1 /* $NetBSD: pmap_bootstrap.c,v 1.39 1997/12/01 05:51:51 scottr Exp $ */ 2 3 /* 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * the Systems Programming Group of the University of Utah Computer 9 * Science Department. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the University of 22 * California, Berkeley and its contributors. 23 * 4. Neither the name of the University nor the names of its contributors 24 * may be used to endorse or promote products derived from this software 25 * without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 28 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 29 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 30 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 31 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 32 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 33 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 34 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 35 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 36 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 37 * SUCH DAMAGE. 38 * 39 * @(#)pmap_bootstrap.c 8.1 (Berkeley) 6/10/93 40 */ 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/reboot.h> 45 46 #include <vm/vm.h> 47 48 #include <machine/pte.h> 49 #include <mac68k/mac68k/clockreg.h> 50 #include <machine/vmparam.h> 51 #include <machine/cpu.h> 52 #include <machine/pmap.h> 53 #include <machine/autoconf.h> 54 55 #include <ufs/mfs/mfs_extern.h> 56 57 #include <mac68k/mac68k/macrom.h> 58 59 #define PA2VA(v, t) (t)((u_int)(v) - firstpa) 60 61 extern char *etext; 62 extern int Sysptsize; 63 extern char *extiobase, *proc0paddr; 64 extern st_entry_t *Sysseg; 65 extern pt_entry_t *Sysptmap, *Sysmap; 66 67 extern int maxmem, physmem; 68 extern int avail_remaining, avail_range, avail_end; 69 extern vm_offset_t avail_start, avail_next; 70 extern vm_offset_t virtual_avail, virtual_end; 71 extern vm_size_t mem_size; 72 extern int protection_codes[]; 73 74 extern vm_offset_t reserve_dumppages __P((vm_offset_t)); 75 76 extern int zsinited; 77 78 /* 79 * These are used to map the RAM: 80 */ 81 int numranges; /* = 0 == don't use the ranges */ 82 u_long low[8]; 83 u_long high[8]; 84 extern int nbnumranges; 85 extern u_long nbphys[]; 86 extern u_long nblog[]; 87 extern signed long nblen[]; 88 #define VIDMAPSIZE btoc(m68k_round_page(vidlen)) 89 extern u_int32_t mac68k_vidlog; 90 extern u_int32_t mac68k_vidphys; 91 extern u_int32_t videoaddr; 92 extern u_int32_t videorowbytes; 93 extern u_int32_t videosize; 94 static int vidlen; 95 static u_int32_t newvideoaddr; 96 97 extern caddr_t ROMBase; 98 99 /* 100 * Special purpose kernel virtual addresses, used for mapping 101 * physical pages for a variety of temporary or permanent purposes: 102 * 103 * CADDR1, CADDR2: pmap zero/copy operations 104 * vmmap: /dev/mem, crash dumps, parity error checking 105 * msgbufaddr: kernel message buffer 106 */ 107 caddr_t CADDR1, CADDR2, vmmap; 108 extern caddr_t msgbufaddr; 109 110 /* 111 * Bootstrap the VM system. 112 * 113 * This is called with the MMU either on or off. If it's on, we assume 114 * that it's mapped with the same PA <=> LA mapping that we eventually 115 * want. The page sizes and the protections will be wrong, anyway. 116 * 117 * nextpa is the first address following the loaded kernel. On a IIsi 118 * on 12 May 1996, that was 0xf9000 beyond firstpa. 119 */ 120 void 121 pmap_bootstrap(nextpa, firstpa) 122 vm_offset_t nextpa; 123 register vm_offset_t firstpa; 124 { 125 vm_offset_t kstpa, kptpa, vidpa, iiopa, rompa; 126 vm_offset_t kptmpa, lkptpa, p0upa; 127 u_int nptpages, kstsize; 128 int i; 129 register st_entry_t protoste, *ste; 130 register pt_entry_t protopte, *pte, *epte; 131 132 vidlen = ((videosize >> 16) & 0xffff) * videorowbytes + PGOFSET; 133 134 /* 135 * Calculate important physical addresses: 136 * 137 * kstpa kernel segment table 1 page (!040) 138 * N pages (040) 139 * 140 * kptpa statically allocated 141 * kernel PT pages Sysptsize+ pages 142 * 143 * vidpa internal video space for some machines 144 * PT pages VIDMAPSIZE pages 145 * 146 * rompa ROM space 147 * PT pages ROMMAPSIZE pages 148 * 149 * iiopa internal IO space 150 * PT pages IIOMAPSIZE pages 151 * 152 * [ Sysptsize is the number of pages of PT, IIOMAPSIZE and 153 * NBMAPSIZE are the number of PTEs, hence we need to round 154 * the total to a page boundary with IO maps at the end. ] 155 * 156 * kptmpa kernel PT map 1 page 157 * 158 * lkptpa last kernel PT page 1 page 159 * 160 * p0upa proc 0 u-area UPAGES pages 161 * 162 */ 163 if (mmutype == MMU_68040) 164 kstsize = MAXKL2SIZE / (NPTEPG/SG4_LEV2SIZE); 165 else 166 kstsize = 1; 167 kstpa = nextpa; 168 nextpa += kstsize * NBPG; 169 kptpa = nextpa; 170 nptpages = Sysptsize + 171 (IIOMAPSIZE + ROMMAPSIZE + VIDMAPSIZE + NPTEPG - 1) / NPTEPG; 172 nextpa += nptpages * NBPG; 173 vidpa = nextpa - VIDMAPSIZE * sizeof(pt_entry_t); 174 rompa = vidpa - ROMMAPSIZE * sizeof(pt_entry_t); 175 iiopa = rompa - IIOMAPSIZE * sizeof(pt_entry_t); 176 kptmpa = nextpa; 177 nextpa += NBPG; 178 lkptpa = nextpa; 179 nextpa += NBPG; 180 p0upa = nextpa; 181 nextpa += USPACE; 182 183 if (nextpa > high[0]) { 184 printf("Failure in NetBSD boot; nextpa=0x%lx, high[0]=0x%lx.\n", 185 nextpa, high[0]); 186 printf("You're hosed! Try booting with 32-bit addressing "); 187 printf("enabled in the memory control panel.\n"); 188 printf("Older machines may need Mode32 to get that option.\n"); 189 panic("Cannot work with the current memory mappings.\n"); 190 } 191 192 /* 193 * Initialize segment table and kernel page table map. 194 * 195 * On 68030s and earlier MMUs the two are identical except for 196 * the valid bits so both are initialized with essentially the 197 * same values. On the 68040, which has a mandatory 3-level 198 * structure, the segment table holds the level 1 table and part 199 * (or all) of the level 2 table and hence is considerably 200 * different. Here the first level consists of 128 descriptors 201 * (512 bytes) each mapping 32mb of address space. Each of these 202 * points to blocks of 128 second level descriptors (512 bytes) 203 * each mapping 256kb. Note that there may be additional "segment 204 * table" pages depending on how large MAXKL2SIZE is. 205 * 206 * XXX cramming two levels of mapping into the single "segment" 207 * table on the 68040 is intended as a temporary hack to get things 208 * working. The 224mb of address space that this allows will most 209 * likely be insufficient in the future (at least for the kernel). 210 */ 211 if (mmutype == MMU_68040) { 212 register int num; 213 214 /* 215 * First invalidate the entire "segment table" pages 216 * (levels 1 and 2 have the same "invalid" value). 217 */ 218 pte = PA2VA(kstpa, u_int *); 219 epte = &pte[kstsize * NPTEPG]; 220 while (pte < epte) 221 *pte++ = SG_NV; 222 /* 223 * Initialize level 2 descriptors (which immediately 224 * follow the level 1 table). We need: 225 * NPTEPG / SG4_LEV3SIZE 226 * level 2 descriptors to map each of the nptpages+1 227 * pages of PTEs. Note that we set the "used" bit 228 * now to save the HW the expense of doing it. 229 */ 230 num = (nptpages + 1) * (NPTEPG / SG4_LEV3SIZE); 231 pte = &(PA2VA(kstpa, u_int *))[SG4_LEV1SIZE]; 232 epte = &pte[num]; 233 protoste = kptpa | SG_U | SG_RW | SG_V; 234 while (pte < epte) { 235 *pte++ = protoste; 236 protoste += (SG4_LEV3SIZE * sizeof(st_entry_t)); 237 } 238 /* 239 * Initialize level 1 descriptors. We need: 240 * roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE 241 * level 1 descriptors to map the `num' level 2's. 242 */ 243 pte = PA2VA(kstpa, u_int *); 244 epte = &pte[roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE]; 245 protoste = (u_int)&pte[SG4_LEV1SIZE] | SG_U | SG_RW | SG_V; 246 while (pte < epte) { 247 *pte++ = protoste; 248 protoste += (SG4_LEV2SIZE * sizeof(st_entry_t)); 249 } 250 /* 251 * Initialize the final level 1 descriptor to map the last 252 * block of level 2 descriptors. 253 */ 254 ste = &(PA2VA(kstpa, u_int*))[SG4_LEV1SIZE-1]; 255 pte = &(PA2VA(kstpa, u_int*))[kstsize*NPTEPG - SG4_LEV2SIZE]; 256 *ste = (u_int)pte | SG_U | SG_RW | SG_V; 257 /* 258 * Now initialize the final portion of that block of 259 * descriptors to map the "last PT page". 260 */ 261 pte = &(PA2VA(kstpa, u_int*)) 262 [kstsize*NPTEPG - NPTEPG/SG4_LEV3SIZE]; 263 epte = &pte[NPTEPG/SG4_LEV3SIZE]; 264 protoste = lkptpa | SG_U | SG_RW | SG_V; 265 while (pte < epte) { 266 *pte++ = protoste; 267 protoste += (SG4_LEV3SIZE * sizeof(st_entry_t)); 268 } 269 /* 270 * Initialize Sysptmap 271 */ 272 pte = PA2VA(kptmpa, u_int *); 273 epte = &pte[nptpages+1]; 274 protopte = kptpa | PG_RW | PG_CI | PG_V; 275 while (pte < epte) { 276 *pte++ = protopte; 277 protopte += NBPG; 278 } 279 /* 280 * Invalidate all but the last remaining entries in both. 281 */ 282 epte = &(PA2VA(kptmpa, u_int *))[NPTEPG-1]; 283 while (pte < epte) { 284 *pte++ = PG_NV; 285 } 286 pte = &(PA2VA(kptmpa, u_int *))[NPTEPG-1]; 287 *pte = lkptpa | PG_RW | PG_CI | PG_V; 288 } else { 289 /* 290 * Map the page table pages in both the HW segment table 291 * and the software Sysptmap. Note that Sysptmap is also 292 * considered a PT page hence the +1. 293 */ 294 ste = PA2VA(kstpa, u_int*); 295 pte = PA2VA(kptmpa, u_int*); 296 epte = &pte[nptpages+1]; 297 protoste = kptpa | SG_RW | SG_V; 298 protopte = kptpa | PG_RW | PG_CI | PG_V; 299 while (pte < epte) { 300 *ste++ = protoste; 301 *pte++ = protopte; 302 protoste += NBPG; 303 protopte += NBPG; 304 } 305 /* 306 * Invalidate all but the last remaining entries in both. 307 */ 308 epte = &(PA2VA(kptmpa, u_int *))[NPTEPG-1]; 309 while (pte < epte) { 310 *ste++ = SG_NV; 311 *pte++ = PG_NV; 312 } 313 /* 314 * Initialize the last to point to point to the page 315 * table page allocated earlier. 316 */ 317 *ste = lkptpa | SG_RW | SG_V; 318 *pte = lkptpa | PG_RW | PG_CI | PG_V; 319 } 320 /* 321 * Invalidate all but the final entry in the last kernel PT page 322 * (u-area PTEs will be validated later). The final entry maps 323 * the last page of physical memory. 324 */ 325 pte = PA2VA(lkptpa, u_int *); 326 epte = &pte[NPTEPG-1]; 327 while (pte < epte) 328 *pte++ = PG_NV; 329 *pte = (0xFFFFF000) | PG_RW | PG_CI | PG_V; /* XXX */ 330 331 /* 332 * Initialize kernel page table. 333 * Start by invalidating the `nptpages' that we have allocated. 334 */ 335 pte = PA2VA(kptpa, u_int *); 336 epte = &pte[nptpages * NPTEPG]; 337 while (pte < epte) 338 *pte++ = PG_NV; 339 340 /* 341 * Validate PTEs for kernel text (RO) 342 */ 343 pte = &(PA2VA(kptpa, u_int *))[m68k_btop(KERNBASE)]; 344 epte = &pte[m68k_btop(m68k_trunc_page(&etext))]; 345 #if defined(KGDB) || defined(DDB) 346 protopte = firstpa | PG_RW | PG_V; /* XXX RW for now */ 347 #else 348 protopte = firstpa | PG_RO | PG_V; 349 #endif 350 while (pte < epte) { 351 *pte++ = protopte; 352 protopte += NBPG; 353 } 354 /* 355 * Validate PTEs for kernel data/bss, dynamic data allocated 356 * by us so far (nextpa - firstpa bytes), and pages for proc0 357 * u-area and page table allocated below (RW). 358 */ 359 epte = &(PA2VA(kptpa, u_int *))[m68k_btop(nextpa - firstpa)]; 360 protopte = (protopte & ~PG_PROT) | PG_RW; 361 /* 362 * Enable copy-back caching of data pages 363 */ 364 if (mmutype == MMU_68040) 365 protopte |= PG_CCB; 366 while (pte < epte) { 367 *pte++ = protopte; 368 protopte += NBPG; 369 } 370 /* 371 * Finally, validate the internal IO space PTEs (RW+CI). 372 * We do this here since the 320/350 MMU registers (also 373 * used, but to a lesser extent, on other models) are mapped 374 * in this range and it would be nice to be able to access 375 * them after the MMU is turned on. 376 */ 377 pte = PA2VA(iiopa, u_int *); 378 epte = PA2VA(rompa, u_int *); 379 protopte = IOBase | PG_RW | PG_CI | PG_V; 380 while (pte < epte) { 381 *pte++ = protopte; 382 protopte += NBPG; 383 } 384 385 pte = PA2VA(rompa, u_int *); 386 epte = PA2VA(vidpa, u_int *); 387 protopte = ((u_int) ROMBase) | PG_RO | PG_V; 388 while (pte < epte) { 389 *pte++ = protopte; 390 protopte += NBPG; 391 } 392 393 if (vidlen) { 394 pte = PA2VA(vidpa, u_int *); 395 epte = pte + VIDMAPSIZE; 396 protopte = (mac68k_vidphys & ~PGOFSET) | PG_RW | PG_V | PG_CI; 397 while (pte < epte) { 398 *pte++ = protopte; 399 protopte += NBPG; 400 } 401 } 402 403 /* 404 * Calculate important exported kernel virtual addresses 405 */ 406 /* 407 * Sysseg: base of kernel segment table 408 */ 409 Sysseg = PA2VA(kstpa, st_entry_t *); 410 /* 411 * Sysptmap: base of kernel page table map 412 */ 413 Sysptmap = PA2VA(kptmpa, pt_entry_t *); 414 /* 415 * Sysmap: kernel page table (as mapped through Sysptmap) 416 * Immediately follows `nptpages' of static kernel page table. 417 */ 418 Sysmap = (pt_entry_t *)m68k_ptob(nptpages * NPTEPG); 419 420 IOBase = (u_long)m68k_ptob(nptpages*NPTEPG - 421 (IIOMAPSIZE + ROMMAPSIZE + VIDMAPSIZE)); 422 423 ROMBase = (char *)m68k_ptob(nptpages*NPTEPG - 424 (ROMMAPSIZE + VIDMAPSIZE)); 425 426 if (vidlen) { 427 newvideoaddr = (u_int32_t) 428 m68k_ptob(nptpages*NPTEPG - VIDMAPSIZE) 429 + (mac68k_vidphys & PGOFSET); 430 if (mac68k_vidlog) 431 mac68k_vidlog = newvideoaddr; 432 } 433 434 /* 435 * Setup u-area for process 0. 436 */ 437 /* 438 * Zero the u-area. 439 * NOTE: `pte' and `epte' aren't PTEs here. 440 */ 441 pte = PA2VA(p0upa, u_int *); 442 epte = (u_int *) (PA2VA(p0upa, u_int) + USPACE); 443 while (pte < epte) 444 *pte++ = 0; 445 /* 446 * Remember the u-area address so it can be loaded in the 447 * proc struct p_addr field later. 448 */ 449 proc0paddr = PA2VA(p0upa, char *); 450 451 /* 452 * VM data structures are now initialized, set up data for 453 * the pmap module. 454 */ 455 avail_next = avail_start = m68k_round_page(nextpa); 456 avail_remaining = 0; 457 avail_range = -1; 458 for (i = 0; i < numranges; i++) { 459 if (avail_next >= low[i] && avail_next < high[i]) { 460 avail_range = i; 461 avail_remaining = high[i] - avail_next; 462 } else if (avail_range != -1) { 463 avail_remaining += (high[i] - low[i]); 464 } 465 } 466 physmem = m68k_btop(avail_remaining + nextpa - firstpa); 467 avail_remaining -= m68k_round_page(MSGBUFSIZE); 468 high[numranges - 1] -= m68k_round_page(MSGBUFSIZE); 469 470 /* XXX -- this doesn't look correct to me. */ 471 while (high[numranges - 1] < low[numranges - 1]) { 472 numranges--; 473 high[numranges - 1] -= low[numranges] - high[numranges]; 474 } 475 476 avail_remaining = m68k_trunc_page(avail_remaining); 477 avail_end = avail_start + avail_remaining; 478 avail_remaining = m68k_btop(avail_remaining); 479 480 mem_size = m68k_ptob(physmem); 481 virtual_avail = VM_MIN_KERNEL_ADDRESS + (nextpa - firstpa); 482 virtual_end = VM_MAX_KERNEL_ADDRESS; 483 484 /* 485 * Initialize protection array. 486 * XXX don't use a switch statement, it might produce an 487 * absolute "jmp" table. 488 */ 489 { 490 register int *kp; 491 492 kp = (int *) &protection_codes; 493 kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_NONE] = 0; 494 kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_NONE] = PG_RO; 495 kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO; 496 kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO; 497 kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW; 498 kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW; 499 kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW; 500 kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW; 501 } 502 503 /* 504 * Kernel page/segment table allocated in locore, 505 * just initialize pointers. 506 */ 507 { 508 struct pmap *kpm = (struct pmap *)&kernel_pmap_store; 509 510 kpm->pm_stab = Sysseg; 511 kpm->pm_ptab = Sysmap; 512 simple_lock_init(&kpm->pm_lock); 513 kpm->pm_count = 1; 514 kpm->pm_stpa = (st_entry_t *)kstpa; 515 /* 516 * For the 040 we also initialize the free level 2 517 * descriptor mask noting that we have used: 518 * 0: level 1 table 519 * 1 to `num': map page tables 520 * MAXKL2SIZE-1: maps last-page page table 521 */ 522 if (mmutype == MMU_68040) { 523 register int num; 524 525 kpm->pm_stfree = ~l2tobm(0); 526 num = roundup((nptpages + 1) * (NPTEPG / SG4_LEV3SIZE), 527 SG4_LEV2SIZE) / SG4_LEV2SIZE; 528 while (num) 529 kpm->pm_stfree &= ~l2tobm(num--); 530 kpm->pm_stfree &= ~l2tobm(MAXKL2SIZE-1); 531 for (num = MAXKL2SIZE; 532 num < sizeof(kpm->pm_stfree)*NBBY; 533 num++) 534 kpm->pm_stfree &= ~l2tobm(num); 535 } 536 } 537 538 /* 539 * Allocate some fixed, special purpose kernel virtual addresses 540 */ 541 { 542 vm_offset_t va = virtual_avail; 543 544 CADDR1 = (caddr_t)va; 545 va += NBPG; 546 CADDR2 = (caddr_t)va; 547 va += NBPG; 548 vmmap = (caddr_t)va; 549 va += NBPG; 550 msgbufaddr = (caddr_t)va; 551 va += m68k_round_page(MSGBUFSIZE); 552 virtual_avail = reserve_dumppages(va); 553 } 554 } 555 556 void 557 bootstrap_mac68k(tc) 558 int tc; 559 { 560 extern void zs_init __P((void)); 561 extern caddr_t esym; 562 vm_offset_t nextpa; 563 caddr_t oldROMBase; 564 565 if (mac68k_machine.do_graybars) 566 printf("Bootstrapping NetBSD/mac68k.\n"); 567 568 oldROMBase = ROMBase; 569 mac68k_vidphys = videoaddr; 570 571 if (((tc & 0x80000000) && (mmutype == MMU_68030)) || 572 ((tc & 0x8000) && (mmutype == MMU_68040))) { 573 if (mac68k_machine.do_graybars) 574 printf("Getting mapping from MMU.\n"); 575 (void) get_mapping(); 576 if (mac68k_machine.do_graybars) 577 printf("Done.\n"); 578 } else { 579 /* MMU not enabled. Fake up ranges. */ 580 nbnumranges = 0; 581 numranges = 1; 582 low[0] = 0; 583 high[0] = mac68k_machine.mach_memsize * (1024 * 1024); 584 if (mac68k_machine.do_graybars) 585 printf("Faked range to byte 0x%lx.\n", high[0]); 586 } 587 nextpa = load_addr + (((int)esym + NBPG - 1) & PG_FRAME); 588 589 if (mac68k_machine.do_graybars) 590 printf("Bootstrapping the pmap system.\n"); 591 592 pmap_bootstrap(nextpa, load_addr); 593 594 if (mac68k_machine.do_graybars) 595 printf("Pmap bootstrapped.\n"); 596 597 if (!vidlen) 598 panic("Don't know how to relocate video!\n"); 599 600 if (mac68k_machine.do_graybars) 601 printf("Moving ROMBase from %p to %p.\n", 602 oldROMBase, ROMBase); 603 604 mrg_fixupROMBase(oldROMBase, ROMBase); 605 606 if (mac68k_machine.do_graybars) 607 printf("Video address 0x%lx -> 0x%lx.\n", 608 (unsigned long) videoaddr, 609 (unsigned long) newvideoaddr); 610 611 mac68k_set_io_offsets(IOBase); 612 613 /* 614 * If the serial ports are going (for console or 'echo'), then 615 * we need to make sure the IO change gets propagated properly. 616 * This resets the base addresses for the 8530 (serial) driver. 617 * 618 * WARNING!!! No printfs() (etc) BETWEEN zs_init() and the end 619 * of this function (where we start using the MMU, so the new 620 * address is correct. 621 */ 622 if (zsinited != 0) 623 zs_init(); 624 625 videoaddr = newvideoaddr; 626 } 627