
322 	 * the last page of physical memory.
323 	 */
324 	pte = PA2VA(lkptpa, u_int *);
325 	epte = &pte[NPTEPG-1];
326 	while (pte < epte)
327 		*pte++ = PG_NV;
328 	*pte = (0xFFFFF000) | PG_RW | PG_CI | PG_V; /* XXX */
329 
330 	/*
331 	 * Initialize kernel page table.
332 	 * Start by invalidating the `nptpages' that we have allocated.
333 	 */
334 	pte = PA2VA(kptpa, u_int *);
335 	epte = &pte[nptpages * NPTEPG];
336 	while (pte < epte)
337 		*pte++ = PG_NV;
338 
339 	/*
340 	 * Validate PTEs for kernel text (RO)
341 	 */
342 	pte = &(PA2VA(kptpa, u_int *))[mac68k_btop(KERNBASE)];
343 	epte = &pte[mac68k_btop(mac68k_trunc_page(&etext))];
344 #if defined(KGDB) || defined(DDB)
345 	protopte = firstpa | PG_RW | PG_V;	/* XXX RW for now */
346 #else
347 	protopte = firstpa | PG_RO | PG_V;
348 #endif
349 	while (pte < epte) {
350 		*pte++ = protopte;
351 		protopte += NBPG;
352 	}
353 	/*
354 	 * Validate PTEs for kernel data/bss, dynamic data allocated
355 	 * by us so far (nextpa - firstpa bytes), and pages for proc0
356 	 * u-area and page table allocated below (RW).
357 	 */
358 	epte = &(PA2VA(kptpa, u_int *))[mac68k_btop(nextpa - firstpa)];
359 	protopte = (protopte & ~PG_PROT) | PG_RW;
360 	/*
361 	 * Enable copy-back caching of data pages
362 	 */
363 	if (mmutype == MMU_68040)
364 		protopte |= PG_CCB;
365 	while (pte < epte) {
366 		*pte++ = protopte;
367 		protopte += NBPG;
368 	}
369 	/*
370 	 * Finally, validate the internal IO space PTEs (RW+CI).
371 	 * We do this here since the 320/350 MMU registers (also
372 	 * used, but to a lesser extent, on other models) are mapped
373 	 * in this range and it would be nice to be able to access
374 	 * them after the MMU is turned on.
375 	 */
376 	pte = PA2VA(iiopa, u_int *);
377 	epte = PA2VA(rompa, u_int *);
378 	protopte = IOBase | PG_RW | PG_CI | PG_V;
379 	while (pte < epte) {
380 		*pte++ = protopte;
381 		protopte += NBPG;
382 	}
383 
384 	pte = PA2VA(rompa, u_int *);
385 	epte = PA2VA(vidpa, u_int *);
386 	protopte = ((u_int) ROMBase) | PG_RO | PG_V;
387 	while (pte < epte) {
388 		*pte++ = protopte;
389 		protopte += NBPG;
390 	}
391 
392 	if (vidlen) {
393 		pte = PA2VA(vidpa, u_int *);
394 		epte = pte + VIDMAPSIZE;
395 		protopte = mac68k_vidphys | PG_RW | PG_V | PG_CI;
396 		while (pte < epte) {
397 			*pte++ = protopte;
398 			protopte += NBPG;
399 		}
400 	}
401 
402 	/*
403 	 * Calculate important exported kernel virtual addresses
404 	 */
405 	/*
406 	 * Sysseg: base of kernel segment table
407 	 */
408 	Sysseg = PA2VA(kstpa, st_entry_t *);
409 	/*
410 	 * Sysptmap: base of kernel page table map
411 	 */
412 	Sysptmap = PA2VA(kptmpa, pt_entry_t *);
413 	/*
414 	 * Sysmap: kernel page table (as mapped through Sysptmap)
415 	 * Immediately follows `nptpages' of static kernel page table.
416 	 */
417 	Sysmap = (pt_entry_t *)mac68k_ptob(nptpages * NPTEPG);
418 
419 	IOBase = (u_long)mac68k_ptob(nptpages*NPTEPG -
420 			(IIOMAPSIZE + ROMMAPSIZE + VIDMAPSIZE));
421 
422 	ROMBase = (char *)mac68k_ptob(nptpages*NPTEPG -
423 					(ROMMAPSIZE + VIDMAPSIZE));
424 
425 	if (vidlen) {
426 		newvideoaddr = (u_int32_t)
427 				mac68k_ptob(nptpages*NPTEPG - VIDMAPSIZE)
428 				+ (mac68k_vidphys & PGOFSET);
429 		if (mac68k_vidlog)
430 			mac68k_vidlog = newvideoaddr;
431 	}
432 
433 	/*
434 	 * Setup u-area for process 0.
435 	 */
436 	/*
437 	 * Zero the u-area.
438 	 * NOTE: `pte' and `epte' aren't PTEs here.
439 	 */
440 	pte = PA2VA(p0upa, u_int *);
441 	epte = (u_int *) (PA2VA(p0upa, u_int) + USPACE);
442 	while (pte < epte)
443 		*pte++ = 0;
444 	/*
445 	 * Remember the u-area address so it can be loaded in the
446 	 * proc struct p_addr field later.
447 	 */
448 	proc0paddr = PA2VA(p0upa, char *);
449 
450 	/*
451 	 * VM data structures are now initialized, set up data for
452 	 * the pmap module.
453 	 */
454 	avail_next = avail_start = mac68k_round_page(nextpa);
455 	avail_remaining = 0;
456 	avail_range = -1;
457 	for (i = 0; i < numranges; i++) {
458 		if (avail_next >= low[i] && avail_next < high[i]) {
459 			avail_range = i;
460 			avail_remaining = high[i] - avail_next;
461 		} else if (avail_range != -1) {
462 			avail_remaining += (high[i] - low[i]);
463 		}
464 	}
465 	physmem = mac68k_btop(avail_remaining + nextpa - firstpa);
466 	avail_remaining -= mac68k_round_page(sizeof(struct msgbuf));
467 	high[numranges - 1] -= mac68k_round_page(sizeof(struct msgbuf));
468 
469 	/* XXX -- this doesn't look correct to me. */
470 	while (high[numranges - 1] < low[numranges - 1]) {
471 		numranges--;
472 		high[numranges - 1] -= low[numranges] - high[numranges];
473 	}
474 
475 	avail_remaining = mac68k_trunc_page(avail_remaining);
476 	avail_end = avail_start + avail_remaining;
477 	avail_remaining = mac68k_btop(avail_remaining);
478 
479 	mem_size = mac68k_ptob(physmem);
480 	virtual_avail = VM_MIN_KERNEL_ADDRESS + (nextpa - firstpa);
481 	virtual_end = VM_MAX_KERNEL_ADDRESS;
482 
483 	/*
484 	 * Initialize protection array.
485 	 * XXX don't use a switch statement, it might produce an
486 	 * absolute "jmp" table.
487 	 */
488 	{
489 		register int *kp;
490 
491 		kp = (int *) &protection_codes;
492 		kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_NONE] = 0;
493 		kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_NONE] = PG_RO;
494 		kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO;
495 		kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO;
496 		kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW;
497 		kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW;
498 		kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW;
499 		kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW;
500 	}
501 
502 	/*
503 	 * Kernel page/segment table allocated in locore,
504 	 * just initialize pointers.
505 	 */
506 	{
507 		struct pmap *kpm = (struct pmap *)&kernel_pmap_store;
508 
509 		kpm->pm_stab = Sysseg;
510 		kpm->pm_ptab = Sysmap;
511 		simple_lock_init(&kpm->pm_lock);
512 		kpm->pm_count = 1;
513 		kpm->pm_stpa = (st_entry_t *)kstpa;
514 		/*
515 		 * For the 040 we also initialize the free level 2
516 		 * descriptor mask noting that we have used:
517 		 *	0:		level 1 table
518 		 *	1 to `num':	map page tables
519 		 *	MAXKL2SIZE-1:	maps last-page page table
520 		 */
521 		if (mmutype == MMU_68040) {
522 			register int num;
523 
524 			kpm->pm_stfree = ~l2tobm(0);
525 			num = roundup((nptpages + 1) * (NPTEPG / SG4_LEV3SIZE),
526 				      SG4_LEV2SIZE) / SG4_LEV2SIZE;
527 			while (num)
528 				kpm->pm_stfree &= ~l2tobm(num--);
529 			kpm->pm_stfree &= ~l2tobm(MAXKL2SIZE-1);
530 			for (num = MAXKL2SIZE;
531 			     num < sizeof(kpm->pm_stfree)*NBBY;
532 			     num++)
533 				kpm->pm_stfree &= ~l2tobm(num);
534 		}
535 	}
536 
537 	/*
538 	 * Allocate some fixed, special purpose kernel virtual addresses
539 	 */
540 	{
541 		extern vm_offset_t	tmp_vpages[];
542 		vm_offset_t	va = virtual_avail;
543 
544 		CADDR1 = (caddr_t)va;
545 		va += NBPG;
546 		CADDR2 = (caddr_t)va;
547 		va += NBPG;
548 		vmmap = (caddr_t)va;
549 		va += NBPG;
550 		tmp_vpages[0] = va;
551 		va += NBPG;
552 		msgbufp = (struct msgbuf *)va;
553 		va += NBPG;
554 		virtual_avail = reserve_dumppages(va);
555 	}
556 }
557 
558 void
559 bootstrap_mac68k(tc)
560 	int	tc;
561 {
562 	extern void	zs_init __P((void));
563 	extern caddr_t	esym;
564 	vm_offset_t	nextpa;
565 	caddr_t		oldROMBase;
566 
567 	if (mac68k_machine.do_graybars)
568 		printf("Bootstrapping NetBSD/mac68k.\n");
569 
570 	oldROMBase = ROMBase;
571 	mac68k_vidphys = videoaddr;
572 
573 	if ((tc & 0x80000000) && (mmutype == MMU_68030)) {
574 		if (mac68k_machine.do_graybars)
575 			printf("Getting mapping from MMU.\n");
576 		(void) get_mapping();
577 		if (mac68k_machine.do_graybars)
578 			printf("Done.\n");
579 	} else {
580 		/* MMU not enabled.  Fake up ranges. */
581 		nbnumranges = 0;
582 		numranges = 1;
583 		low[0] = 0;
584 		high[0] = mac68k_machine.mach_memsize * (1024 * 1024);
585 		if (mac68k_machine.do_graybars)
586 			printf("Faked range to byte 0x%lx.\n", high[0]);
587 	}
588 	nextpa = load_addr + (((int)esym + NBPG - 1) & PG_FRAME);
589 
590 #if MFS
591 	if (boothowto & RB_MINIROOT) {
592 		int	v;
593 		boothowto |= RB_DFLTROOT;
594 		nextpa = mac68k_round_page(nextpa);
595 		if ((v = mfs_initminiroot((caddr_t) nextpa-load_addr)) == 0) {
596 			printf("Error loading miniroot.\n");
597 		}
598 		printf("Loaded %d byte miniroot.\n", v);
599 		nextpa += v;
600 	}
601 #endif
602 
603 	if (mac68k_machine.do_graybars)
604 		printf("Bootstrapping the pmap system.\n");
605 
606 	pmap_bootstrap(nextpa, load_addr);
607 
608 	if (mac68k_machine.do_graybars)
609 		printf("Pmap bootstrapped.\n");
610 
611 	if (!vidlen)
612 		panic("Don't know how to relocate video!\n");
613 
614 	if (mac68k_machine.do_graybars)
615 		printf("Moving ROMBase from %p to %p.\n",
616 			oldROMBase, ROMBase);
617 
618 	mrg_fixupROMBase(oldROMBase, ROMBase);
619 
620 	if (mac68k_machine.do_graybars)
621 		printf("Video address 0x%lx -> 0x%lx.\n",
622 			(unsigned long) videoaddr,
623 			(unsigned long) newvideoaddr);
624 
625 	mac68k_set_io_offsets(IOBase);
626 
627 	/*
628 	 * If the serial ports are going (for console or 'echo'), then
629 	 * we need to make sure the IO change gets propagated properly.
630 	 * This resets the base addresses for the 8530 (serial) driver.
631 	 *
632 	 * WARNING!!! No printfs() (etc) BETWEEN zs_init() and the end
633 	 * of this function (where we start using the MMU, so the new
634 	 * address is correct.
635 	 */
636 	if (   (mac68k_machine.serial_boot_echo)
637 	    || (mac68k_machine.serial_console))
638 		zs_init();
639 
640 	videoaddr = newvideoaddr;
641 }
642