1 /* $NetBSD: pmap_bootstrap.c,v 1.55 2001/05/30 15:24:32 lukem Exp $ */ 2 3 /* 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * the Systems Programming Group of the University of Utah Computer 9 * Science Department. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the University of 22 * California, Berkeley and its contributors. 23 * 4. Neither the name of the University nor the names of its contributors 24 * may be used to endorse or promote products derived from this software 25 * without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 30 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 37 * SUCH DAMAGE. 38 * 39 * @(#)pmap_bootstrap.c 8.1 (Berkeley) 6/10/93 40 */ 41 42 #include "opt_ddb.h" 43 #include "opt_kgdb.h" 44 #include "zsc.h" 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/reboot.h> 49 50 #include <uvm/uvm_extern.h> 51 52 #include <machine/pte.h> 53 #include <mac68k/mac68k/clockreg.h> 54 #include <machine/vmparam.h> 55 #include <machine/cpu.h> 56 #include <machine/pmap.h> 57 #include <machine/autoconf.h> 58 59 #include <ufs/mfs/mfs_extern.h> 60 61 #include <mac68k/mac68k/macrom.h> 62 63 #define PA2VA(v, t) (t)((u_int)(v) - firstpa) 64 65 extern char *etext; 66 extern int Sysptsize; 67 extern char *extiobase, *proc0paddr; 68 extern st_entry_t *Sysseg; 69 extern pt_entry_t *Sysptmap, *Sysmap; 70 71 extern int physmem; 72 extern paddr_t avail_start; 73 extern paddr_t avail_end; 74 extern vaddr_t virtual_avail, virtual_end; 75 extern vsize_t mem_size; 76 extern int protection_codes[]; 77 78 #if NZSC > 0 79 extern int zsinited; 80 #endif 81 82 /* 83 * These are used to map the RAM: 84 */ 85 int numranges; /* = 0 == don't use the ranges */ 86 u_long low[8]; 87 u_long high[8]; 88 u_long maxaddr; /* PA of the last physical page */ 89 int vidlen; 90 #define VIDMAPSIZE btoc(vidlen) 91 extern u_int32_t mac68k_vidphys; 92 extern u_int32_t videoaddr; 93 extern u_int32_t videorowbytes; 94 extern u_int32_t videosize; 95 static u_int32_t newvideoaddr; 96 97 extern caddr_t ROMBase; 98 99 /* 100 * Special purpose kernel virtual addresses, used for mapping 101 * physical pages for a variety of temporary or permanent purposes: 102 * 103 * CADDR1, CADDR2: pmap zero/copy operations 104 * vmmap: /dev/mem, crash dumps, parity error checking 105 * msgbufaddr: kernel message buffer 106 */ 107 caddr_t CADDR1, CADDR2, vmmap; 108 extern caddr_t msgbufaddr; 109 110 void pmap_bootstrap __P((paddr_t, paddr_t)); 111 void bootstrap_mac68k __P((int)); 112 113 /* 114 * Bootstrap the VM system. 115 * 116 * This is called with the MMU either on or off. If it's on, we assume 117 * that it's mapped with the same PA <=> LA mapping that we eventually 118 * want. The page sizes and the protections will be wrong, anyway. 119 * 120 * nextpa is the first address following the loaded kernel. On a IIsi 121 * on 12 May 1996, that was 0xf9000 beyond firstpa. 122 */ 123 void 124 pmap_bootstrap(nextpa, firstpa) 125 paddr_t nextpa; 126 paddr_t firstpa; 127 { 128 paddr_t kstpa, kptpa, vidpa, iiopa, rompa, kptmpa, lkptpa, p0upa; 129 u_int nptpages, kstsize; 130 paddr_t avail_next; 131 int avail_remaining; 132 int avail_range; 133 int i; 134 st_entry_t protoste, *ste; 135 pt_entry_t protopte, *pte, *epte; 136 137 vidlen = m68k_round_page(((videosize >> 16) & 0xffff) * videorowbytes + 138 m68k_page_offset(mac68k_vidphys)); 139 140 /* 141 * Calculate important physical addresses: 142 * 143 * kstpa kernel segment table 1 page (!040) 144 * N pages (040) 145 * 146 * kptpa statically allocated 147 * kernel PT pages Sysptsize+ pages 148 * 149 * vidpa internal video space for some machines 150 * PT pages VIDMAPSIZE pages 151 * 152 * rompa ROM space 153 * PT pages ROMMAPSIZE pages 154 * 155 * iiopa internal IO space 156 * PT pages IIOMAPSIZE pages 157 * 158 * [ Sysptsize is the number of pages of PT, IIOMAPSIZE and 159 * NBMAPSIZE are the number of PTEs, hence we need to round 160 * the total to a page boundary with IO maps at the end. ] 161 * 162 * kptmpa kernel PT map 1 page 163 * 164 * lkptpa last kernel PT page 1 page 165 * 166 * p0upa proc 0 u-area UPAGES pages 167 * 168 */ 169 if (mmutype == MMU_68040) 170 kstsize = MAXKL2SIZE / (NPTEPG/SG4_LEV2SIZE); 171 else 172 kstsize = 1; 173 kstpa = nextpa; 174 nextpa += kstsize * NBPG; 175 kptpa = nextpa; 176 nptpages = Sysptsize + 177 (IIOMAPSIZE + ROMMAPSIZE + VIDMAPSIZE + NPTEPG - 1) / NPTEPG; 178 nextpa += nptpages * NBPG; 179 vidpa = nextpa - VIDMAPSIZE * sizeof(pt_entry_t); 180 rompa = vidpa - ROMMAPSIZE * sizeof(pt_entry_t); 181 iiopa = rompa - IIOMAPSIZE * sizeof(pt_entry_t); 182 kptmpa = nextpa; 183 nextpa += NBPG; 184 lkptpa = nextpa; 185 nextpa += NBPG; 186 p0upa = nextpa; 187 nextpa += USPACE; 188 189 190 for (i = 0; i < numranges; i++) 191 if (low[i] <= firstpa && firstpa < high[i]) 192 break; 193 if (i >= numranges || nextpa > high[i]) { 194 if (mac68k_machine.do_graybars) { 195 printf("Failure in NetBSD boot; "); 196 if (i < numranges) 197 printf("nextpa=0x%lx, high[%d]=0x%lx.\n", 198 nextpa, i, high[i]); 199 else 200 printf("can't find kernel RAM segment.\n"); 201 printf("You're hosed! Try booting with 32-bit "); 202 printf("addressing enabled in the memory control "); 203 printf("panel.\n"); 204 printf("Older machines may need Mode32 to get that "); 205 printf("option.\n"); 206 } 207 panic("Cannot work with the current memory mappings.\n"); 208 } 209 210 /* 211 * Initialize segment table and kernel page table map. 212 * 213 * On 68030s and earlier MMUs the two are identical except for 214 * the valid bits so both are initialized with essentially the 215 * same values. On the 68040, which has a mandatory 3-level 216 * structure, the segment table holds the level 1 table and part 217 * (or all) of the level 2 table and hence is considerably 218 * different. Here the first level consists of 128 descriptors 219 * (512 bytes) each mapping 32mb of address space. Each of these 220 * points to blocks of 128 second level descriptors (512 bytes) 221 * each mapping 256kb. Note that there may be additional "segment 222 * table" pages depending on how large MAXKL2SIZE is. 223 * 224 * XXX cramming two levels of mapping into the single "segment" 225 * table on the 68040 is intended as a temporary hack to get things 226 * working. The 224mb of address space that this allows will most 227 * likely be insufficient in the future (at least for the kernel). 228 */ 229 if (mmutype == MMU_68040) { 230 int num; 231 232 /* 233 * First invalidate the entire "segment table" pages 234 * (levels 1 and 2 have the same "invalid" value). 235 */ 236 pte = PA2VA(kstpa, u_int *); 237 epte = &pte[kstsize * NPTEPG]; 238 while (pte < epte) 239 *pte++ = SG_NV; 240 /* 241 * Initialize level 2 descriptors (which immediately 242 * follow the level 1 table). We need: 243 * NPTEPG / SG4_LEV3SIZE 244 * level 2 descriptors to map each of the nptpages+1 245 * pages of PTEs. Note that we set the "used" bit 246 * now to save the HW the expense of doing it. 247 */ 248 num = (nptpages + 1) * (NPTEPG / SG4_LEV3SIZE); 249 pte = &(PA2VA(kstpa, u_int *))[SG4_LEV1SIZE]; 250 epte = &pte[num]; 251 protoste = kptpa | SG_U | SG_RW | SG_V; 252 while (pte < epte) { 253 *pte++ = protoste; 254 protoste += (SG4_LEV3SIZE * sizeof(st_entry_t)); 255 } 256 /* 257 * Initialize level 1 descriptors. We need: 258 * roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE 259 * level 1 descriptors to map the `num' level 2's. 260 */ 261 pte = PA2VA(kstpa, u_int *); 262 epte = &pte[roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE]; 263 protoste = (u_int)&pte[SG4_LEV1SIZE] | SG_U | SG_RW | SG_V; 264 while (pte < epte) { 265 *pte++ = protoste; 266 protoste += (SG4_LEV2SIZE * sizeof(st_entry_t)); 267 } 268 /* 269 * Initialize the final level 1 descriptor to map the last 270 * block of level 2 descriptors. 271 */ 272 ste = &(PA2VA(kstpa, u_int*))[SG4_LEV1SIZE-1]; 273 pte = &(PA2VA(kstpa, u_int*))[kstsize*NPTEPG - SG4_LEV2SIZE]; 274 *ste = (u_int)pte | SG_U | SG_RW | SG_V; 275 /* 276 * Now initialize the final portion of that block of 277 * descriptors to map the "last PT page". 278 */ 279 pte = &(PA2VA(kstpa, u_int*)) 280 [kstsize*NPTEPG - NPTEPG/SG4_LEV3SIZE]; 281 epte = &pte[NPTEPG/SG4_LEV3SIZE]; 282 protoste = lkptpa | SG_U | SG_RW | SG_V; 283 while (pte < epte) { 284 *pte++ = protoste; 285 protoste += (SG4_LEV3SIZE * sizeof(st_entry_t)); 286 } 287 /* 288 * Initialize Sysptmap 289 */ 290 pte = PA2VA(kptmpa, u_int *); 291 epte = &pte[nptpages+1]; 292 protopte = kptpa | PG_RW | PG_CI | PG_V; 293 while (pte < epte) { 294 *pte++ = protopte; 295 protopte += NBPG; 296 } 297 /* 298 * Invalidate all but the last remaining entries in both. 299 */ 300 epte = &(PA2VA(kptmpa, u_int *))[NPTEPG-1]; 301 while (pte < epte) { 302 *pte++ = PG_NV; 303 } 304 /* 305 * Initialize the last to point to the page 306 * table page allocated earlier. 307 */ 308 *pte = lkptpa | PG_RW | PG_CI | PG_V; 309 } else { 310 /* 311 * Map the page table pages in both the HW segment table 312 * and the software Sysptmap. Note that Sysptmap is also 313 * considered a PT page hence the +1. 314 */ 315 ste = PA2VA(kstpa, u_int*); 316 pte = PA2VA(kptmpa, u_int*); 317 epte = &pte[nptpages+1]; 318 protoste = kptpa | SG_RW | SG_V; 319 protopte = kptpa | PG_RW | PG_CI | PG_V; 320 while (pte < epte) { 321 *ste++ = protoste; 322 *pte++ = protopte; 323 protoste += NBPG; 324 protopte += NBPG; 325 } 326 /* 327 * Invalidate all but the last remaining entries in both. 328 */ 329 epte = &(PA2VA(kptmpa, u_int *))[NPTEPG-1]; 330 while (pte < epte) { 331 *ste++ = SG_NV; 332 *pte++ = PG_NV; 333 } 334 /* 335 * Initialize the last to point to point to the page 336 * table page allocated earlier. 337 */ 338 *ste = lkptpa | SG_RW | SG_V; 339 *pte = lkptpa | PG_RW | PG_CI | PG_V; 340 } 341 /* 342 * Invalidate all entries in the last kernel PT page 343 * (u-area PTEs will be validated later). 344 */ 345 pte = PA2VA(lkptpa, u_int *); 346 epte = &pte[NPTEPG]; 347 while (pte < epte) 348 *pte++ = PG_NV; 349 350 /* 351 * Initialize kernel page table. 352 * Start by invalidating the `nptpages' that we have allocated. 353 */ 354 pte = PA2VA(kptpa, u_int *); 355 epte = &pte[nptpages * NPTEPG]; 356 while (pte < epte) 357 *pte++ = PG_NV; 358 359 /* 360 * Validate PTEs for kernel text (RO) 361 */ 362 pte = &(PA2VA(kptpa, u_int *))[m68k_btop(KERNBASE)]; 363 epte = &pte[m68k_btop(m68k_trunc_page(&etext))]; 364 #if defined(KGDB) || defined(DDB) 365 protopte = firstpa | PG_RW | PG_V; /* XXX RW for now */ 366 #else 367 protopte = firstpa | PG_RO | PG_V; 368 #endif 369 while (pte < epte) { 370 *pte++ = protopte; 371 protopte += NBPG; 372 } 373 /* 374 * Validate PTEs for kernel data/bss, dynamic data allocated 375 * by us so far (nextpa - firstpa bytes), and pages for proc0 376 * u-area and page table allocated below (RW). 377 */ 378 epte = &(PA2VA(kptpa, u_int *))[m68k_btop(nextpa - firstpa)]; 379 protopte = (protopte & ~PG_PROT) | PG_RW; 380 /* 381 * Enable copy-back caching of data pages 382 */ 383 if (mmutype == MMU_68040) 384 protopte |= PG_CCB; 385 while (pte < epte) { 386 *pte++ = protopte; 387 protopte += NBPG; 388 } 389 /* 390 * Finally, validate the internal IO space, ROM space, and 391 * framebuffer PTEs (RW+CI). 392 */ 393 pte = PA2VA(iiopa, u_int *); 394 epte = PA2VA(rompa, u_int *); 395 protopte = IOBase | PG_RW | PG_CI | PG_V; 396 while (pte < epte) { 397 *pte++ = protopte; 398 protopte += NBPG; 399 } 400 401 pte = PA2VA(rompa, u_int *); 402 epte = PA2VA(vidpa, u_int *); 403 protopte = ((u_int) ROMBase) | PG_RO | PG_V; 404 while (pte < epte) { 405 *pte++ = protopte; 406 protopte += NBPG; 407 } 408 409 if (vidlen) { 410 pte = PA2VA(vidpa, u_int *); 411 epte = pte + VIDMAPSIZE; 412 protopte = m68k_trunc_page(mac68k_vidphys) | 413 PG_RW | PG_V | PG_CI; 414 while (pte < epte) { 415 *pte++ = protopte; 416 protopte += NBPG; 417 } 418 } 419 420 /* 421 * Calculate important exported kernel virtual addresses 422 */ 423 /* 424 * Sysseg: base of kernel segment table 425 */ 426 Sysseg = PA2VA(kstpa, st_entry_t *); 427 /* 428 * Sysptmap: base of kernel page table map 429 */ 430 Sysptmap = PA2VA(kptmpa, pt_entry_t *); 431 /* 432 * Sysmap: kernel page table (as mapped through Sysptmap) 433 * Immediately follows `nptpages' of static kernel page table. 434 */ 435 Sysmap = (pt_entry_t *)m68k_ptob(nptpages * NPTEPG); 436 437 IOBase = (u_long)m68k_ptob(nptpages * NPTEPG - 438 (IIOMAPSIZE + ROMMAPSIZE + VIDMAPSIZE)); 439 440 ROMBase = (char *)m68k_ptob(nptpages * NPTEPG - 441 (ROMMAPSIZE + VIDMAPSIZE)); 442 443 if (vidlen) { 444 newvideoaddr = (u_int32_t)m68k_ptob(nptpages * NPTEPG - 445 VIDMAPSIZE) + m68k_page_offset(mac68k_vidphys); 446 } 447 448 /* 449 * Setup u-area for process 0. 450 */ 451 /* 452 * Zero the u-area. 453 * NOTE: `pte' and `epte' aren't PTEs here. 454 */ 455 pte = PA2VA(p0upa, u_int *); 456 epte = (u_int *)(PA2VA(p0upa, u_int) + USPACE); 457 while (pte < epte) 458 *pte++ = 0; 459 /* 460 * Remember the u-area address so it can be loaded in the 461 * proc struct p_addr field later. 462 */ 463 proc0paddr = PA2VA(p0upa, char *); 464 465 /* 466 * VM data structures are now initialized, set up data for 467 * the pmap module. 468 * 469 * Note about avail_end: msgbuf is initialized just after 470 * avail_end in machdep.c. Since the last page is used 471 * for rebooting the system (code is copied there and 472 * excution continues from copied code before the MMU 473 * is disabled), the msgbuf will get trounced between 474 * reboots if it's placed in the last physical page. 475 * To work around this, we move avail_end back one more 476 * page so the msgbuf can be preserved. 477 */ 478 avail_next = avail_start = m68k_round_page(nextpa); 479 avail_remaining = 0; 480 avail_range = -1; 481 for (i = 0; i < numranges; i++) { 482 if (low[i] <= avail_next && avail_next < high[i]) { 483 avail_range = i; 484 avail_remaining = high[i] - avail_next; 485 } else if (avail_range != -1) { 486 avail_remaining += (high[i] - low[i]); 487 } 488 } 489 physmem = m68k_btop(avail_remaining + nextpa - firstpa); 490 491 maxaddr = high[numranges - 1] - m68k_ptob(1); 492 high[numranges - 1] -= (m68k_round_page(MSGBUFSIZE) + m68k_ptob(1)); 493 avail_end = high[numranges - 1]; 494 mem_size = m68k_ptob(physmem); 495 virtual_avail = VM_MIN_KERNEL_ADDRESS + (nextpa - firstpa); 496 virtual_end = VM_MAX_KERNEL_ADDRESS; 497 498 /* 499 * Initialize protection array. 500 * XXX don't use a switch statement, it might produce an 501 * absolute "jmp" table. 502 */ 503 { 504 int *kp; 505 506 kp = (int *)&protection_codes; 507 kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_NONE] = 0; 508 kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_NONE] = PG_RO; 509 kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO; 510 kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO; 511 kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW; 512 kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW; 513 kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW; 514 kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW; 515 } 516 517 /* 518 * Kernel page/segment table allocated in locore, 519 * just initialize pointers. 520 */ 521 { 522 struct pmap *kpm = (struct pmap *)&kernel_pmap_store; 523 524 kpm->pm_stab = Sysseg; 525 kpm->pm_ptab = Sysmap; 526 simple_lock_init(&kpm->pm_lock); 527 kpm->pm_count = 1; 528 kpm->pm_stpa = (st_entry_t *)kstpa; 529 /* 530 * For the 040 we also initialize the free level 2 531 * descriptor mask noting that we have used: 532 * 0: level 1 table 533 * 1 to `num': map page tables 534 * MAXKL2SIZE-1: maps last-page page table 535 */ 536 if (mmutype == MMU_68040) { 537 int num; 538 539 kpm->pm_stfree = ~l2tobm(0); 540 num = roundup((nptpages + 1) * (NPTEPG / SG4_LEV3SIZE), 541 SG4_LEV2SIZE) / SG4_LEV2SIZE; 542 while (num) 543 kpm->pm_stfree &= ~l2tobm(num--); 544 kpm->pm_stfree &= ~l2tobm(MAXKL2SIZE-1); 545 for (num = MAXKL2SIZE; 546 num < sizeof(kpm->pm_stfree)*NBBY; 547 num++) 548 kpm->pm_stfree &= ~l2tobm(num); 549 } 550 } 551 552 /* 553 * Allocate some fixed, special purpose kernel virtual addresses 554 */ 555 { 556 vaddr_t va = virtual_avail; 557 558 CADDR1 = (caddr_t)va; 559 va += NBPG; 560 CADDR2 = (caddr_t)va; 561 va += NBPG; 562 vmmap = (caddr_t)va; 563 va += NBPG; 564 msgbufaddr = (caddr_t)va; 565 va += m68k_round_page(MSGBUFSIZE); 566 virtual_avail = va; 567 } 568 } 569 570 void 571 bootstrap_mac68k(tc) 572 int tc; 573 { 574 #if NZSC > 0 575 extern void zs_init __P((void)); 576 #endif 577 extern int *esym; 578 paddr_t nextpa; 579 caddr_t oldROMBase; 580 581 if (mac68k_machine.do_graybars) 582 printf("Bootstrapping NetBSD/mac68k.\n"); 583 584 oldROMBase = ROMBase; 585 mac68k_vidphys = videoaddr; 586 587 if (((tc & 0x80000000) && (mmutype == MMU_68030)) || 588 ((tc & 0x8000) && (mmutype == MMU_68040))) { 589 if (mac68k_machine.do_graybars) 590 printf("Getting mapping from MMU.\n"); 591 (void) get_mapping(); 592 if (mac68k_machine.do_graybars) 593 printf("Done.\n"); 594 } else { 595 /* MMU not enabled. Fake up ranges. */ 596 numranges = 1; 597 low[0] = 0; 598 high[0] = mac68k_machine.mach_memsize * (1024 * 1024); 599 if (mac68k_machine.do_graybars) 600 printf("Faked range to byte 0x%lx.\n", high[0]); 601 } 602 nextpa = load_addr + m68k_round_page(esym); 603 604 if (mac68k_machine.do_graybars) 605 printf("Bootstrapping the pmap system.\n"); 606 607 pmap_bootstrap(nextpa, load_addr); 608 609 if (mac68k_machine.do_graybars) 610 printf("Pmap bootstrapped.\n"); 611 612 if (!vidlen) 613 panic("Don't know how to relocate video!\n"); 614 615 if (mac68k_machine.do_graybars) 616 printf("Moving ROMBase from %p to %p.\n", oldROMBase, ROMBase); 617 618 mrg_fixupROMBase(oldROMBase, ROMBase); 619 620 if (mac68k_machine.do_graybars) 621 printf("Video address 0x%lx -> 0x%lx.\n", 622 (unsigned long)videoaddr, (unsigned long)newvideoaddr); 623 624 mac68k_set_io_offsets(IOBase); 625 626 /* 627 * If the serial ports are going (for console or 'echo'), then 628 * we need to make sure the IO change gets propagated properly. 629 * This resets the base addresses for the 8530 (serial) driver. 630 * 631 * WARNING!!! No printfs() (etc) BETWEEN zs_init() and the end 632 * of this function (where we start using the MMU, so the new 633 * address is correct. 634 */ 635 #if NZSC > 0 636 if (zsinited != 0) 637 zs_init(); 638 #endif 639 640 videoaddr = newvideoaddr; 641 } 642