xref: /netbsd-src/sys/arch/mac68k/dev/zs.c (revision aaf4ece63a859a04e37cf3a7229b5fab0157cc06)
1 /*	$NetBSD: zs.c,v 1.49 2005/12/11 12:18:02 christos Exp $	*/
2 
3 /*
4  * Copyright (c) 1996-1998 Bill Studenmund
5  * Copyright (c) 1995 Gordon W. Ross
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The name of the author may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission.
18  * 4. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *      This product includes software developed by Gordon Ross
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*
35  * Zilog Z8530 Dual UART driver (machine-dependent part)
36  *
37  * Runs two serial lines per chip using slave drivers.
38  * Plain tty/async lines use the zs_async slave.
39  * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves.
40  * Other ports use their own mice & keyboard slaves.
41  *
42  * Credits & history:
43  *
44  * With NetBSD 1.1, port-mac68k started using a port of the port-sparc
45  * (port-sun3?) zs.c driver (which was in turn based on code in the
46  * Berkeley 4.4 Lite release). Bill Studenmund did the port, with
47  * help from Allen Briggs and Gordon Ross <gwr@NetBSD.org>. Noud de
48  * Brouwer field-tested the driver at a local ISP.
49  *
50  * Bill Studenmund and Gordon Ross then ported the machine-independant
51  * z8530 driver to work with port-mac68k. NetBSD 1.2 contained an
52  * intermediate version (mac68k using a local, patched version of
53  * the m.i. drivers), with NetBSD 1.3 containing a full version.
54  */
55 
56 #include <sys/cdefs.h>
57 __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.49 2005/12/11 12:18:02 christos Exp $");
58 
59 #include "opt_ddb.h"
60 #include "opt_mac68k.h"
61 
62 #include <sys/param.h>
63 #include <sys/systm.h>
64 #include <sys/proc.h>
65 #include <sys/device.h>
66 #include <sys/conf.h>
67 #include <sys/file.h>
68 #include <sys/ioctl.h>
69 #include <sys/tty.h>
70 #include <sys/time.h>
71 #include <sys/kernel.h>
72 #include <sys/syslog.h>
73 
74 #include <machine/autoconf.h>
75 #include <machine/cpu.h>
76 #include <machine/psc.h>
77 #include <machine/viareg.h>
78 
79 #include <dev/cons.h>
80 #include <dev/ic/z8530reg.h>
81 #include <machine/z8530var.h>
82 #include <mac68k/dev/zs_cons.h>
83 
84 /* Are these in a header file anywhere? */
85 /* Booter flags interface */
86 #define ZSMAC_RAW	0x01
87 #define ZSMAC_LOCALTALK	0x02
88 
89 #define	PCLK	(9600 * 384)
90 
91 /*
92  * Some warts needed by z8530tty.c -
93  */
94 int zs_def_cflag = (CREAD | CS8 | HUPCL);
95 
96 /*
97  * abort detection on console will now timeout after iterating on a loop
98  * the following # of times. Cheep hack. Also, abort detection is turned
99  * off after a timeout (i.e. maybe there's not a terminal hooked up).
100  */
101 #define ZSABORT_DELAY 3000000
102 
103 /*
104  * Define interrupt levels.
105  */
106 #define ZSHARD_PRI	4	/* Wired on the CPU board... */
107 /*
108  * Serial port cards with zs chips on them are actually at the
109  * NuBus interrupt level, which is lower than 4. But blocking
110  * level 4 interrupts will block those interrupts too, so level
111  * 4 is fine.
112  */
113 
114 /* The layout of this is hardware-dependent (padding, order). */
115 struct zschan {
116 	volatile u_char	zc_csr;		/* ctrl,status, and indirect access */
117 	u_char		zc_xxx0;
118 	u_char		zc_xxx1;	/* part of the other channel lives here! */
119 	u_char		zc_xxx2;	/* Yea Apple! */
120 	volatile u_char	zc_data;	/* data */
121 	u_char		zc_xxx3;
122 	u_char		zc_xxx4;
123 	u_char		zc_xxx5;
124 };
125 
126 /* Flags from cninit() */
127 static int zs_hwflags[2];
128 /* Default speed for each channel */
129 static int zs_defspeed[2] = {
130 	9600,	 	/* tty00 */
131 	9600,		/* tty01 */
132 };
133 /* console stuff */
134 void	*zs_conschan;
135 int	zs_consunit;
136 #ifdef	ZS_CONSOLE_ABORT
137 int	zs_cons_canabort = 1;
138 #else
139 int	zs_cons_canabort = 0;
140 #endif /* ZS_CONSOLE_ABORT*/
141 /* device to which the console is attached--if serial. */
142 dev_t	mac68k_zsdev;
143 /* Mac stuff */
144 extern volatile unsigned char *sccA;
145 
146 int	zs_cn_check_speed(int);
147 
148 /*
149  * Even though zsparam will set up the clock multiples, etc., we
150  * still set them here as: 1) mice & keyboards don't use zsparam,
151  * and 2) the console stuff uses these defaults before device
152  * attach.
153  */
154 
155 static u_char zs_init_reg[16] = {
156 	0,	/* 0: CMD (reset, etc.) */
157 	0,	/* 1: No interrupts yet. */
158 	0x18 + ZSHARD_PRI,	/* IVECT */
159 	ZSWR3_RX_8 | ZSWR3_RX_ENABLE,
160 	ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP,
161 	ZSWR5_TX_8 | ZSWR5_TX_ENABLE,
162 	0,	/* 6: TXSYNC/SYNCLO */
163 	0,	/* 7: RXSYNC/SYNCHI */
164 	0,	/* 8: alias for data port */
165 	ZSWR9_MASTER_IE,
166 	0,	/*10: Misc. TX/RX control bits */
167 	ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD,
168 	((PCLK/32)/9600)-2,	/*12: BAUDLO (default=9600) */
169 	0,			/*13: BAUDHI (default=9600) */
170 	ZSWR14_BAUD_ENA,
171 	ZSWR15_BREAK_IE,
172 };
173 
174 struct zschan *
175 zs_get_chan_addr(int channel)
176 {
177 	char *addr;
178 	struct zschan *zc;
179 
180 	addr = (char *)__UNVOLATILE(sccA);
181 	if (channel == 0) {
182 		zc = (struct zschan *)(addr + 2);
183 		/* handle the fact the ports are intertwined. */
184 	} else {
185 		zc = (struct zschan *)(addr);
186 	}
187 	return (zc);
188 }
189 
190 
191 /* Find PROM mappings (for console support). */
192 int zsinited = 0; /* 0 = not, 1 = inited, not attached, 2= attached */
193 
194 void
195 zs_init()
196 {
197 	zsinited = 1;
198 	if (zs_conschan != 0){ /* we might have moved io under the console */
199 		zs_conschan = zs_get_chan_addr(zs_consunit);
200 		/* so recalc the console port */
201 	}
202 }
203 
204 
205 /****************************************************************
206  * Autoconfig
207  ****************************************************************/
208 
209 /* Definition of the driver for autoconfig. */
210 static int	zsc_match(struct device *, struct cfdata *, void *);
211 static void	zsc_attach(struct device *, struct device *, void *);
212 static int	zsc_print(void *, const char *);
213 
214 CFATTACH_DECL(zsc, sizeof(struct zsc_softc),
215     zsc_match, zsc_attach, NULL, NULL);
216 
217 extern struct cfdriver zsc_cd;
218 
219 int zshard(void *);
220 int zssoft(void *);
221 
222 /*
223  * Is the zs chip present?
224  */
225 static int
226 zsc_match(struct device *parent, struct cfdata *cf, void *aux)
227 {
228 	if (zsinited == 2)
229 		return 0;
230 
231 	return 1;
232 }
233 
234 /*
235  * Attach a found zs.
236  *
237  * Match slave number to zs unit number, so that misconfiguration will
238  * not set up the keyboard as ttya, etc.
239  */
240 static void
241 zsc_attach(struct device *parent, struct device *self, void *aux)
242 {
243 	struct zsc_softc *zsc = (void *) self;
244 	struct zsc_attach_args zsc_args;
245 	volatile struct zschan *zc;
246 	struct xzs_chanstate *xcs;
247 	struct zs_chanstate *cs;
248 	int s, chip, theflags, channel;
249 
250 	if (!zsinited)
251 		zs_init();
252 	zsinited = 2;
253 
254 	chip = 0; /* We'll deal with chip types post 1.2 */
255 	printf(" chip type %d \n",chip);
256 
257 	/*
258 	 * Initialize software state for each channel.
259 	 */
260 	for (channel = 0; channel < 2; channel++) {
261 		zsc_args.channel = channel;
262 		zsc_args.hwflags = zs_hwflags[channel];
263 		xcs = &zsc->xzsc_xcs_store[channel];
264 		cs  = &xcs->xzs_cs;
265 		zsc->zsc_cs[channel] = cs;
266 
267 		simple_lock_init(&cs->cs_lock);
268 		cs->cs_channel = channel;
269 		cs->cs_private = NULL;
270 		cs->cs_ops = &zsops_null;
271 
272 		zc = zs_get_chan_addr(channel);
273 		cs->cs_reg_csr  = &zc->zc_csr;
274 		cs->cs_reg_data = &zc->zc_data;
275 
276 		memcpy(cs->cs_creg, zs_init_reg, 16);
277 		memcpy(cs->cs_preg, zs_init_reg, 16);
278 
279 		/* Current BAUD rate generator clock. */
280 		cs->cs_brg_clk = PCLK / 16;	/* RTxC is 230400*16, so use 230400 */
281 		cs->cs_defspeed = zs_defspeed[channel];
282 		cs->cs_defcflag = zs_def_cflag;
283 
284 		/* Make these correspond to cs_defcflag (-crtscts) */
285 		cs->cs_rr0_dcd = ZSRR0_DCD;
286 		cs->cs_rr0_cts = 0;
287 		cs->cs_wr5_dtr = ZSWR5_DTR;
288 		cs->cs_wr5_rts = 0;
289 
290 #ifdef __notyet__
291 		cs->cs_slave_type = ZS_SLAVE_NONE;
292 #endif
293 
294 		/* Define BAUD rate stuff. */
295 		xcs->cs_clocks[0].clk = PCLK;
296 		xcs->cs_clocks[0].flags = ZSC_RTXBRG | ZSC_RTXDIV;
297 		xcs->cs_clocks[1].flags =
298 			ZSC_RTXBRG | ZSC_RTXDIV | ZSC_VARIABLE | ZSC_EXTERN;
299 		xcs->cs_clocks[2].flags = ZSC_TRXDIV | ZSC_VARIABLE;
300 		xcs->cs_clock_count = 3;
301 		if (channel == 0) {
302 			theflags = mac68k_machine.modem_flags;
303 			xcs->cs_clocks[1].clk = mac68k_machine.modem_dcd_clk;
304 			xcs->cs_clocks[2].clk = mac68k_machine.modem_cts_clk;
305 		} else {
306 			theflags = mac68k_machine.print_flags;
307 			xcs->cs_clocks[1].flags = ZSC_VARIABLE;
308 			/*
309 			 * Yes, we aren't defining ANY clock source enables for the
310 			 * printer's DCD clock in. The hardware won't let us
311 			 * use it. But a clock will freak out the chip, so we
312 			 * let you set it, telling us to bar interrupts on the line.
313 			 */
314 			xcs->cs_clocks[1].clk = mac68k_machine.print_dcd_clk;
315 			xcs->cs_clocks[2].clk = mac68k_machine.print_cts_clk;
316 		}
317 		if (xcs->cs_clocks[1].clk)
318 			zsc_args.hwflags |= ZS_HWFLAG_NO_DCD;
319 		if (xcs->cs_clocks[2].clk)
320 			zsc_args.hwflags |= ZS_HWFLAG_NO_CTS;
321 
322 		printf("zsc%d channel %d: d_speed %6d DCD clk %ld CTS clk %ld",
323 				self->dv_unit, channel, cs->cs_defspeed,
324 				xcs->cs_clocks[1].clk, xcs->cs_clocks[2].clk);
325 
326 		/* Set defaults in our "extended" chanstate. */
327 		xcs->cs_csource = 0;
328 		xcs->cs_psource = 0;
329 		xcs->cs_cclk_flag = 0;  /* Nothing fancy by default */
330 		xcs->cs_pclk_flag = 0;
331 
332 		if (theflags & ZSMAC_RAW) {
333 			zsc_args.hwflags |= ZS_HWFLAG_RAW;
334 			printf(" (raw defaults)");
335 		}
336 
337 		/*
338 		 * XXX - This might be better done with a "stub" driver
339 		 * (to replace zstty) that ignores LocalTalk for now.
340 		 */
341 		if (theflags & ZSMAC_LOCALTALK) {
342 			printf(" shielding from LocalTalk");
343 			cs->cs_defspeed = 1;
344 			cs->cs_creg[ZSRR_BAUDLO] = cs->cs_preg[ZSRR_BAUDLO] = 0xff;
345 			cs->cs_creg[ZSRR_BAUDHI] = cs->cs_preg[ZSRR_BAUDHI] = 0xff;
346 			zs_write_reg(cs, ZSRR_BAUDLO, 0xff);
347 			zs_write_reg(cs, ZSRR_BAUDHI, 0xff);
348 			/*
349 			 * If we might have LocalTalk, then make sure we have the
350 			 * Baud rate low-enough to not do any damage.
351 			 */
352 		}
353 
354 		/*
355 		 * We used to disable chip interrupts here, but we now
356 		 * do that in zscnprobe, just in case MacOS left the chip on.
357 		 */
358 
359 		xcs->cs_chip = chip;
360 
361 		/* Stash away a copy of the final H/W flags. */
362 		xcs->cs_hwflags = zsc_args.hwflags;
363 
364 		printf("\n");
365 
366 		/*
367 		 * Look for a child driver for this channel.
368 		 * The child attach will setup the hardware.
369 		 */
370 		if (!config_found(self, (void *)&zsc_args, zsc_print)) {
371 			/* No sub-driver.  Just reset it. */
372 			u_char reset = (channel == 0) ?
373 				ZSWR9_A_RESET : ZSWR9_B_RESET;
374 			s = splzs();
375 			zs_write_reg(cs,  9, reset);
376 			splx(s);
377 		}
378 	}
379 
380 	if (current_mac_model->class == MACH_CLASSAV) {
381 		add_psc_lev4_intr(PSCINTR_SCCA, zshard, zsc);
382 		add_psc_lev4_intr(PSCINTR_SCCB, zshard, zsc);
383 	} else {
384 		intr_establish(zshard, zsc, ZSHARD_PRI);
385 	}
386 
387 	/* Now safe to enable interrupts. */
388 
389 	/*
390 	 * Set the master interrupt enable and interrupt vector.
391 	 * (common to both channels, do it on A)
392 	 */
393 	cs = zsc->zsc_cs[0];
394 	s = splzs();
395 	/* interrupt vector */
396 	zs_write_reg(cs, 2, zs_init_reg[2]);
397 	/* master interrupt control (enable) */
398 	zs_write_reg(cs, 9, zs_init_reg[9]);
399 	splx(s);
400 }
401 
402 static int
403 zsc_print(void *aux, const char *name)
404 {
405 	struct zsc_attach_args *args = aux;
406 
407 	if (name != NULL)
408 		aprint_normal("%s: ", name);
409 
410 	if (args->channel != -1)
411 		aprint_normal(" channel %d", args->channel);
412 
413 	return UNCONF;
414 }
415 
416 int
417 zsmdioctl(struct zs_chanstate *cs, u_long cmd, caddr_t data)
418 {
419 	switch (cmd) {
420 	default:
421 		return (EPASSTHROUGH);
422 	}
423 	return (0);
424 }
425 
426 void
427 zsmd_setclock(struct zs_chanstate *cs)
428 {
429 	struct xzs_chanstate *xcs = (void *)cs;
430 
431 	if (cs->cs_channel != 0)
432 		return;
433 
434 	/*
435 	 * If the new clock has the external bit set, then select the
436 	 * external source.
437 	 */
438 	via_set_modem((xcs->cs_pclk_flag & ZSC_EXTERN) ? 1 : 0);
439 }
440 
441 static int zssoftpending;
442 
443 /*
444  * Do the minimum work to pull data off of the chip and queue it up
445  * for later processing.
446  */
447 int
448 zshard(void *arg)
449 {
450 	struct zsc_softc *zsc = (struct zsc_softc *)arg;
451 	int rval;
452 
453 	if (zsc == NULL)
454 		return 0;
455 
456 	rval = zsc_intr_hard(zsc);
457 	if ((zsc->zsc_cs[0]->cs_softreq) || (zsc->zsc_cs[1]->cs_softreq)) {
458 		/* zsc_req_softint(zsc); */
459 		/* We are at splzs here, so no need to lock. */
460 		if (zssoftpending == 0) {
461 			zssoftpending = 1;
462 			setsoftserial();
463 		}
464 	}
465 	return (rval);
466 }
467 
468 /*
469  * Look at all of the zsc softint queues.
470  */
471 int
472 zssoft(void *arg)
473 {
474 	struct zsc_softc *zsc;
475 	int unit;
476 
477 	/* This is not the only ISR on this IPL. */
478 	if (zssoftpending == 0)
479 		return (0);
480 
481 	/*
482 	 * The soft intr. bit will be set by zshard only if
483 	 * the variable zssoftpending is zero.
484 	 */
485 	zssoftpending = 0;
486 
487 	for (unit = 0; unit < zsc_cd.cd_ndevs; ++unit) {
488 		zsc = zsc_cd.cd_devs[unit];
489 		if (zsc == NULL)
490 			continue;
491 		(void) zsc_intr_soft(zsc);
492 	}
493 	return (1);
494 }
495 
496 
497 #ifndef ZS_TOLERANCE
498 #define ZS_TOLERANCE 51
499 /* 5% in tenths of a %, plus 1 so that exactly 5% will be ok. */
500 #endif
501 
502 /*
503  * check out a rate for acceptability from the internal clock
504  * source. Used in console config to validate a requested
505  * default speed. Placed here so that all the speed checking code is
506  * in one place.
507  *
508  * != 0 means ok.
509  */
510 int
511 zs_cn_check_speed(int bps)
512 {
513 	int tc, rate;
514 
515 	tc = BPS_TO_TCONST(PCLK / 16, bps);
516 	if (tc < 0)
517 		return 0;
518 	rate = TCONST_TO_BPS(PCLK / 16, tc);
519 	if (ZS_TOLERANCE > abs(((rate - bps)*1000)/bps))
520 		return 1;
521 	else
522 		return 0;
523 }
524 
525 /*
526  * Search through the signal sources in the channel, and
527  * pick the best one for the baud rate requested. Return
528  * a -1 if not achievable in tolerance. Otherwise return 0
529  * and fill in the values.
530  *
531  * This routine draws inspiration from the Atari port's zs.c
532  * driver in NetBSD 1.1 which did the same type of source switching.
533  * Tolerance code inspired by comspeed routine in isa/com.c.
534  *
535  * By Bill Studenmund, 1996-05-12
536  */
537 int
538 zs_set_speed(struct zs_chanstate *cs, int bps)
539 {
540 	struct xzs_chanstate *xcs = (void *) cs;
541 	int i, tc, tc0 = 0, tc1, s, sf = 0;
542 	int src, rate0, rate1, err, tol;
543 
544 	if (bps == 0)
545 		return (0);
546 
547 	src = -1;		/* no valid source yet */
548 	tol = ZS_TOLERANCE;
549 
550 	/*
551 	 * Step through all the sources and see which one matches
552 	 * the best. A source has to match BETTER than tol to be chosen.
553 	 * Thus if two sources give the same error, the first one will be
554 	 * chosen. Also, allow for the possability that one source might run
555 	 * both the BRG and the direct divider (i.e. RTxC).
556 	 */
557 	for (i=0; i < xcs->cs_clock_count; i++) {
558 		if (xcs->cs_clocks[i].clk <= 0)
559 			continue;	/* skip non-existent or bad clocks */
560 		if (xcs->cs_clocks[i].flags & ZSC_BRG) {
561 			/* check out BRG at /16 */
562 			tc1 = BPS_TO_TCONST(xcs->cs_clocks[i].clk >> 4, bps);
563 			if (tc1 >= 0) {
564 				rate1 = TCONST_TO_BPS(xcs->cs_clocks[i].clk >> 4, tc1);
565 				err = abs(((rate1 - bps)*1000)/bps);
566 				if (err < tol) {
567 					tol = err;
568 					src = i;
569 					sf = xcs->cs_clocks[i].flags & ~ZSC_DIV;
570 					tc0 = tc1;
571 					rate0 = rate1;
572 				}
573 			}
574 		}
575 		if (xcs->cs_clocks[i].flags & ZSC_DIV) {
576 			/*
577 			 * Check out either /1, /16, /32, or /64
578 			 * Note: for /1, you'd better be using a synchronized
579 			 * clock!
580 			 */
581 			int b0 = xcs->cs_clocks[i].clk, e0 = abs(b0-bps);
582 			int b1 = b0 >> 4, e1 = abs(b1-bps);
583 			int b2 = b1 >> 1, e2 = abs(b2-bps);
584 			int b3 = b2 >> 1, e3 = abs(b3-bps);
585 
586 			if (e0 < e1 && e0 < e2 && e0 < e3) {
587 				err = e0;
588 				rate1 = b0;
589 				tc1 = ZSWR4_CLK_X1;
590 			} else if (e0 > e1 && e1 < e2  && e1 < e3) {
591 				err = e1;
592 				rate1 = b1;
593 				tc1 = ZSWR4_CLK_X16;
594 			} else if (e0 > e2 && e1 > e2 && e2 < e3) {
595 				err = e2;
596 				rate1 = b2;
597 				tc1 = ZSWR4_CLK_X32;
598 			} else {
599 				err = e3;
600 				rate1 = b3;
601 				tc1 = ZSWR4_CLK_X64;
602 			}
603 
604 			err = (err * 1000)/bps;
605 			if (err < tol) {
606 				tol = err;
607 				src = i;
608 				sf = xcs->cs_clocks[i].flags & ~ZSC_BRG;
609 				tc0 = tc1;
610 				rate0 = rate1;
611 			}
612 		}
613 	}
614 #ifdef ZSMACDEBUG
615 	zsprintf("Checking for rate %d. Found source #%d.\n",bps, src);
616 #endif
617 	if (src == -1)
618 		return (EINVAL); /* no can do */
619 
620 	/*
621 	 * The M.I. layer likes to keep cs_brg_clk current, even though
622 	 * we are the only ones who should be touching the BRG's rate.
623 	 *
624 	 * Note: we are assuming that any ZSC_EXTERN signal source comes in
625 	 * on the RTxC pin. Correct for the mac68k obio zsc.
626 	 */
627 	if (sf & ZSC_EXTERN)
628 		cs->cs_brg_clk = xcs->cs_clocks[i].clk >> 4;
629 	else
630 		cs->cs_brg_clk = PCLK / 16;
631 
632 	/*
633 	 * Now we have a source, so set it up.
634 	 */
635 	s = splzs();
636 	xcs->cs_psource = src;
637 	xcs->cs_pclk_flag = sf;
638 	bps = rate0;
639 	if (sf & ZSC_BRG) {
640 		cs->cs_preg[4] = ZSWR4_CLK_X16;
641 		cs->cs_preg[11]= ZSWR11_RXCLK_BAUD | ZSWR11_TXCLK_BAUD;
642 		if (sf & ZSC_PCLK) {
643 			cs->cs_preg[14] = ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK;
644 		} else {
645 			cs->cs_preg[14] = ZSWR14_BAUD_ENA;
646 		}
647 		tc = tc0;
648 	} else {
649 		cs->cs_preg[4] = tc0;
650 		if (sf & ZSC_RTXDIV) {
651 			cs->cs_preg[11] = ZSWR11_RXCLK_RTXC | ZSWR11_TXCLK_RTXC;
652 		} else {
653 			cs->cs_preg[11] = ZSWR11_RXCLK_TRXC | ZSWR11_TXCLK_TRXC;
654 		}
655 		cs->cs_preg[14]= 0;
656 		tc = 0xffff;
657 	}
658 	/* Set the BAUD rate divisor. */
659 	cs->cs_preg[12] = tc;
660 	cs->cs_preg[13] = tc >> 8;
661 	splx(s);
662 
663 #ifdef ZSMACDEBUG
664 	zsprintf("Rate is %7d, tc is %7d, source no. %2d, flags %4x\n", \
665 	    bps, tc, src, sf);
666 	zsprintf("Registers are: 4 %x, 11 %x, 14 %x\n\n",
667 		cs->cs_preg[4], cs->cs_preg[11], cs->cs_preg[14]);
668 #endif
669 
670 	cs->cs_preg[5] |= ZSWR5_RTS;	/* Make sure the drivers are on! */
671 
672 	/* Caller will stuff the pending registers. */
673 	return (0);
674 }
675 
676 int
677 zs_set_modes(struct zs_chanstate *cs, int cflag)
678 {
679 	struct xzs_chanstate *xcs = (void*)cs;
680 	int s;
681 
682 	/*
683 	 * Make sure we don't enable hfc on a signal line we're ignoring.
684 	 * As we enable CTS interrupts only if we have CRTSCTS or CDTRCTS,
685 	 * this code also effectivly turns off ZSWR15_CTS_IE.
686 	 *
687 	 * Also, disable DCD interrupts if we've been told to ignore
688 	 * the DCD pin. Happens on mac68k because the input line for
689 	 * DCD can also be used as a clock input.  (Just set CLOCAL.)
690 	 *
691 	 * If someone tries to turn an invalid flow mode on, Just Say No
692 	 * (Suggested by gwr)
693 	 */
694 	if ((cflag & CDTRCTS) && (cflag & (CRTSCTS | MDMBUF)))
695 		return (EINVAL);
696 	cs->cs_rr0_pps = 0;
697 	if (xcs->cs_hwflags & ZS_HWFLAG_NO_DCD) {
698 		if (cflag & MDMBUF)
699 			return (EINVAL);
700 		cflag |= CLOCAL;
701 	} else {
702 		/*
703 		 * cs->cs_rr0_pps indicates which bit MAY be used for pps.
704 		 * Enable only if nothing else will want the interrupt and
705 		 * it's ok to enable interrupts on this line.
706 		 */
707 		if ((cflag & (CLOCAL | MDMBUF)) == CLOCAL)
708 			cs->cs_rr0_pps = ZSRR0_DCD;
709 	}
710 	if ((xcs->cs_hwflags & ZS_HWFLAG_NO_CTS) && (cflag & (CRTSCTS | CDTRCTS)))
711 		return (EINVAL);
712 
713 	/*
714 	 * Output hardware flow control on the chip is horrendous:
715 	 * if carrier detect drops, the receiver is disabled, and if
716 	 * CTS drops, the transmitter is stoped IN MID CHARACTER!
717 	 * Therefore, NEVER set the HFC bit, and instead use the
718 	 * status interrupt to detect CTS changes.
719 	 */
720 	s = splzs();
721 	if ((cflag & (CLOCAL | MDMBUF)) != 0)
722 		cs->cs_rr0_dcd = 0;
723 	else
724 		cs->cs_rr0_dcd = ZSRR0_DCD;
725 	/*
726 	 * The mac hardware only has one output, DTR (HSKo in Mac
727 	 * parlance). In HFC mode, we use it for the functions
728 	 * typically served by RTS and DTR on other ports, so we
729 	 * have to fake the upper layer out some.
730 	 *
731 	 * CRTSCTS we use CTS as an input which tells us when to shut up.
732 	 * We make no effort to shut up the other side of the connection.
733 	 * DTR is used to hang up the modem.
734 	 *
735 	 * In CDTRCTS, we use CTS to tell us to stop, but we use DTR to
736 	 * shut up the other side.
737 	 */
738 	if ((cflag & CRTSCTS) != 0) {
739 		cs->cs_wr5_dtr = ZSWR5_DTR;
740 		cs->cs_wr5_rts = 0;
741 		cs->cs_rr0_cts = ZSRR0_CTS;
742 	} else if ((cflag & CDTRCTS) != 0) {
743 		cs->cs_wr5_dtr = 0;
744 		cs->cs_wr5_rts = ZSWR5_DTR;
745 		cs->cs_rr0_cts = ZSRR0_CTS;
746 	} else if ((cflag & MDMBUF) != 0) {
747 		cs->cs_wr5_dtr = 0;
748 		cs->cs_wr5_rts = ZSWR5_DTR;
749 		cs->cs_rr0_cts = ZSRR0_DCD;
750 	} else {
751 		cs->cs_wr5_dtr = ZSWR5_DTR;
752 		cs->cs_wr5_rts = 0;
753 		cs->cs_rr0_cts = 0;
754 	}
755 	splx(s);
756 
757 	/* Caller will stuff the pending registers. */
758 	return (0);
759 }
760 
761 
762 /*
763  * Read or write the chip with suitable delays.
764  * MacII hardware has the delay built in.
765  * No need for extra delay. :-) However, some clock-chirped
766  * macs, or zsc's on serial add-on boards might need it.
767  */
768 #define	ZS_DELAY()
769 
770 u_char
771 zs_read_reg(struct zs_chanstate *cs, u_char reg)
772 {
773 	u_char val;
774 
775 	*cs->cs_reg_csr = reg;
776 	ZS_DELAY();
777 	val = *cs->cs_reg_csr;
778 	ZS_DELAY();
779 	return val;
780 }
781 
782 void
783 zs_write_reg(struct zs_chanstate *cs, u_char reg, u_char val)
784 {
785 	*cs->cs_reg_csr = reg;
786 	ZS_DELAY();
787 	*cs->cs_reg_csr = val;
788 	ZS_DELAY();
789 }
790 
791 u_char
792 zs_read_csr(struct zs_chanstate *cs)
793 {
794 	u_char val;
795 
796 	val = *cs->cs_reg_csr;
797 	ZS_DELAY();
798 	/* make up for the fact CTS is wired backwards */
799 	val ^= ZSRR0_CTS;
800 	return val;
801 }
802 
803 void
804 zs_write_csr(struct zs_chanstate *cs, u_char val)
805 {
806 	/* Note, the csr does not write CTS... */
807 	*cs->cs_reg_csr = val;
808 	ZS_DELAY();
809 }
810 
811 u_char
812 zs_read_data(struct zs_chanstate *cs)
813 {
814 	u_char val;
815 
816 	val = *cs->cs_reg_data;
817 	ZS_DELAY();
818 	return val;
819 }
820 
821 void
822 zs_write_data(struct zs_chanstate *cs, u_char val)
823 {
824 	*cs->cs_reg_data = val;
825 	ZS_DELAY();
826 }
827 
828 /****************************************************************
829  * Console support functions (mac68k specific!)
830  * Note: this code is allowed to know about the layout of
831  * the chip registers, and uses that to keep things simple.
832  * XXX - I think I like the mvme167 code better. -gwr
833  * XXX - Well :-P  :-)  -wrs
834  ****************************************************************/
835 
836 #define zscnpollc	nullcnpollc
837 cons_decl(zs);
838 
839 static void	zscnsetup(void);
840 
841 /*
842  * Console functions.
843  */
844 
845 /*
846  * This code modled after the zs_setparam routine in zskgdb
847  * It sets the console unit to a known state so we can output
848  * correctly.
849  */
850 static void
851 zscnsetup(void)
852 {
853 	struct xzs_chanstate xcs;
854 	struct zs_chanstate *cs;
855 	struct zschan *zc;
856 	int tconst, s;
857 
858 	/* Setup temporary chanstate. */
859 	memset(&xcs, 0, sizeof(xcs));
860 	cs = &xcs.xzs_cs;
861 	zc = zs_conschan;
862 	cs->cs_reg_csr  = &zc->zc_csr;
863 	cs->cs_reg_data = &zc->zc_data;
864 	cs->cs_channel = zs_consunit;
865 	cs->cs_brg_clk = PCLK / 16;
866 
867 	memcpy(cs->cs_preg, zs_init_reg, 16);
868 	cs->cs_preg[5] |= ZSWR5_DTR | ZSWR5_RTS;
869 	cs->cs_preg[15] = ZSWR15_BREAK_IE;
870 	tconst = BPS_TO_TCONST(cs->cs_brg_clk, zs_defspeed[zs_consunit]);
871 	cs->cs_preg[12] = tconst;
872 	cs->cs_preg[13] = tconst >> 8;
873 	/* can't use zs_set_speed as we haven't set up the
874 	 * signal sources, and it's not worth it for now
875 	 */
876 
877 	/*
878 	 * As zs_loadchannelregs doesn't touch reg 9 (interrupt control),
879 	 * we won't accidentally turn on interrupts below
880 	 */
881 	s = splhigh();
882 	zs_loadchannelregs(cs);
883 	splx(s);
884 }
885 
886 /*
887  * zscnprobe is the routine which gets called as the kernel is trying to
888  * figure out where the console should be. Each io driver which might
889  * be the console (as defined in mac68k/conf.c) gets probed. The probe
890  * fills in the consdev structure. Important parts are the device #,
891  * and the console priority. Values are CN_DEAD (don't touch me),
892  * CN_NORMAL (I'm here, but elsewhere might be better), CN_INTERNAL
893  * (the video, better than CN_NORMAL), and CN_REMOTE (pick me!)
894  *
895  * As the mac's a bit different, we do extra work here. We mainly check
896  * to see if we have serial echo going on. Also chould check for default
897  * speeds.
898  */
899 void
900 zscnprobe(struct consdev * cp)
901 {
902 	extern u_long   IOBase;
903 	int     maj, unit, i;
904 	extern const struct cdevsw zstty_cdevsw;
905 
906 	maj = cdevsw_lookup_major(&zstty_cdevsw);
907 	if (maj != -1) {
908 		cp->cn_pri = CN_NORMAL;		 /* Lower than CN_INTERNAL */
909 		if (mac68k_machine.serial_console != 0) {
910 			cp->cn_pri = CN_REMOTE;	 /* Higher than CN_INTERNAL */
911 			mac68k_machine.serial_boot_echo =0;
912 		}
913 
914 		unit = (mac68k_machine.serial_console == 1) ? 0 : 1;
915 		zs_consunit = unit;
916 		zs_conschan = (struct zschan *) -1; /* dummy flag for zs_init() */
917 
918 		mac68k_zsdev = cp->cn_dev = makedev(maj, unit);
919 	}
920 	if (mac68k_machine.serial_boot_echo) {
921 		/*
922 		 * at this point, we know that we don't have a serial
923 		 * console, but are doing echo
924 		 */
925 		zs_conschan = (struct zschan *) -1; /* dummy flag for zs_init() */
926 		zs_consunit = 1;
927 		zs_hwflags[zs_consunit] = ZS_HWFLAG_CONSOLE;
928 	}
929 
930 	if ((i = mac68k_machine.modem_d_speed) > 0) {
931 		if (zs_cn_check_speed(i))
932 			zs_defspeed[0] = i;
933 	}
934 	if ((i = mac68k_machine.print_d_speed) > 0) {
935 		if (zs_cn_check_speed(i))
936 			zs_defspeed[1] = i;
937 	}
938 	mac68k_set_io_offsets(IOBase);
939 	zs_init();
940 	/*
941 	 * zsinit will set up the addresses of the scc. It will also, if
942 	 * zs_conschan != 0, calculate the new address of the conschan for
943 	 * unit zs_consunit. So if we are (or think we are) going to use the
944 	 * chip for console I/O, we just set up the internal addresses for it.
945 	 *
946 	 * Now turn off interrupts for the chip. Note: using sccA to get at
947 	 * the chip is the only vestage of the NetBSD 1.0 ser driver. :-)
948 	 */
949 	unit = sccA[2];			/* reset reg. access */
950 	unit = sccA[0];
951 	sccA[2] = 9; sccA[2] = 0;	/* write 0 to reg. 9, clearing MIE */
952 	sccA[2] = ZSWR0_CLR_INTR; unit = sccA[2]; /* reset any pending ints. */
953 	sccA[0] = ZSWR0_CLR_INTR; unit = sccA[0];
954 
955 	if (mac68k_machine.serial_boot_echo)
956 		zscnsetup();
957 	return;
958 }
959 
960 void
961 zscninit(struct consdev *cp)
962 {
963 
964 	zs_hwflags[zs_consunit] = ZS_HWFLAG_CONSOLE;
965 
966 	/*
967 	 * zsinit will set up the addresses of the scc. It will also, if
968 	 * zs_conschan != 0, calculate the new address of the conschan for
969 	 * unit zs_consunit. So zs_init implicitly sets zs_conschan to the right
970 	 * number. :-)
971 	 */
972 	zscnsetup();
973 	printf("\nNetBSD/mac68k console\n");
974 }
975 
976 
977 /*
978  * Polled input char.
979  */
980 int
981 zs_getc(void *arg)
982 {
983 	volatile struct zschan *zc = arg;
984 	int s, c, rr0;
985 
986 	s = splhigh();
987 	/* Wait for a character to arrive. */
988 	do {
989 		rr0 = zc->zc_csr;
990 		ZS_DELAY();
991 	} while ((rr0 & ZSRR0_RX_READY) == 0);
992 
993 	c = zc->zc_data;
994 	ZS_DELAY();
995 	splx(s);
996 
997 	/*
998 	 * This is used by the kd driver to read scan codes,
999 	 * so don't translate '\r' ==> '\n' here...
1000 	 */
1001 	return (c);
1002 }
1003 
1004 /*
1005  * Polled output char.
1006  */
1007 void
1008 zs_putc(void *arg, int c)
1009 {
1010 	volatile struct zschan *zc = arg;
1011 	int s, rr0;
1012 	long wait = 0;
1013 
1014 	s = splhigh();
1015 	/* Wait for transmitter to become ready. */
1016 	do {
1017 		rr0 = zc->zc_csr;
1018 		ZS_DELAY();
1019 	} while (((rr0 & ZSRR0_TX_READY) == 0) && (wait++ < 1000000));
1020 
1021 	if ((rr0 & ZSRR0_TX_READY) != 0) {
1022 		zc->zc_data = c;
1023 		ZS_DELAY();
1024 	}
1025 	splx(s);
1026 }
1027 
1028 
1029 /*
1030  * Polled console input putchar.
1031  */
1032 int
1033 zscngetc(dev_t dev)
1034 {
1035 	struct zschan *zc = zs_conschan;
1036 	int c;
1037 
1038 	c = zs_getc(zc);
1039 	return (c);
1040 }
1041 
1042 /*
1043  * Polled console output putchar.
1044  */
1045 void
1046 zscnputc(dev_t dev, int c)
1047 {
1048 	struct zschan *zc = zs_conschan;
1049 
1050 	zs_putc(zc, c);
1051 }
1052 
1053 
1054 
1055 /*
1056  * Handle user request to enter kernel debugger.
1057  */
1058 void
1059 zs_abort(struct zs_chanstate *cs)
1060 {
1061 	volatile struct zschan *zc = zs_conschan;
1062 	int rr0;
1063 	long wait = 0;
1064 
1065 	if (zs_cons_canabort == 0)
1066 		return;
1067 
1068 	/* Wait for end of break to avoid PROM abort. */
1069 	do {
1070 		rr0 = zc->zc_csr;
1071 		ZS_DELAY();
1072 	} while ((rr0 & ZSRR0_BREAK) && (wait++ < ZSABORT_DELAY));
1073 
1074 	if (wait > ZSABORT_DELAY) {
1075 		zs_cons_canabort = 0;
1076 	/* If we time out, turn off the abort ability! */
1077 	}
1078 
1079 #ifdef DDB
1080 	Debugger();
1081 #endif
1082 }
1083