1 /* $NetBSD: pmap_bootstrap.c,v 1.60 2003/08/07 16:28:22 agc Exp $ */ 2 3 /* 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * the Systems Programming Group of the University of Utah Computer 9 * Science Department. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 * 35 * @(#)pmap_bootstrap.c 8.1 (Berkeley) 6/10/93 36 */ 37 38 #include <sys/cdefs.h> 39 __KERNEL_RCSID(0, "$NetBSD: pmap_bootstrap.c,v 1.60 2003/08/07 16:28:22 agc Exp $"); 40 41 #include "opt_ddb.h" 42 #include "opt_kgdb.h" 43 #include "zsc.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/reboot.h> 48 49 #include <uvm/uvm_extern.h> 50 51 #include <machine/pte.h> 52 #include <mac68k/mac68k/clockreg.h> 53 #include <machine/vmparam.h> 54 #include <machine/cpu.h> 55 #include <machine/pmap.h> 56 #include <machine/autoconf.h> 57 58 #include <ufs/mfs/mfs_extern.h> 59 60 #include <mac68k/mac68k/macrom.h> 61 62 #define PA2VA(v, t) (t)((u_int)(v) - firstpa) 63 64 extern char *etext; 65 extern int Sysptsize; 66 extern char *extiobase, *proc0paddr; 67 extern st_entry_t *Sysseg; 68 extern pt_entry_t *Sysptmap, *Sysmap; 69 70 extern int physmem; 71 extern paddr_t avail_start; 72 extern paddr_t avail_end; 73 extern vaddr_t virtual_avail, virtual_end; 74 extern vsize_t mem_size; 75 extern int protection_codes[]; 76 77 #if NZSC > 0 78 extern int zsinited; 79 #endif 80 81 /* 82 * These are used to map the RAM: 83 */ 84 int numranges; /* = 0 == don't use the ranges */ 85 u_long low[8]; 86 u_long high[8]; 87 u_long maxaddr; /* PA of the last physical page */ 88 int vidlen; 89 #define VIDMAPSIZE btoc(vidlen) 90 extern u_int32_t mac68k_vidphys; 91 extern u_int32_t videoaddr; 92 extern u_int32_t videorowbytes; 93 extern u_int32_t videosize; 94 static u_int32_t newvideoaddr; 95 96 extern caddr_t ROMBase; 97 98 /* 99 * Special purpose kernel virtual addresses, used for mapping 100 * physical pages for a variety of temporary or permanent purposes: 101 * 102 * CADDR1, CADDR2: pmap zero/copy operations 103 * vmmap: /dev/mem, crash dumps, parity error checking 104 * msgbufaddr: kernel message buffer 105 */ 106 caddr_t CADDR1, CADDR2, vmmap; 107 extern caddr_t msgbufaddr; 108 109 void pmap_bootstrap __P((paddr_t, paddr_t)); 110 void bootstrap_mac68k __P((int)); 111 112 /* 113 * Bootstrap the VM system. 114 * 115 * This is called with the MMU either on or off. If it's on, we assume 116 * that it's mapped with the same PA <=> LA mapping that we eventually 117 * want. The page sizes and the protections will be wrong, anyway. 118 * 119 * nextpa is the first address following the loaded kernel. On a IIsi 120 * on 12 May 1996, that was 0xf9000 beyond firstpa. 121 */ 122 void 123 pmap_bootstrap(nextpa, firstpa) 124 paddr_t nextpa; 125 paddr_t firstpa; 126 { 127 paddr_t kstpa, kptpa, vidpa, iiopa, rompa, kptmpa, lkptpa, p0upa; 128 u_int nptpages, kstsize; 129 paddr_t avail_next; 130 int avail_remaining; 131 int avail_range; 132 int i; 133 st_entry_t protoste, *ste; 134 pt_entry_t protopte, *pte, *epte; 135 136 vidlen = m68k_round_page(((videosize >> 16) & 0xffff) * videorowbytes + 137 m68k_page_offset(mac68k_vidphys)); 138 139 /* 140 * Calculate important physical addresses: 141 * 142 * kstpa kernel segment table 1 page (!040) 143 * N pages (040) 144 * 145 * kptpa statically allocated 146 * kernel PT pages Sysptsize+ pages 147 * 148 * vidpa internal video space for some machines 149 * PT pages VIDMAPSIZE pages 150 * 151 * rompa ROM space 152 * PT pages ROMMAPSIZE pages 153 * 154 * iiopa internal IO space 155 * PT pages IIOMAPSIZE pages 156 * 157 * [ Sysptsize is the number of pages of PT, IIOMAPSIZE and 158 * NBMAPSIZE are the number of PTEs, hence we need to round 159 * the total to a page boundary with IO maps at the end. ] 160 * 161 * kptmpa kernel PT map 1 page 162 * 163 * lkptpa last kernel PT page 1 page 164 * 165 * p0upa proc 0 u-area UPAGES pages 166 * 167 */ 168 if (mmutype == MMU_68040) 169 kstsize = MAXKL2SIZE / (NPTEPG/SG4_LEV2SIZE); 170 else 171 kstsize = 1; 172 kstpa = nextpa; 173 nextpa += kstsize * PAGE_SIZE; 174 kptpa = nextpa; 175 nptpages = Sysptsize + 176 (IIOMAPSIZE + ROMMAPSIZE + VIDMAPSIZE + NPTEPG - 1) / NPTEPG; 177 nextpa += nptpages * PAGE_SIZE; 178 vidpa = nextpa - VIDMAPSIZE * sizeof(pt_entry_t); 179 rompa = vidpa - ROMMAPSIZE * sizeof(pt_entry_t); 180 iiopa = rompa - IIOMAPSIZE * sizeof(pt_entry_t); 181 kptmpa = nextpa; 182 nextpa += PAGE_SIZE; 183 lkptpa = nextpa; 184 nextpa += PAGE_SIZE; 185 p0upa = nextpa; 186 nextpa += USPACE; 187 188 189 for (i = 0; i < numranges; i++) 190 if (low[i] <= firstpa && firstpa < high[i]) 191 break; 192 if (i >= numranges || nextpa > high[i]) { 193 if (mac68k_machine.do_graybars) { 194 printf("Failure in NetBSD boot; "); 195 if (i < numranges) 196 printf("nextpa=0x%lx, high[%d]=0x%lx.\n", 197 nextpa, i, high[i]); 198 else 199 printf("can't find kernel RAM segment.\n"); 200 printf("You're hosed! Try booting with 32-bit "); 201 printf("addressing enabled in the memory control "); 202 printf("panel.\n"); 203 printf("Older machines may need Mode32 to get that "); 204 printf("option.\n"); 205 } 206 panic("Cannot work with the current memory mappings."); 207 } 208 209 /* 210 * Initialize segment table and kernel page table map. 211 * 212 * On 68030s and earlier MMUs the two are identical except for 213 * the valid bits so both are initialized with essentially the 214 * same values. On the 68040, which has a mandatory 3-level 215 * structure, the segment table holds the level 1 table and part 216 * (or all) of the level 2 table and hence is considerably 217 * different. Here the first level consists of 128 descriptors 218 * (512 bytes) each mapping 32mb of address space. Each of these 219 * points to blocks of 128 second level descriptors (512 bytes) 220 * each mapping 256kb. Note that there may be additional "segment 221 * table" pages depending on how large MAXKL2SIZE is. 222 * 223 * XXX cramming two levels of mapping into the single "segment" 224 * table on the 68040 is intended as a temporary hack to get things 225 * working. The 224mb of address space that this allows will most 226 * likely be insufficient in the future (at least for the kernel). 227 */ 228 if (mmutype == MMU_68040) { 229 int num; 230 231 /* 232 * First invalidate the entire "segment table" pages 233 * (levels 1 and 2 have the same "invalid" value). 234 */ 235 pte = PA2VA(kstpa, u_int *); 236 epte = &pte[kstsize * NPTEPG]; 237 while (pte < epte) 238 *pte++ = SG_NV; 239 /* 240 * Initialize level 2 descriptors (which immediately 241 * follow the level 1 table). We need: 242 * NPTEPG / SG4_LEV3SIZE 243 * level 2 descriptors to map each of the nptpages+1 244 * pages of PTEs. Note that we set the "used" bit 245 * now to save the HW the expense of doing it. 246 */ 247 num = (nptpages + 1) * (NPTEPG / SG4_LEV3SIZE); 248 pte = &(PA2VA(kstpa, u_int *))[SG4_LEV1SIZE]; 249 epte = &pte[num]; 250 protoste = kptpa | SG_U | SG_RW | SG_V; 251 while (pte < epte) { 252 *pte++ = protoste; 253 protoste += (SG4_LEV3SIZE * sizeof(st_entry_t)); 254 } 255 /* 256 * Initialize level 1 descriptors. We need: 257 * roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE 258 * level 1 descriptors to map the `num' level 2's. 259 */ 260 pte = PA2VA(kstpa, u_int *); 261 epte = &pte[roundup(num, SG4_LEV2SIZE) / SG4_LEV2SIZE]; 262 protoste = (u_int)&pte[SG4_LEV1SIZE] | SG_U | SG_RW | SG_V; 263 while (pte < epte) { 264 *pte++ = protoste; 265 protoste += (SG4_LEV2SIZE * sizeof(st_entry_t)); 266 } 267 /* 268 * Initialize the final level 1 descriptor to map the last 269 * block of level 2 descriptors. 270 */ 271 ste = &(PA2VA(kstpa, u_int*))[SG4_LEV1SIZE-1]; 272 pte = &(PA2VA(kstpa, u_int*))[kstsize*NPTEPG - SG4_LEV2SIZE]; 273 *ste = (u_int)pte | SG_U | SG_RW | SG_V; 274 /* 275 * Now initialize the final portion of that block of 276 * descriptors to map the "last PT page". 277 */ 278 pte = &(PA2VA(kstpa, u_int*)) 279 [kstsize*NPTEPG - NPTEPG/SG4_LEV3SIZE]; 280 epte = &pte[NPTEPG/SG4_LEV3SIZE]; 281 protoste = lkptpa | SG_U | SG_RW | SG_V; 282 while (pte < epte) { 283 *pte++ = protoste; 284 protoste += (SG4_LEV3SIZE * sizeof(st_entry_t)); 285 } 286 /* 287 * Initialize Sysptmap 288 */ 289 pte = PA2VA(kptmpa, u_int *); 290 epte = &pte[nptpages+1]; 291 protopte = kptpa | PG_RW | PG_CI | PG_V; 292 while (pte < epte) { 293 *pte++ = protopte; 294 protopte += PAGE_SIZE; 295 } 296 /* 297 * Invalidate all but the last remaining entries in both. 298 */ 299 epte = &(PA2VA(kptmpa, u_int *))[NPTEPG-1]; 300 while (pte < epte) { 301 *pte++ = PG_NV; 302 } 303 /* 304 * Initialize the last to point to the page 305 * table page allocated earlier. 306 */ 307 *pte = lkptpa | PG_RW | PG_CI | PG_V; 308 } else { 309 /* 310 * Map the page table pages in both the HW segment table 311 * and the software Sysptmap. Note that Sysptmap is also 312 * considered a PT page hence the +1. 313 */ 314 ste = PA2VA(kstpa, u_int*); 315 pte = PA2VA(kptmpa, u_int*); 316 epte = &pte[nptpages+1]; 317 protoste = kptpa | SG_RW | SG_V; 318 protopte = kptpa | PG_RW | PG_CI | PG_V; 319 while (pte < epte) { 320 *ste++ = protoste; 321 *pte++ = protopte; 322 protoste += PAGE_SIZE; 323 protopte += PAGE_SIZE; 324 } 325 /* 326 * Invalidate all but the last remaining entries in both. 327 */ 328 epte = &(PA2VA(kptmpa, u_int *))[NPTEPG-1]; 329 while (pte < epte) { 330 *ste++ = SG_NV; 331 *pte++ = PG_NV; 332 } 333 /* 334 * Initialize the last to point to point to the page 335 * table page allocated earlier. 336 */ 337 *ste = lkptpa | SG_RW | SG_V; 338 *pte = lkptpa | PG_RW | PG_CI | PG_V; 339 } 340 /* 341 * Invalidate all entries in the last kernel PT page 342 * (u-area PTEs will be validated later). 343 */ 344 pte = PA2VA(lkptpa, u_int *); 345 epte = &pte[NPTEPG]; 346 while (pte < epte) 347 *pte++ = PG_NV; 348 349 /* 350 * Initialize kernel page table. 351 * Start by invalidating the `nptpages' that we have allocated. 352 */ 353 pte = PA2VA(kptpa, u_int *); 354 epte = &pte[nptpages * NPTEPG]; 355 while (pte < epte) 356 *pte++ = PG_NV; 357 358 /* 359 * Validate PTEs for kernel text (RO) 360 */ 361 pte = &(PA2VA(kptpa, u_int *))[m68k_btop(KERNBASE)]; 362 epte = &pte[m68k_btop(m68k_trunc_page(&etext))]; 363 #if defined(KGDB) || defined(DDB) 364 protopte = firstpa | PG_RW | PG_V; /* XXX RW for now */ 365 #else 366 protopte = firstpa | PG_RO | PG_V; 367 #endif 368 while (pte < epte) { 369 *pte++ = protopte; 370 protopte += PAGE_SIZE; 371 } 372 /* 373 * Validate PTEs for kernel data/bss, dynamic data allocated 374 * by us so far (nextpa - firstpa bytes), and pages for proc0 375 * u-area and page table allocated below (RW). 376 */ 377 epte = &(PA2VA(kptpa, u_int *))[m68k_btop(nextpa - firstpa)]; 378 protopte = (protopte & ~PG_PROT) | PG_RW; 379 /* 380 * Enable copy-back caching of data pages 381 */ 382 if (mmutype == MMU_68040) 383 protopte |= PG_CCB; 384 while (pte < epte) { 385 *pte++ = protopte; 386 protopte += PAGE_SIZE; 387 } 388 /* 389 * Finally, validate the internal IO space, ROM space, and 390 * framebuffer PTEs (RW+CI). 391 */ 392 pte = PA2VA(iiopa, u_int *); 393 epte = PA2VA(rompa, u_int *); 394 protopte = IOBase | PG_RW | PG_CI | PG_V; 395 while (pte < epte) { 396 *pte++ = protopte; 397 protopte += PAGE_SIZE; 398 } 399 400 pte = PA2VA(rompa, u_int *); 401 epte = PA2VA(vidpa, u_int *); 402 protopte = ((u_int) ROMBase) | PG_RO | PG_V; 403 while (pte < epte) { 404 *pte++ = protopte; 405 protopte += PAGE_SIZE; 406 } 407 408 if (vidlen) { 409 pte = PA2VA(vidpa, u_int *); 410 epte = pte + VIDMAPSIZE; 411 protopte = m68k_trunc_page(mac68k_vidphys) | 412 PG_RW | PG_V | PG_CI; 413 while (pte < epte) { 414 *pte++ = protopte; 415 protopte += PAGE_SIZE; 416 } 417 } 418 419 /* 420 * Calculate important exported kernel virtual addresses 421 */ 422 /* 423 * Sysseg: base of kernel segment table 424 */ 425 Sysseg = PA2VA(kstpa, st_entry_t *); 426 /* 427 * Sysptmap: base of kernel page table map 428 */ 429 Sysptmap = PA2VA(kptmpa, pt_entry_t *); 430 /* 431 * Sysmap: kernel page table (as mapped through Sysptmap) 432 * Immediately follows `nptpages' of static kernel page table. 433 */ 434 Sysmap = (pt_entry_t *)m68k_ptob(nptpages * NPTEPG); 435 436 IOBase = (u_long)m68k_ptob(nptpages * NPTEPG - 437 (IIOMAPSIZE + ROMMAPSIZE + VIDMAPSIZE)); 438 439 ROMBase = (char *)m68k_ptob(nptpages * NPTEPG - 440 (ROMMAPSIZE + VIDMAPSIZE)); 441 442 if (vidlen) { 443 newvideoaddr = (u_int32_t)m68k_ptob(nptpages * NPTEPG - 444 VIDMAPSIZE) + m68k_page_offset(mac68k_vidphys); 445 } 446 447 /* 448 * Setup u-area for process 0. 449 */ 450 /* 451 * Zero the u-area. 452 * NOTE: `pte' and `epte' aren't PTEs here. 453 */ 454 pte = PA2VA(p0upa, u_int *); 455 epte = (u_int *)(PA2VA(p0upa, u_int) + USPACE); 456 while (pte < epte) 457 *pte++ = 0; 458 /* 459 * Remember the u-area address so it can be loaded in the 460 * proc struct p_addr field later. 461 */ 462 proc0paddr = PA2VA(p0upa, char *); 463 464 /* 465 * VM data structures are now initialized, set up data for 466 * the pmap module. 467 * 468 * Note about avail_end: msgbuf is initialized just after 469 * avail_end in machdep.c. Since the last page is used 470 * for rebooting the system (code is copied there and 471 * excution continues from copied code before the MMU 472 * is disabled), the msgbuf will get trounced between 473 * reboots if it's placed in the last physical page. 474 * To work around this, we move avail_end back one more 475 * page so the msgbuf can be preserved. 476 */ 477 avail_next = avail_start = m68k_round_page(nextpa); 478 avail_remaining = 0; 479 avail_range = -1; 480 for (i = 0; i < numranges; i++) { 481 if (low[i] <= avail_next && avail_next < high[i]) { 482 avail_range = i; 483 avail_remaining = high[i] - avail_next; 484 } else if (avail_range != -1) { 485 avail_remaining += (high[i] - low[i]); 486 } 487 } 488 physmem = m68k_btop(avail_remaining + nextpa - firstpa); 489 490 maxaddr = high[numranges - 1] - m68k_ptob(1); 491 high[numranges - 1] -= (m68k_round_page(MSGBUFSIZE) + m68k_ptob(1)); 492 avail_end = high[numranges - 1]; 493 mem_size = m68k_ptob(physmem); 494 virtual_avail = VM_MIN_KERNEL_ADDRESS + (nextpa - firstpa); 495 virtual_end = VM_MAX_KERNEL_ADDRESS; 496 497 /* 498 * Initialize protection array. 499 * XXX don't use a switch statement, it might produce an 500 * absolute "jmp" table. 501 */ 502 { 503 int *kp; 504 505 kp = (int *)&protection_codes; 506 kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_NONE] = 0; 507 kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_NONE] = PG_RO; 508 kp[VM_PROT_READ|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO; 509 kp[VM_PROT_NONE|VM_PROT_NONE|VM_PROT_EXECUTE] = PG_RO; 510 kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW; 511 kp[VM_PROT_NONE|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW; 512 kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_NONE] = PG_RW; 513 kp[VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE] = PG_RW; 514 } 515 516 /* 517 * Kernel page/segment table allocated in locore, 518 * just initialize pointers. 519 */ 520 { 521 struct pmap *kpm = (struct pmap *)&kernel_pmap_store; 522 523 kpm->pm_stab = Sysseg; 524 kpm->pm_ptab = Sysmap; 525 simple_lock_init(&kpm->pm_lock); 526 kpm->pm_count = 1; 527 kpm->pm_stpa = (st_entry_t *)kstpa; 528 /* 529 * For the 040 we also initialize the free level 2 530 * descriptor mask noting that we have used: 531 * 0: level 1 table 532 * 1 to `num': map page tables 533 * MAXKL2SIZE-1: maps last-page page table 534 */ 535 if (mmutype == MMU_68040) { 536 int num; 537 538 kpm->pm_stfree = ~l2tobm(0); 539 num = roundup((nptpages + 1) * (NPTEPG / SG4_LEV3SIZE), 540 SG4_LEV2SIZE) / SG4_LEV2SIZE; 541 while (num) 542 kpm->pm_stfree &= ~l2tobm(num--); 543 kpm->pm_stfree &= ~l2tobm(MAXKL2SIZE-1); 544 for (num = MAXKL2SIZE; 545 num < sizeof(kpm->pm_stfree)*NBBY; 546 num++) 547 kpm->pm_stfree &= ~l2tobm(num); 548 } 549 } 550 551 /* 552 * Allocate some fixed, special purpose kernel virtual addresses 553 */ 554 { 555 vaddr_t va = virtual_avail; 556 557 CADDR1 = (caddr_t)va; 558 va += PAGE_SIZE; 559 CADDR2 = (caddr_t)va; 560 va += PAGE_SIZE; 561 vmmap = (caddr_t)va; 562 va += PAGE_SIZE; 563 msgbufaddr = (caddr_t)va; 564 va += m68k_round_page(MSGBUFSIZE); 565 virtual_avail = va; 566 } 567 } 568 569 void 570 bootstrap_mac68k(tc) 571 int tc; 572 { 573 #if NZSC > 0 574 extern void zs_init __P((void)); 575 #endif 576 extern int *esym; 577 paddr_t nextpa; 578 caddr_t oldROMBase; 579 580 if (mac68k_machine.do_graybars) 581 printf("Bootstrapping NetBSD/mac68k.\n"); 582 583 oldROMBase = ROMBase; 584 mac68k_vidphys = videoaddr; 585 586 if (((tc & 0x80000000) && (mmutype == MMU_68030)) || 587 ((tc & 0x8000) && (mmutype == MMU_68040))) { 588 if (mac68k_machine.do_graybars) 589 printf("Getting mapping from MMU.\n"); 590 (void) get_mapping(); 591 if (mac68k_machine.do_graybars) 592 printf("Done.\n"); 593 } else { 594 /* MMU not enabled. Fake up ranges. */ 595 numranges = 1; 596 low[0] = 0; 597 high[0] = mac68k_machine.mach_memsize * (1024 * 1024); 598 if (mac68k_machine.do_graybars) 599 printf("Faked range to byte 0x%lx.\n", high[0]); 600 } 601 nextpa = load_addr + m68k_round_page(esym); 602 603 if (mac68k_machine.do_graybars) 604 printf("Bootstrapping the pmap system.\n"); 605 606 pmap_bootstrap(nextpa, load_addr); 607 608 if (mac68k_machine.do_graybars) 609 printf("Pmap bootstrapped.\n"); 610 611 if (!vidlen) 612 panic("Don't know how to relocate video!"); 613 614 if (mac68k_machine.do_graybars) 615 printf("Moving ROMBase from %p to %p.\n", oldROMBase, ROMBase); 616 617 mrg_fixupROMBase(oldROMBase, ROMBase); 618 619 if (mac68k_machine.do_graybars) 620 printf("Video address 0x%lx -> 0x%lx.\n", 621 (unsigned long)videoaddr, (unsigned long)newvideoaddr); 622 623 mac68k_set_io_offsets(IOBase); 624 625 /* 626 * If the serial ports are going (for console or 'echo'), then 627 * we need to make sure the IO change gets propagated properly. 628 * This resets the base addresses for the 8530 (serial) driver. 629 * 630 * WARNING!!! No printfs() (etc) BETWEEN zs_init() and the end 631 * of this function (where we start using the MMU, so the new 632 * address is correct. 633 */ 634 #if NZSC > 0 635 if (zsinited != 0) 636 zs_init(); 637 #endif 638 639 videoaddr = newvideoaddr; 640 } 641 642 void 643 pmap_init_md(void) 644 { 645 vaddr_t addr; 646 647 addr = (vaddr_t)IOBase; 648 if (uvm_map(kernel_map, &addr, 649 m68k_ptob(IIOMAPSIZE + ROMMAPSIZE + VIDMAPSIZE), 650 NULL, UVM_UNKNOWN_OFFSET, 0, 651 UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, 652 UVM_INH_NONE, UVM_ADV_RANDOM, 653 UVM_FLAG_FIXED)) != 0) 654 panic("pmap_init_md: uvm_map failed"); 655 } 656