xref: /netbsd-src/sys/arch/mac68k/mac68k/pmap_bootstrap.c (revision 404fbe5fb94ca1e054339640cabb2801ce52dd30)
1 /*	$NetBSD: pmap_bootstrap.c,v 1.76 2009/01/10 11:28:47 tsutsui Exp $	*/
2 
3 /*
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * the Systems Programming Group of the University of Utah Computer
9  * Science Department.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)pmap_bootstrap.c	8.1 (Berkeley) 6/10/93
36  */
37 
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: pmap_bootstrap.c,v 1.76 2009/01/10 11:28:47 tsutsui Exp $");
40 
41 #include "opt_ddb.h"
42 #include "opt_kgdb.h"
43 #include "zsc.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/reboot.h>
48 
49 #include <uvm/uvm_extern.h>
50 
51 #include <machine/pte.h>
52 #include <machine/vmparam.h>
53 #include <machine/cpu.h>
54 #include <machine/pmap.h>
55 #include <machine/autoconf.h>
56 #include <machine/video.h>
57 
58 #include <mac68k/mac68k/macrom.h>
59 
60 #define PA2VA(v, t)	(t)((u_int)(v) - firstpa)
61 
62 extern char *etext;
63 extern int Sysptsize;
64 extern char *extiobase, *proc0paddr;
65 extern st_entry_t *Sysseg;
66 extern pt_entry_t *Sysptmap, *Sysmap;
67 
68 extern int physmem;
69 extern paddr_t avail_start;
70 extern paddr_t avail_end;
71 extern vaddr_t virtual_avail, virtual_end;
72 extern vsize_t mem_size;
73 extern int protection_codes[];
74 
75 #if NZSC > 0
76 extern	int	zsinited;
77 #endif
78 
79 /*
80  * These are used to map the RAM:
81  */
82 int	numranges;	/* = 0 == don't use the ranges */
83 u_long	low[8];
84 u_long	high[8];
85 u_long	maxaddr;	/* PA of the last physical page */
86 int	vidlen;
87 #define VIDMAPSIZE	btoc(vidlen)
88 static vaddr_t	newvideoaddr;
89 
90 extern void *	ROMBase;
91 
92 /*
93  * Special purpose kernel virtual addresses, used for mapping
94  * physical pages for a variety of temporary or permanent purposes:
95  *
96  *	CADDR1, CADDR2:	pmap zero/copy operations
97  *	vmmap:		/dev/mem, crash dumps, parity error checking
98  *	msgbufaddr:	kernel message buffer
99  */
100 void *CADDR1, *CADDR2;
101 char *vmmap;
102 void *msgbufaddr;
103 
104 void	pmap_bootstrap(paddr_t, paddr_t);
105 void	bootstrap_mac68k(int);
106 
107 /*
108  * Bootstrap the VM system.
109  *
110  * This is called with the MMU either on or off.  If it's on, we assume
111  * that it's mapped with the same PA <=> LA mapping that we eventually
112  * want.  The page sizes and the protections will be wrong, anyway.
113  *
114  * nextpa is the first address following the loaded kernel.  On a IIsi
115  * on 12 May 1996, that was 0xf9000 beyond firstpa.
116  */
117 void
118 pmap_bootstrap(paddr_t nextpa, paddr_t firstpa)
119 {
120 	paddr_t kstpa, kptpa, kptmpa, p0upa;
121 	u_int nptpages, kstsize;
122 	paddr_t avail_next;
123 	int avail_remaining;
124 	int avail_range;
125 	int i;
126 	st_entry_t protoste, *ste;
127 	pt_entry_t protopte, *pte, *epte;
128 	extern char start[];
129 
130 	vidlen = m68k_round_page(mac68k_video.mv_height *
131 	    mac68k_video.mv_stride + m68k_page_offset(mac68k_video.mv_phys));
132 
133 	/*
134 	 * Calculate important physical addresses:
135 	 *
136 	 *	kstpa		kernel segment table	1 page (!040)
137 	 *						N pages (040)
138 	 *
139 	 *	kptpa		statically allocated
140 	 *			kernel PT pages		Sysptsize+ pages
141 	 *
142 	 * [ Sysptsize is the number of pages of PT, IIOMAPSIZE and
143 	 *   NBMAPSIZE are the number of PTEs, hence we need to round
144 	 *   the total to a page boundary with IO maps at the end. ]
145 	 *
146 	 *	kptmpa		kernel PT map		1 page
147 	 *
148 	 *	p0upa		proc 0 u-area		UPAGES pages
149 	 *
150 	 */
151 	if (mmutype == MMU_68040)
152 		kstsize = MAXKL2SIZE / (NPTEPG/SG4_LEV2SIZE);
153 	else
154 		kstsize = 1;
155 	kstpa = nextpa;
156 	nextpa += kstsize * PAGE_SIZE;
157 	kptmpa = nextpa;
158 	nextpa += PAGE_SIZE;
159 	p0upa = nextpa;
160 	nextpa += USPACE;
161 	kptpa = nextpa;
162 	nptpages = Sysptsize +
163 		(IIOMAPSIZE + ROMMAPSIZE + VIDMAPSIZE + NPTEPG - 1) / NPTEPG;
164 	nextpa += nptpages * PAGE_SIZE;
165 
166 	for (i = 0; i < numranges; i++)
167 		if (low[i] <= firstpa && firstpa < high[i])
168 			break;
169 	if (i >= numranges || nextpa > high[i]) {
170 		if (mac68k_machine.do_graybars) {
171 			printf("Failure in NetBSD boot; ");
172 			if (i < numranges)
173 				printf("nextpa=0x%lx, high[%d]=0x%lx.\n",
174 				    nextpa, i, high[i]);
175 			else
176 				printf("can't find kernel RAM segment.\n");
177 			printf("You're hosed!  Try booting with 32-bit ");
178 			printf("addressing enabled in the memory control ");
179 			printf("panel.\n");
180 			printf("Older machines may need Mode32 to get that ");
181 			printf("option.\n");
182 		}
183 		panic("Cannot work with the current memory mappings.");
184 	}
185 
186 	/*
187 	 * Initialize segment table and kernel page table map.
188 	 *
189 	 * On 68030s and earlier MMUs the two are identical except for
190 	 * the valid bits so both are initialized with essentially the
191 	 * same values.  On the 68040, which has a mandatory 3-level
192 	 * structure, the segment table holds the level 1 table and part
193 	 * (or all) of the level 2 table and hence is considerably
194 	 * different.  Here the first level consists of 128 descriptors
195 	 * (512 bytes) each mapping 32mb of address space.  Each of these
196 	 * points to blocks of 128 second level descriptors (512 bytes)
197 	 * each mapping 256kb.  Note that there may be additional "segment
198 	 * table" pages depending on how large MAXKL2SIZE is.
199 	 *
200 	 * XXX cramming two levels of mapping into the single "segment"
201 	 * table on the 68040 is intended as a temporary hack to get things
202 	 * working.  The 224mb of address space that this allows will most
203 	 * likely be insufficient in the future (at least for the kernel).
204 	 */
205 	if (mmutype == MMU_68040) {
206 		int num;
207 
208 		/*
209 		 * First invalidate the entire "segment table" pages
210 		 * (levels 1 and 2 have the same "invalid" value).
211 		 */
212 		pte = PA2VA(kstpa, u_int *);
213 		epte = &pte[kstsize * NPTEPG];
214 		while (pte < epte)
215 			*pte++ = SG_NV;
216 		/*
217 		 * Initialize level 2 descriptors (which immediately
218 		 * follow the level 1 table).  We need:
219 		 *	NPTEPG / SG4_LEV3SIZE
220 		 * level 2 descriptors to map each of the nptpages
221 		 * pages of PTEs.  Note that we set the "used" bit
222 		 * now to save the HW the expense of doing it.
223 		 */
224 		num = nptpages * (NPTEPG / SG4_LEV3SIZE);
225 		pte = &(PA2VA(kstpa, u_int *))[SG4_LEV1SIZE];
226 		epte = &pte[num];
227 		protoste = kptpa | SG_U | SG_RW | SG_V;
228 		while (pte < epte) {
229 			*pte++ = protoste;
230 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
231 		}
232 		/*
233 		 * Initialize level 1 descriptors.  We need:
234 		 *	roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE
235 		 * level 1 descriptors to map the `num' level 2's.
236 		 */
237 		pte = PA2VA(kstpa, u_int *);
238 		epte = &pte[roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE];
239 		protoste = (u_int)&pte[SG4_LEV1SIZE] | SG_U | SG_RW | SG_V;
240 		while (pte < epte) {
241 			*pte++ = protoste;
242 			protoste += (SG4_LEV2SIZE * sizeof(st_entry_t));
243 		}
244 		/*
245 		 * Initialize the final level 1 descriptor to map the last
246 		 * block of level 2 descriptors.
247 		 */
248 		ste = &(PA2VA(kstpa, u_int*))[SG4_LEV1SIZE-1];
249 		pte = &(PA2VA(kstpa, u_int*))[kstsize*NPTEPG - SG4_LEV2SIZE];
250 		*ste = (u_int)pte | SG_U | SG_RW | SG_V;
251 		/*
252 		 * Now initialize the final portion of that block of
253 		 * descriptors to map Sysmap.
254 		 */
255 		pte = &(PA2VA(kstpa, u_int*))
256 				[kstsize*NPTEPG - NPTEPG/SG4_LEV3SIZE];
257 		epte = &pte[NPTEPG/SG4_LEV3SIZE];
258 		protoste = kptmpa | SG_U | SG_RW | SG_V;
259 		while (pte < epte) {
260 			*pte++ = protoste;
261 			protoste += (SG4_LEV3SIZE * sizeof(st_entry_t));
262 		}
263 		/*
264 		 * Initialize Sysptmap
265 		 */
266 		pte = PA2VA(kptmpa, u_int *);
267 		epte = &pte[nptpages];
268 		protopte = kptpa | PG_RW | PG_CI | PG_V;
269 		while (pte < epte) {
270 			*pte++ = protopte;
271 			protopte += PAGE_SIZE;
272 		}
273 		/*
274 		 * Invalidate all but the last remaining entry.
275 		 */
276 		epte = &(PA2VA(kptmpa, u_int *))[NPTEPG - 1];
277 		while (pte < epte) {
278 			*pte++ = PG_NV;
279 		}
280 		/*
281 		 * Initialize the last one to point to Sysptmap.
282 		 */
283 		*pte = kptmpa | PG_RW | PG_CI | PG_V;
284 	} else {
285 		/*
286 		 * Map the page table pages in both the HW segment table
287 		 * and the software Sysptmap.
288 		 */
289 		ste = PA2VA(kstpa, u_int*);
290 		pte = PA2VA(kptmpa, u_int*);
291 		epte = &pte[nptpages];
292 		protoste = kptpa | SG_RW | SG_V;
293 		protopte = kptpa | PG_RW | PG_CI | PG_V;
294 		while (pte < epte) {
295 			*ste++ = protoste;
296 			*pte++ = protopte;
297 			protoste += PAGE_SIZE;
298 			protopte += PAGE_SIZE;
299 		}
300 		/*
301 		 * Invalidate all but the last remaining entries in both.
302 		 */
303 		epte = &(PA2VA(kptmpa, u_int *))[NPTEPG - 1];
304 		while (pte < epte) {
305 			*ste++ = SG_NV;
306 			*pte++ = PG_NV;
307 		}
308 		/*
309 		 * Initialize the last one to point to Sysptmap.
310 		 */
311 		*ste = kptmpa | SG_RW | SG_V;
312 		*pte = kptmpa | PG_RW | PG_CI | PG_V;
313 	}
314 
315 	/*
316 	 * Initialize kernel page table.
317 	 * Start by invalidating the `nptpages' that we have allocated.
318 	 */
319 	pte = PA2VA(kptpa, u_int *);
320 	epte = &pte[nptpages * NPTEPG];
321 	while (pte < epte)
322 		*pte++ = PG_NV;
323 
324 	/*
325 	 * Validate PTEs for kernel text (RO).
326 	 * Pages up to "start" must be writable for the ROM.
327 	 */
328 	pte = &(PA2VA(kptpa, u_int *))[m68k_btop(KERNBASE)];
329 	/* XXX why KERNBASE relative? */
330 	epte = &pte[m68k_btop(m68k_round_page(start))];
331 	protopte = firstpa | PG_RW | PG_V;
332 	while (pte < epte) {
333 		*pte++ = protopte;
334 		protopte += PAGE_SIZE;
335 	}
336 	/* XXX why KERNBASE relative? */
337 	epte = &pte[m68k_btop(m68k_trunc_page(&etext))];
338 	protopte = (protopte & ~PG_PROT) | PG_RO;
339 	while (pte < epte) {
340 		*pte++ = protopte;
341 		protopte += PAGE_SIZE;
342 	}
343 	/*
344 	 * Validate PTEs for kernel data/bss, dynamic data allocated
345 	 * by us so far (nextpa - firstpa bytes), and pages for proc0
346 	 * u-area and page table allocated below (RW).
347 	 */
348 	epte = &(PA2VA(kptpa, u_int *))[m68k_btop(nextpa - firstpa)];
349 	protopte = (protopte & ~PG_PROT) | PG_RW;
350 	/*
351 	 * Enable copy-back caching of data pages
352 	 */
353 	if (mmutype == MMU_68040)
354 		protopte |= PG_CCB;
355 	while (pte < epte) {
356 		*pte++ = protopte;
357 		protopte += PAGE_SIZE;
358 	}
359 
360 #define	PTE2VA(pte)	m68k_ptob(pte - PA2VA(kptpa, pt_entry_t *))
361 
362 	protopte = IOBase | PG_RW | PG_CI | PG_V;
363 	IOBase = PTE2VA(pte);
364 	epte = &pte[IIOMAPSIZE];
365 	while (pte < epte) {
366 		*pte++ = protopte;
367 		protopte += PAGE_SIZE;
368 	}
369 
370 	protopte = (pt_entry_t)ROMBase | PG_RO | PG_V;
371 	ROMBase = (void *)PTE2VA(pte);
372 	epte = &pte[ROMMAPSIZE];
373 	while (pte < epte) {
374 		*pte++ = protopte;
375 		protopte += PAGE_SIZE;
376 	}
377 
378 	if (vidlen) {
379 		protopte = m68k_trunc_page(mac68k_video.mv_phys) |
380 		    PG_RW | PG_V | PG_CI;
381 		newvideoaddr = PTE2VA(pte)
382 		    + m68k_page_offset(mac68k_video.mv_phys);
383 		epte = &pte[VIDMAPSIZE];
384 		while (pte < epte) {
385 			*pte++ = protopte;
386 			protopte += PAGE_SIZE;
387 		}
388 	}
389 	virtual_avail = PTE2VA(pte);
390 
391 	/*
392 	 * Calculate important exported kernel virtual addresses
393 	 */
394 	/*
395 	 * Sysseg: base of kernel segment table
396 	 */
397 	Sysseg = PA2VA(kstpa, st_entry_t *);
398 	/*
399 	 * Sysptmap: base of kernel page table map
400 	 */
401 	Sysptmap = PA2VA(kptmpa, pt_entry_t *);
402 	/*
403 	 * Sysmap: kernel page table (as mapped through Sysptmap)
404 	 * Allocated at the end of KVA space.
405 	 */
406 	Sysmap = (pt_entry_t *)m68k_ptob((NPTEPG - 1) * NPTEPG);
407 
408 	/*
409 	 * Setup u-area for process 0.
410 	 */
411 	/*
412 	 * Zero the u-area.
413 	 * NOTE: `pte' and `epte' aren't PTEs here.
414 	 */
415 	pte = PA2VA(p0upa, u_int *);
416 	epte = (u_int *)(PA2VA(p0upa, u_int) + USPACE);
417 	while (pte < epte)
418 		*pte++ = 0;
419 	/*
420 	 * Remember the u-area address so it can be loaded in the
421 	 * proc struct p_addr field later.
422 	 */
423 	proc0paddr = PA2VA(p0upa, char *);
424 
425 	/*
426 	 * VM data structures are now initialized, set up data for
427 	 * the pmap module.
428 	 *
429 	 * Note about avail_end: msgbuf is initialized just after
430 	 * avail_end in machdep.c.  Since the last page is used
431 	 * for rebooting the system (code is copied there and
432 	 * excution continues from copied code before the MMU
433 	 * is disabled), the msgbuf will get trounced between
434 	 * reboots if it's placed in the last physical page.
435 	 * To work around this, we move avail_end back one more
436 	 * page so the msgbuf can be preserved.
437 	 */
438 	avail_next = avail_start = m68k_round_page(nextpa);
439 	avail_remaining = 0;
440 	avail_range = -1;
441 	for (i = 0; i < numranges; i++) {
442 		if (low[i] <= avail_next && avail_next < high[i]) {
443 			avail_range = i;
444 			avail_remaining = high[i] - avail_next;
445 		} else if (avail_range != -1) {
446 			avail_remaining += (high[i] - low[i]);
447 		}
448 	}
449 	physmem = m68k_btop(avail_remaining + nextpa - firstpa);
450 
451 	maxaddr = high[numranges - 1] - m68k_ptob(1);
452 	high[numranges - 1] -= (m68k_round_page(MSGBUFSIZE) + m68k_ptob(1));
453 	avail_end = high[numranges - 1];
454 	mem_size = m68k_ptob(physmem);
455 	virtual_end = VM_MAX_KERNEL_ADDRESS;
456 
457 	/*
458 	 * Initialize protection array.
459 	 * XXX don't use a switch statement, it might produce an
460 	 * absolute "jmp" table.
461 	 */
462 	{
463 		int *kp;
464 
465 		kp = (int *)&protection_codes;
466 		kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_NONE] = 0;
467 		kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_NONE] = PG_RO;
468 		kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO;
469 		kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO;
470 		kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW;
471 		kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW;
472 		kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW;
473 		kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW;
474 	}
475 
476 	/*
477 	 * Kernel page/segment table allocated above,
478 	 * just initialize pointers.
479 	 */
480 	{
481 		struct pmap *kpm = kernel_pmap_ptr;
482 
483 		kpm->pm_stab = Sysseg;
484 		kpm->pm_ptab = Sysmap;
485 		simple_lock_init(&kpm->pm_lock);
486 		kpm->pm_count = 1;
487 		kpm->pm_stpa = (st_entry_t *)kstpa;
488 		/*
489 		 * For the 040 we also initialize the free level 2
490 		 * descriptor mask noting that we have used:
491 		 *	0:		level 1 table
492 		 *	1 to `num':	map page tables
493 		 *	MAXKL2SIZE-1:	maps kptmpa
494 		 */
495 		if (mmutype == MMU_68040) {
496 			int num;
497 
498 			kpm->pm_stfree = ~l2tobm(0);
499 			num = roundup(nptpages * (NPTEPG / SG4_LEV3SIZE),
500 				      SG4_LEV2SIZE) / SG4_LEV2SIZE;
501 			while (num)
502 				kpm->pm_stfree &= ~l2tobm(num--);
503 			kpm->pm_stfree &= ~l2tobm(MAXKL2SIZE-1);
504 			for (num = MAXKL2SIZE;
505 			     num < sizeof(kpm->pm_stfree)*NBBY;
506 			     num++)
507 				kpm->pm_stfree &= ~l2tobm(num);
508 		}
509 	}
510 
511 	/*
512 	 * Allocate some fixed, special purpose kernel virtual addresses
513 	 */
514 	{
515 		vaddr_t va = virtual_avail;
516 
517 		CADDR1 = (void *)va;
518 		va += PAGE_SIZE;
519 		CADDR2 = (void *)va;
520 		va += PAGE_SIZE;
521 		vmmap = (void *)va;
522 		va += PAGE_SIZE;
523 		msgbufaddr = (void *)va;
524 		va += m68k_round_page(MSGBUFSIZE);
525 		virtual_avail = va;
526 	}
527 }
528 
529 void
530 bootstrap_mac68k(int tc)
531 {
532 #if NZSC > 0
533 	extern void zs_init(void);
534 #endif
535 	extern int *esym;
536 	paddr_t nextpa;
537 	void *oldROMBase;
538 
539 	if (mac68k_machine.do_graybars)
540 		printf("Bootstrapping NetBSD/mac68k.\n");
541 
542 	oldROMBase = ROMBase;
543 	mac68k_video.mv_phys = mac68k_video.mv_kvaddr;
544 
545 	if (((tc & 0x80000000) && (mmutype == MMU_68030)) ||
546 	    ((tc & 0x8000) && (mmutype == MMU_68040))) {
547 		if (mac68k_machine.do_graybars)
548 			printf("Getting mapping from MMU.\n");
549 		(void) get_mapping();
550 		if (mac68k_machine.do_graybars)
551 			printf("Done.\n");
552 	} else {
553 		/* MMU not enabled.  Fake up ranges. */
554 		numranges = 1;
555 		low[0] = 0;
556 		high[0] = mac68k_machine.mach_memsize * (1024 * 1024);
557 		if (mac68k_machine.do_graybars)
558 			printf("Faked range to byte 0x%lx.\n", high[0]);
559 	}
560 	nextpa = load_addr + m68k_round_page(esym);
561 
562 	if (mac68k_machine.do_graybars)
563 		printf("Bootstrapping the pmap system.\n");
564 
565 	pmap_bootstrap(nextpa, load_addr);
566 
567 	if (mac68k_machine.do_graybars)
568 		printf("Pmap bootstrapped.\n");
569 
570 	if (!vidlen)
571 		panic("Don't know how to relocate video!");
572 
573 	if (mac68k_machine.do_graybars)
574 		printf("Moving ROMBase from %p to %p.\n", oldROMBase, ROMBase);
575 
576 	mrg_fixupROMBase(oldROMBase, ROMBase);
577 
578 	if (mac68k_machine.do_graybars)
579 		printf("Video address 0x%p -> 0x%p.\n",
580 		    (void *)mac68k_video.mv_kvaddr, (void *)newvideoaddr);
581 
582 	mac68k_set_io_offsets(IOBase);
583 
584 	/*
585 	 * If the serial ports are going (for console or 'echo'), then
586 	 * we need to make sure the IO change gets propagated properly.
587 	 * This resets the base addresses for the 8530 (serial) driver.
588 	 *
589 	 * WARNING!!! No printfs() (etc) BETWEEN zs_init() and the end
590 	 * of this function (where we start using the MMU, so the new
591 	 * address is correct.
592 	 */
593 #if NZSC > 0
594 	if (zsinited != 0)
595 		zs_init();
596 #endif
597 
598 	mac68k_video.mv_kvaddr = newvideoaddr;
599 }
600