1 /* $NetBSD: adb_direct.c,v 1.59 2007/10/17 19:55:13 garbled Exp $ */ 2 3 /* From: adb_direct.c 2.02 4/18/97 jpw */ 4 5 /* 6 * Copyright (C) 1996, 1997 John P. Wittkoski 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed by John P. Wittkoski. 20 * 4. The name of the author may not be used to endorse or promote products 21 * derived from this software without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 /* 36 * This code is rather messy, but I don't have time right now 37 * to clean it up as much as I would like. 38 * But it works, so I'm happy. :-) jpw 39 */ 40 41 /* 42 * TO DO: 43 * - We could reduce the time spent in the adb_intr_* routines 44 * by having them save the incoming and outgoing data directly 45 * in the adbInbound and adbOutbound queues, as it would reduce 46 * the number of times we need to copy the data around. It 47 * would also make the code more readable and easier to follow. 48 * - (Related to above) Use the header part of adbCommand to 49 * reduce the number of copies we have to do of the data. 50 * - (Related to above) Actually implement the adbOutbound queue. 51 * This is fairly easy once you switch all the intr routines 52 * over to using adbCommand structs directly. 53 * - There is a bug in the state machine of adb_intr_cuda 54 * code that causes hangs, especially on 030 machines, probably 55 * because of some timing issues. Because I have been unable to 56 * determine the exact cause of this bug, I used the timeout function 57 * to check for and recover from this condition. If anyone finds 58 * the actual cause of this bug, the calls to timeout and the 59 * adb_cuda_tickle routine can be removed. 60 */ 61 62 #ifdef __NetBSD__ 63 64 #include <sys/cdefs.h> 65 __KERNEL_RCSID(0, "$NetBSD: adb_direct.c,v 1.59 2007/10/17 19:55:13 garbled Exp $"); 66 67 #include "opt_adb.h" 68 69 #include <sys/param.h> 70 #include <sys/pool.h> 71 #include <sys/queue.h> 72 #include <sys/systm.h> 73 #include <sys/callout.h> 74 75 #include <machine/viareg.h> 76 #include <machine/param.h> 77 #include <machine/cpu.h> 78 #include <machine/adbsys.h> /* required for adbvar.h */ 79 #include <machine/iopreg.h> /* required for IOP support */ 80 81 #include <mac68k/mac68k/macrom.h> 82 #include <mac68k/dev/adbvar.h> 83 #define printf_intr printf 84 #else /* !__NetBSD__, i.e. Mac OS */ 85 #include "via.h" /* for macos based testing */ 86 /* #define ADB_DEBUG */ /* more verbose for testing */ 87 88 /* Types of ADB hardware that we support */ 89 #define ADB_HW_UNKNOWN 0x0 /* don't know */ 90 #define ADB_HW_II 0x1 /* Mac II series */ 91 #define ADB_HW_IISI 0x2 /* Mac IIsi series */ 92 #define ADB_HW_PB 0x3 /* PowerBook series */ 93 #define ADB_HW_CUDA 0x4 /* Machines with a Cuda chip */ 94 #endif /* __NetBSD__ */ 95 96 /* some misc. leftovers */ 97 #define vPB 0x0000 98 #define vPB3 0x08 99 #define vPB4 0x10 100 #define vPB5 0x20 101 #define vSR_INT 0x04 102 #define vSR_OUT 0x10 103 104 /* the type of ADB action that we are currently preforming */ 105 #define ADB_ACTION_NOTREADY 0x1 /* has not been initialized yet */ 106 #define ADB_ACTION_IDLE 0x2 /* the bus is currently idle */ 107 #define ADB_ACTION_OUT 0x3 /* sending out a command */ 108 #define ADB_ACTION_IN 0x4 /* receiving data */ 109 #define ADB_ACTION_POLLING 0x5 /* polling - II only */ 110 #define ADB_ACTION_RUNNING 0x6 /* running - IOP only */ 111 112 /* 113 * These describe the state of the ADB bus itself, although they 114 * don't necessarily correspond directly to ADB states. 115 * Note: these are not really used in the IIsi code. 116 */ 117 #define ADB_BUS_UNKNOWN 0x1 /* we don't know yet - all models */ 118 #define ADB_BUS_IDLE 0x2 /* bus is idle - all models */ 119 #define ADB_BUS_CMD 0x3 /* starting a command - II models */ 120 #define ADB_BUS_ODD 0x4 /* the "odd" state - II models */ 121 #define ADB_BUS_EVEN 0x5 /* the "even" state - II models */ 122 #define ADB_BUS_ACTIVE 0x6 /* active state - IIsi models */ 123 #define ADB_BUS_ACK 0x7 /* currently ACKing - IIsi models */ 124 125 /* 126 * Shortcuts for setting or testing the VIA bit states. 127 * Not all shortcuts are used for every type of ADB hardware. 128 */ 129 #define ADB_SET_STATE_IDLE_II() via_reg(VIA1, vBufB) |= (vPB4 | vPB5) 130 #define ADB_SET_STATE_IDLE_IISI() via_reg(VIA1, vBufB) &= ~(vPB4 | vPB5) 131 #define ADB_SET_STATE_IDLE_CUDA() via_reg(VIA1, vBufB) |= (vPB4 | vPB5) 132 #define ADB_SET_STATE_CMD() via_reg(VIA1, vBufB) &= ~(vPB4 | vPB5) 133 #define ADB_SET_STATE_EVEN() via_reg(VIA1, vBufB) = ((via_reg(VIA1, \ 134 vBufB) | vPB4) & ~vPB5) 135 #define ADB_SET_STATE_ODD() via_reg(VIA1, vBufB) = ((via_reg(VIA1, \ 136 vBufB) | vPB5) & ~vPB4) 137 #define ADB_SET_STATE_ACTIVE() via_reg(VIA1, vBufB) |= vPB5 138 #define ADB_SET_STATE_INACTIVE() via_reg(VIA1, vBufB) &= ~vPB5 139 #define ADB_SET_STATE_TIP() via_reg(VIA1, vBufB) &= ~vPB5 140 #define ADB_CLR_STATE_TIP() via_reg(VIA1, vBufB) |= vPB5 141 #define ADB_SET_STATE_ACKON() via_reg(VIA1, vBufB) |= vPB4 142 #define ADB_SET_STATE_ACKOFF() via_reg(VIA1, vBufB) &= ~vPB4 143 #define ADB_TOGGLE_STATE_ACK_CUDA() via_reg(VIA1, vBufB) ^= vPB4 144 #define ADB_SET_STATE_ACKON_CUDA() via_reg(VIA1, vBufB) &= ~vPB4 145 #define ADB_SET_STATE_ACKOFF_CUDA() via_reg(VIA1, vBufB) |= vPB4 146 #define ADB_SET_SR_INPUT() via_reg(VIA1, vACR) &= ~vSR_OUT 147 #define ADB_SET_SR_OUTPUT() via_reg(VIA1, vACR) |= vSR_OUT 148 #define ADB_SR() via_reg(VIA1, vSR) 149 #define ADB_VIA_INTR_ENABLE() via_reg(VIA1, vIER) = 0x84 150 #define ADB_VIA_INTR_DISABLE() via_reg(VIA1, vIER) = 0x04 151 #define ADB_VIA_CLR_INTR() via_reg(VIA1, vIFR) = 0x04 152 #define ADB_INTR_IS_OFF (vPB3 == (via_reg(VIA1, vBufB) & vPB3)) 153 #define ADB_INTR_IS_ON (0 == (via_reg(VIA1, vBufB) & vPB3)) 154 #define ADB_SR_INTR_IS_OFF (0 == (via_reg(VIA1, vIFR) & vSR_INT)) 155 #define ADB_SR_INTR_IS_ON (vSR_INT == (via_reg(VIA1, \ 156 vIFR) & vSR_INT)) 157 158 /* 159 * This is the delay that is required (in uS) between certain 160 * ADB transactions. The actual timing delay for for each uS is 161 * calculated at boot time to account for differences in machine speed. 162 */ 163 #define ADB_DELAY 150 164 165 /* 166 * Maximum ADB message length; includes space for data, result, and 167 * device code - plus a little for safety. 168 */ 169 #define ADB_MAX_MSG_LENGTH 16 170 #define ADB_MAX_HDR_LENGTH 8 171 172 #define ADB_QUEUE 32 173 #define ADB_TICKLE_TICKS 4 174 175 /* 176 * A structure for storing information about each ADB device. 177 */ 178 struct ADBDevEntry { 179 void (*ServiceRtPtr)(void); 180 void *DataAreaAddr; 181 int devType; 182 int origAddr; 183 int currentAddr; 184 }; 185 186 /* 187 * Used to hold ADB commands that are waiting to be sent out. 188 */ 189 struct adbCmdHoldEntry { 190 u_char outBuf[ADB_MAX_MSG_LENGTH]; /* our message */ 191 u_char *saveBuf; /* buffer to know where to save result */ 192 u_char *compRout; /* completion routine pointer */ 193 u_char *data; /* completion routine data pointer */ 194 }; 195 196 /* 197 * Eventually used for two separate queues, the queue between 198 * the upper and lower halves, and the outgoing packet queue. 199 * TO DO: adbCommand can replace all of adbCmdHoldEntry eventually 200 */ 201 struct adbCommand { 202 u_char header[ADB_MAX_HDR_LENGTH]; /* not used yet */ 203 u_char data[ADB_MAX_MSG_LENGTH]; /* packet data only */ 204 u_char *saveBuf; /* where to save result */ 205 u_char *compRout; /* completion routine pointer */ 206 u_char *compData; /* completion routine data pointer */ 207 u_int cmd; /* the original command for this data */ 208 u_int unsol; /* 1 if packet was unsolicited */ 209 u_int ack_only; /* 1 for no special processing */ 210 }; 211 212 /* 213 * Text representations of each hardware class 214 */ 215 const char *adbHardwareDescr[MAX_ADB_HW + 1] = { 216 "unknown", 217 "II series", 218 "IIsi series", 219 "PowerBook", 220 "Cuda", 221 "IOP", 222 }; 223 224 /* 225 * A few variables that we need and their initial values. 226 */ 227 int adbHardware = ADB_HW_UNKNOWN; 228 int adbActionState = ADB_ACTION_NOTREADY; 229 int adbBusState = ADB_BUS_UNKNOWN; 230 int adbWaiting = 0; /* waiting for return data from the device */ 231 int adbWriteDelay = 0; /* working on (or waiting to do) a write */ 232 int adbOutQueueHasData = 0; /* something in the queue waiting to go out */ 233 int adbNextEnd = 0; /* the next incoming bute is the last (II) */ 234 int adbSoftPower = 0; /* machine supports soft power */ 235 236 int adbWaitingCmd = 0; /* ADB command we are waiting for */ 237 u_char *adbBuffer = (long)0; /* pointer to user data area */ 238 void *adbCompRout = (long)0; /* pointer to the completion routine */ 239 void *adbCompData = (long)0; /* pointer to the completion routine data */ 240 long adbFakeInts = 0; /* keeps track of fake ADB interrupts for 241 * timeouts (II) */ 242 int adbStarting = 1; /* doing ADBReInit so do polling differently */ 243 int adbSendTalk = 0; /* the intr routine is sending the talk, not 244 * the user (II) */ 245 int adbPolling = 0; /* we are polling for service request */ 246 int adbPollCmd = 0; /* the last poll command we sent */ 247 248 u_char adbInputBuffer[ADB_MAX_MSG_LENGTH]; /* data input buffer */ 249 u_char adbOutputBuffer[ADB_MAX_MSG_LENGTH]; /* data output buffer */ 250 struct adbCmdHoldEntry adbOutQueue; /* our 1 entry output queue */ 251 252 int adbSentChars = 0; /* how many characters we have sent */ 253 int adbLastDevice = 0; /* last ADB dev we heard from (II ONLY) */ 254 int adbLastDevIndex = 0; /* last ADB dev loc in dev table (II ONLY) */ 255 int adbLastCommand = 0; /* the last ADB command we sent (II) */ 256 257 struct ADBDevEntry ADBDevTable[16]; /* our ADB device table */ 258 int ADBNumDevices; /* num. of ADB devices found with ADBReInit */ 259 260 struct adbCommand adbInbound[ADB_QUEUE]; /* incoming queue */ 261 volatile int adbInCount = 0; /* how many packets in in queue */ 262 int adbInHead = 0; /* head of in queue */ 263 int adbInTail = 0; /* tail of in queue */ 264 struct adbCommand adbOutbound[ADB_QUEUE]; /* outgoing queue - not used yet */ 265 int adbOutCount = 0; /* how many packets in out queue */ 266 int adbOutHead = 0; /* head of out queue */ 267 int adbOutTail = 0; /* tail of out queue */ 268 269 int tickle_count = 0; /* how many tickles seen for this packet? */ 270 int tickle_serial = 0; /* the last packet tickled */ 271 int adb_cuda_serial = 0; /* the current packet */ 272 273 callout_t adb_cuda_tickle_ch; 274 275 void *adb_softintr_cookie; 276 277 extern struct mac68k_machine_S mac68k_machine; 278 279 void pm_setup_adb(void); 280 void pm_hw_setup(void); 281 void pm_check_adb_devices(int); 282 void pm_intr(void *); 283 int pm_adb_op(u_char *, void *, void *, int); 284 void pm_init_adb_device(void); 285 286 /* 287 * The following are private routines. 288 */ 289 #ifdef ADB_DEBUG 290 void print_single(u_char *); 291 #endif 292 void adb_intr(void *); 293 void adb_intr_II(void *); 294 void adb_intr_IIsi(void *); 295 void adb_intr_cuda(void *); 296 void adb_soft_intr(void); 297 int send_adb_II(u_char *, u_char *, void *, void *, int); 298 int send_adb_IIsi(u_char *, u_char *, void *, void *, int); 299 int send_adb_cuda(u_char *, u_char *, void *, void *, int); 300 void adb_intr_cuda_test(void); 301 void adb_cuda_tickle(void); 302 void adb_pass_up(struct adbCommand *); 303 void adb_op_comprout(void); 304 void adb_reinit(void); 305 int count_adbs(void); 306 int get_ind_adb_info(ADBDataBlock *, int); 307 int get_adb_info(ADBDataBlock *, int); 308 int set_adb_info(ADBSetInfoBlock *, int); 309 void adb_setup_hw_type(void); 310 int adb_op(Ptr, Ptr, Ptr, short); 311 void adb_read_II(u_char *); 312 void adb_hw_setup(void); 313 void adb_hw_setup_IIsi(u_char *); 314 void adb_comp_exec(void); 315 int adb_cmd_result(u_char *); 316 int adb_cmd_extra(u_char *); 317 int adb_guess_next_device(void); 318 int adb_prog_switch_enable(void); 319 int adb_prog_switch_disable(void); 320 /* we should create this and it will be the public version */ 321 int send_adb(u_char *, void *, void *); 322 void adb_iop_recv(IOP *, struct iop_msg *); 323 int send_adb_iop(int, u_char *, void *, void *); 324 325 #ifdef ADB_DEBUG 326 /* 327 * print_single 328 * Diagnostic display routine. Displays the hex values of the 329 * specified elements of the u_char. The length of the "string" 330 * is in [0]. 331 */ 332 void 333 print_single(u_char *str) 334 { 335 int x; 336 337 if (str == 0) { 338 printf_intr("no data - null pointer\n"); 339 return; 340 } 341 if (*str == 0) { 342 printf_intr("nothing returned\n"); 343 return; 344 } 345 if (*str > 20) { 346 printf_intr("ADB: ACK > 20 no way!\n"); 347 *str = (u_char)20; 348 } 349 printf_intr("(length=0x%x):", (u_int)*str); 350 for (x = 1; x <= *str; x++) 351 printf_intr(" 0x%02x", (u_int)*(str + x)); 352 printf_intr("\n"); 353 } 354 #endif 355 356 void 357 adb_cuda_tickle(void) 358 { 359 volatile int s; 360 361 if (adbActionState == ADB_ACTION_IN) { 362 if (tickle_serial == adb_cuda_serial) { 363 if (++tickle_count > 0) { 364 s = splhigh(); 365 adbActionState = ADB_ACTION_IDLE; 366 adbInputBuffer[0] = 0; 367 ADB_SET_STATE_IDLE_CUDA(); 368 splx(s); 369 } 370 } else { 371 tickle_serial = adb_cuda_serial; 372 tickle_count = 0; 373 } 374 } else { 375 tickle_serial = adb_cuda_serial; 376 tickle_count = 0; 377 } 378 379 callout_reset(&adb_cuda_tickle_ch, ADB_TICKLE_TICKS, 380 (void *)adb_cuda_tickle, NULL); 381 } 382 383 /* 384 * called when when an adb interrupt happens 385 * 386 * Cuda version of adb_intr 387 * TO DO: do we want to add some calls to intr_dispatch() here to 388 * grab serial interrupts? 389 */ 390 void 391 adb_intr_cuda(void *arg) 392 { 393 volatile int i, ending; 394 volatile unsigned int s; 395 struct adbCommand packet; 396 397 s = splhigh(); /* can't be too careful - might be called */ 398 /* from a routine, NOT an interrupt */ 399 400 ADB_VIA_CLR_INTR(); /* clear interrupt */ 401 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */ 402 403 switch_start: 404 switch (adbActionState) { 405 case ADB_ACTION_IDLE: 406 /* 407 * This is an unexpected packet, so grab the first (dummy) 408 * byte, set up the proper vars, and tell the chip we are 409 * starting to receive the packet by setting the TIP bit. 410 */ 411 adbInputBuffer[1] = ADB_SR(); 412 adb_cuda_serial++; 413 if (ADB_INTR_IS_OFF) /* must have been a fake start */ 414 break; 415 416 ADB_SET_SR_INPUT(); 417 ADB_SET_STATE_TIP(); 418 419 adbInputBuffer[0] = 1; 420 adbActionState = ADB_ACTION_IN; 421 #ifdef ADB_DEBUG 422 if (adb_debug) 423 printf_intr("idle 0x%02x ", adbInputBuffer[1]); 424 #endif 425 break; 426 427 case ADB_ACTION_IN: 428 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR(); 429 /* intr off means this is the last byte (end of frame) */ 430 if (ADB_INTR_IS_OFF) 431 ending = 1; 432 else 433 ending = 0; 434 435 if (1 == ending) { /* end of message? */ 436 #ifdef ADB_DEBUG 437 if (adb_debug) { 438 printf_intr("in end 0x%02x ", 439 adbInputBuffer[adbInputBuffer[0]]); 440 print_single(adbInputBuffer); 441 } 442 #endif 443 444 /* 445 * Are we waiting AND does this packet match what we 446 * are waiting for AND is it coming from either the 447 * ADB or RTC/PRAM sub-device? This section _should_ 448 * recognize all ADB and RTC/PRAM type commands, but 449 * there may be more... NOTE: commands are always at 450 * [4], even for RTC/PRAM commands. 451 */ 452 /* set up data for adb_pass_up */ 453 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1); 454 455 if ((adbWaiting == 1) && 456 (adbInputBuffer[4] == adbWaitingCmd) && 457 ((adbInputBuffer[2] == 0x00) || 458 (adbInputBuffer[2] == 0x01))) { 459 packet.saveBuf = adbBuffer; 460 packet.compRout = adbCompRout; 461 packet.compData = adbCompData; 462 packet.unsol = 0; 463 packet.ack_only = 0; 464 adb_pass_up(&packet); 465 466 adbWaitingCmd = 0; /* reset "waiting" vars */ 467 adbWaiting = 0; 468 adbBuffer = (long)0; 469 adbCompRout = (long)0; 470 adbCompData = (long)0; 471 } else { 472 packet.unsol = 1; 473 packet.ack_only = 0; 474 adb_pass_up(&packet); 475 } 476 477 478 /* reset vars and signal the end of this frame */ 479 adbActionState = ADB_ACTION_IDLE; 480 adbInputBuffer[0] = 0; 481 ADB_SET_STATE_IDLE_CUDA(); 482 /*ADB_SET_SR_INPUT();*/ 483 484 /* 485 * If there is something waiting to be sent out, 486 * the set everything up and send the first byte. 487 */ 488 if (adbWriteDelay == 1) { 489 delay(ADB_DELAY); /* required */ 490 adbSentChars = 0; 491 adbActionState = ADB_ACTION_OUT; 492 /* 493 * If the interrupt is on, we were too slow 494 * and the chip has already started to send 495 * something to us, so back out of the write 496 * and start a read cycle. 497 */ 498 if (ADB_INTR_IS_ON) { 499 ADB_SET_SR_INPUT(); 500 ADB_SET_STATE_IDLE_CUDA(); 501 adbSentChars = 0; 502 adbActionState = ADB_ACTION_IDLE; 503 adbInputBuffer[0] = 0; 504 break; 505 } 506 /* 507 * If we got here, it's ok to start sending 508 * so load the first byte and tell the chip 509 * we want to send. 510 */ 511 ADB_SET_STATE_TIP(); 512 ADB_SET_SR_OUTPUT(); 513 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; 514 } 515 } else { 516 ADB_TOGGLE_STATE_ACK_CUDA(); 517 #ifdef ADB_DEBUG 518 if (adb_debug) 519 printf_intr("in 0x%02x ", 520 adbInputBuffer[adbInputBuffer[0]]); 521 #endif 522 } 523 break; 524 525 case ADB_ACTION_OUT: 526 i = ADB_SR(); /* reset SR-intr in IFR */ 527 #ifdef ADB_DEBUG 528 if (adb_debug) 529 printf_intr("intr out 0x%02x ", i); 530 #endif 531 532 adbSentChars++; 533 if (ADB_INTR_IS_ON) { /* ADB intr low during write */ 534 #ifdef ADB_DEBUG 535 if (adb_debug) 536 printf_intr("intr was on "); 537 #endif 538 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */ 539 ADB_SET_STATE_IDLE_CUDA(); 540 adbSentChars = 0; /* must start all over */ 541 adbActionState = ADB_ACTION_IDLE; /* new state */ 542 adbInputBuffer[0] = 0; 543 adbWriteDelay = 1; /* must retry when done with 544 * read */ 545 delay(ADB_DELAY); 546 goto switch_start; /* process next state right 547 * now */ 548 break; 549 } 550 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */ 551 if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data 552 * back? */ 553 adbWaiting = 1; /* signal waiting for return */ 554 adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */ 555 } else { /* no talk, so done */ 556 /* set up stuff for adb_pass_up */ 557 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1); 558 packet.saveBuf = adbBuffer; 559 packet.compRout = adbCompRout; 560 packet.compData = adbCompData; 561 packet.cmd = adbWaitingCmd; 562 packet.unsol = 0; 563 packet.ack_only = 1; 564 adb_pass_up(&packet); 565 566 /* reset "waiting" vars, just in case */ 567 adbWaitingCmd = 0; 568 adbBuffer = (long)0; 569 adbCompRout = (long)0; 570 adbCompData = (long)0; 571 } 572 573 adbWriteDelay = 0; /* done writing */ 574 adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */ 575 ADB_SET_SR_INPUT(); 576 ADB_SET_STATE_IDLE_CUDA(); 577 #ifdef ADB_DEBUG 578 if (adb_debug) 579 printf_intr("write done "); 580 #endif 581 } else { 582 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* send next byte */ 583 ADB_TOGGLE_STATE_ACK_CUDA(); /* signal byte ready to 584 * shift */ 585 #ifdef ADB_DEBUG 586 if (adb_debug) 587 printf_intr("toggle "); 588 #endif 589 } 590 break; 591 592 case ADB_ACTION_NOTREADY: 593 #ifdef ADB_DEBUG 594 if (adb_debug) 595 printf_intr("adb: not yet initialized\n"); 596 #endif 597 break; 598 599 default: 600 #ifdef ADB_DEBUG 601 if (adb_debug) 602 printf_intr("intr: unknown ADB state\n"); 603 #endif 604 break; 605 } 606 607 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */ 608 609 splx(s); /* restore */ 610 611 return; 612 } /* end adb_intr_cuda */ 613 614 615 int 616 send_adb_cuda(u_char *in, u_char *buffer, void *compRout, void *data, int 617 command) 618 { 619 int s, len; 620 621 #ifdef ADB_DEBUG 622 if (adb_debug) 623 printf_intr("SEND\n"); 624 #endif 625 626 if (adbActionState == ADB_ACTION_NOTREADY) 627 return 1; 628 629 /* Don't interrupt while we are messing with the ADB */ 630 s = splhigh(); 631 632 if ((adbActionState == ADB_ACTION_IDLE) && /* ADB available? */ 633 (ADB_INTR_IS_OFF)) { /* and no incoming interrupt? */ 634 } else 635 if (adbWriteDelay == 0) /* it's busy, but is anything waiting? */ 636 adbWriteDelay = 1; /* if no, then we'll "queue" 637 * it up */ 638 else { 639 splx(s); 640 return 1; /* really busy! */ 641 } 642 643 #ifdef ADB_DEBUG 644 if (adb_debug) 645 printf_intr("QUEUE\n"); 646 #endif 647 if ((long)in == (long)0) { /* need to convert? */ 648 /* 649 * Don't need to use adb_cmd_extra here because this section 650 * will be called ONLY when it is an ADB command (no RTC or 651 * PRAM) 652 */ 653 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if 654 * doing a listen! */ 655 len = buffer[0]; /* length of additional data */ 656 else 657 len = 0;/* no additional data */ 658 659 adbOutputBuffer[0] = 2 + len; /* dev. type + command + addl. 660 * data */ 661 adbOutputBuffer[1] = 0x00; /* mark as an ADB command */ 662 adbOutputBuffer[2] = (u_char)command; /* load command */ 663 664 /* copy additional output data, if any */ 665 memcpy(adbOutputBuffer + 3, buffer + 1, len); 666 } else 667 /* if data ready, just copy over */ 668 memcpy(adbOutputBuffer, in, in[0] + 2); 669 670 adbSentChars = 0; /* nothing sent yet */ 671 adbBuffer = buffer; /* save buffer to know where to save result */ 672 adbCompRout = compRout; /* save completion routine pointer */ 673 adbCompData = data; /* save completion routine data pointer */ 674 adbWaitingCmd = adbOutputBuffer[2]; /* save wait command */ 675 676 if (adbWriteDelay != 1) { /* start command now? */ 677 #ifdef ADB_DEBUG 678 if (adb_debug) 679 printf_intr("out start NOW"); 680 #endif 681 delay(ADB_DELAY); 682 adbActionState = ADB_ACTION_OUT; /* set next state */ 683 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */ 684 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */ 685 ADB_SET_STATE_ACKOFF_CUDA(); 686 ADB_SET_STATE_TIP(); /* tell ADB that we want to send */ 687 } 688 adbWriteDelay = 1; /* something in the write "queue" */ 689 690 splx(s); 691 692 if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked? */ 693 /* poll until byte done */ 694 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON) 695 || (adbWaiting == 1)) 696 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */ 697 adb_intr_cuda(NULL); /* go process it */ 698 if (adb_polling) 699 adb_soft_intr(); 700 } 701 702 return 0; 703 } /* send_adb_cuda */ 704 705 706 void 707 adb_intr_II(void *arg) 708 { 709 struct adbCommand packet; 710 int i, intr_on = 0; 711 int send = 0; 712 unsigned int s; 713 714 s = splhigh(); /* can't be too careful - might be called */ 715 /* from a routine, NOT an interrupt */ 716 717 ADB_VIA_CLR_INTR(); /* clear interrupt */ 718 719 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */ 720 721 delay(ADB_DELAY); /* yuck (don't remove) */ 722 723 (void)intr_dispatch(0x70); /* grab any serial interrupts */ 724 725 if (ADB_INTR_IS_ON) 726 intr_on = 1; /* save for later */ 727 728 switch_start: 729 switch (adbActionState) { 730 case ADB_ACTION_POLLING: 731 if (!intr_on) { 732 if (adbOutQueueHasData) { 733 #ifdef ADB_DEBUG 734 if (adb_debug & 0x80) 735 printf_intr("POLL-doing-out-queue. "); 736 #endif 737 ADB_SET_STATE_IDLE_II(); 738 delay(ADB_DELAY); 739 740 /* copy over data */ 741 memcpy(adbOutputBuffer, adbOutQueue.outBuf, 742 adbOutQueue.outBuf[0] + 2); 743 744 adbBuffer = adbOutQueue.saveBuf; /* user data area */ 745 adbCompRout = adbOutQueue.compRout; /* completion routine */ 746 adbCompData = adbOutQueue.data; /* comp. rout. data */ 747 adbOutQueueHasData = 0; /* currently processing 748 * "queue" entry */ 749 adbSentChars = 0; /* nothing sent yet */ 750 adbActionState = ADB_ACTION_OUT; /* set next state */ 751 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */ 752 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */ 753 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */ 754 ADB_SET_STATE_CMD(); /* tell ADB that we want to send */ 755 break; 756 } else { 757 #ifdef ADB_DEBUG 758 if (adb_debug) 759 printf_intr("pIDLE "); 760 #endif 761 adbActionState = ADB_ACTION_IDLE; 762 } 763 } else { 764 #ifdef ADB_DEBUG 765 if (adb_debug & 0x80) 766 printf_intr("pIN "); 767 #endif 768 adbActionState = ADB_ACTION_IN; 769 } 770 delay(ADB_DELAY); 771 (void)intr_dispatch(0x70); /* grab any serial interrupts */ 772 goto switch_start; 773 break; 774 case ADB_ACTION_IDLE: 775 if (!intr_on) { 776 i = ADB_SR(); 777 adbBusState = ADB_BUS_IDLE; 778 adbActionState = ADB_ACTION_IDLE; 779 ADB_SET_STATE_IDLE_II(); 780 break; 781 } 782 adbInputBuffer[0] = 1; 783 adbInputBuffer[1] = ADB_SR(); /* get first byte */ 784 #ifdef ADB_DEBUG 785 if (adb_debug & 0x80) 786 printf_intr("idle 0x%02x ", adbInputBuffer[1]); 787 #endif 788 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */ 789 adbActionState = ADB_ACTION_IN; /* set next state */ 790 ADB_SET_STATE_EVEN(); /* set bus state to even */ 791 adbBusState = ADB_BUS_EVEN; 792 break; 793 794 case ADB_ACTION_IN: 795 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR(); /* get byte */ 796 #ifdef ADB_DEBUG 797 if (adb_debug & 0x80) 798 printf_intr("in 0x%02x ", 799 adbInputBuffer[adbInputBuffer[0]]); 800 #endif 801 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */ 802 803 if (intr_on) { /* process last byte of packet */ 804 adbInputBuffer[0]--; /* minus one */ 805 /* 806 * If intr_on was true, and it's the second byte, then 807 * the byte we just discarded is really valid, so 808 * adjust the count 809 */ 810 if (adbInputBuffer[0] == 2) { 811 adbInputBuffer[0]++; 812 } 813 814 #ifdef ADB_DEBUG 815 if (adb_debug & 0x80) { 816 printf_intr("done: "); 817 print_single(adbInputBuffer); 818 } 819 #endif 820 821 adbLastDevice = ADB_CMDADDR(adbInputBuffer[1]); 822 823 if (adbInputBuffer[0] == 1 && !adbWaiting) { /* SRQ!!!*/ 824 #ifdef ADB_DEBUG 825 if (adb_debug & 0x80) 826 printf_intr(" xSRQ! "); 827 #endif 828 adb_guess_next_device(); 829 #ifdef ADB_DEBUG 830 if (adb_debug & 0x80) 831 printf_intr("try 0x%0x ", 832 adbLastDevice); 833 #endif 834 adbOutputBuffer[0] = 1; 835 adbOutputBuffer[1] = ADBTALK(adbLastDevice, 0); 836 837 adbSentChars = 0; /* nothing sent yet */ 838 adbActionState = ADB_ACTION_POLLING; /* set next state */ 839 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */ 840 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */ 841 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */ 842 ADB_SET_STATE_CMD(); /* tell ADB that we want to */ 843 break; 844 } 845 846 /* set up data for adb_pass_up */ 847 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1); 848 849 if (!adbWaiting && (adbInputBuffer[0] != 0)) { 850 packet.unsol = 1; 851 packet.ack_only = 0; 852 adb_pass_up(&packet); 853 } else { 854 packet.saveBuf = adbBuffer; 855 packet.compRout = adbCompRout; 856 packet.compData = adbCompData; 857 packet.unsol = 0; 858 packet.ack_only = 0; 859 adb_pass_up(&packet); 860 } 861 862 adbWaiting = 0; 863 adbInputBuffer[0] = 0; 864 adbBuffer = (long)0; 865 adbCompRout = (long)0; 866 adbCompData = (long)0; 867 /* 868 * Since we are done, check whether there is any data 869 * waiting to do out. If so, start the sending the data. 870 */ 871 if (adbOutQueueHasData == 1) { 872 #ifdef ADB_DEBUG 873 if (adb_debug & 0x80) 874 printf_intr("XXX: DOING OUT QUEUE\n"); 875 #endif 876 /* copy over data */ 877 memcpy(adbOutputBuffer, adbOutQueue.outBuf, 878 adbOutQueue.outBuf[0] + 2); 879 adbBuffer = adbOutQueue.saveBuf; /* user data area */ 880 adbCompRout = adbOutQueue.compRout; /* completion routine */ 881 adbCompData = adbOutQueue.data; /* comp. rout. data */ 882 adbOutQueueHasData = 0; /* currently processing 883 * "queue" entry */ 884 send = 1; 885 } else { 886 #ifdef ADB_DEBUG 887 if (adb_debug & 0x80) 888 printf_intr("XXending "); 889 #endif 890 adb_guess_next_device(); 891 adbOutputBuffer[0] = 1; 892 adbOutputBuffer[1] = ((adbLastDevice & 0x0f) << 4) | 0x0c; 893 adbSentChars = 0; /* nothing sent yet */ 894 adbActionState = ADB_ACTION_POLLING; /* set next state */ 895 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */ 896 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */ 897 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */ 898 ADB_SET_STATE_CMD(); /* tell ADB that we want to */ 899 break; 900 } 901 } 902 903 /* 904 * If send is true then something above determined that 905 * the message has ended and we need to start sending out 906 * a new message immediately. This could be because there 907 * is data waiting to go out or because an SRQ was seen. 908 */ 909 if (send) { 910 adbSentChars = 0; /* nothing sent yet */ 911 adbActionState = ADB_ACTION_OUT; /* set next state */ 912 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */ 913 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */ 914 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */ 915 ADB_SET_STATE_CMD(); /* tell ADB that we want to 916 * send */ 917 break; 918 } 919 /* We only get this far if the message hasn't ended yet. */ 920 switch (adbBusState) { /* set to next state */ 921 case ADB_BUS_EVEN: 922 ADB_SET_STATE_ODD(); /* set state to odd */ 923 adbBusState = ADB_BUS_ODD; 924 break; 925 926 case ADB_BUS_ODD: 927 ADB_SET_STATE_EVEN(); /* set state to even */ 928 adbBusState = ADB_BUS_EVEN; 929 break; 930 default: 931 printf_intr("strange state!!!\n"); /* huh? */ 932 break; 933 } 934 break; 935 936 case ADB_ACTION_OUT: 937 i = ADB_SR(); /* clear interrupt */ 938 adbSentChars++; 939 /* 940 * If the outgoing data was a TALK, we must 941 * switch to input mode to get the result. 942 */ 943 if ((adbOutputBuffer[1] & 0x0c) == 0x0c) { 944 adbInputBuffer[0] = 1; 945 adbInputBuffer[1] = i; 946 adbActionState = ADB_ACTION_IN; 947 ADB_SET_SR_INPUT(); 948 adbBusState = ADB_BUS_EVEN; 949 ADB_SET_STATE_EVEN(); 950 #ifdef ADB_DEBUG 951 if (adb_debug & 0x80) 952 printf_intr("talk out 0x%02x ", i); 953 #endif 954 /* we want something back */ 955 adbWaiting = 1; 956 break; 957 } 958 /* 959 * If it's not a TALK, check whether all data has been sent. 960 * If so, call the completion routine and clean up. If not, 961 * advance to the next state. 962 */ 963 #ifdef ADB_DEBUG 964 if (adb_debug & 0x80) 965 printf_intr("non-talk out 0x%0x ", i); 966 #endif 967 ADB_SET_SR_OUTPUT(); 968 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */ 969 #ifdef ADB_DEBUG 970 if (adb_debug & 0x80) 971 printf_intr("done \n"); 972 #endif 973 /* set up stuff for adb_pass_up */ 974 memcpy(packet.data, adbOutputBuffer, adbOutputBuffer[0] + 1); 975 packet.saveBuf = adbBuffer; 976 packet.compRout = adbCompRout; 977 packet.compData = adbCompData; 978 packet.cmd = adbWaitingCmd; 979 packet.unsol = 0; 980 packet.ack_only = 1; 981 adb_pass_up(&packet); 982 983 /* reset "waiting" vars, just in case */ 984 adbBuffer = (long)0; 985 adbCompRout = (long)0; 986 adbCompData = (long)0; 987 if (adbOutQueueHasData == 1) { 988 /* copy over data */ 989 memcpy(adbOutputBuffer, adbOutQueue.outBuf, 990 adbOutQueue.outBuf[0] + 2); 991 adbBuffer = adbOutQueue.saveBuf; /* user data area */ 992 adbCompRout = adbOutQueue.compRout; /* completion routine */ 993 adbCompData = adbOutQueue.data; /* comp. rout. data */ 994 adbOutQueueHasData = 0; /* currently processing 995 * "queue" entry */ 996 adbSentChars = 0; /* nothing sent yet */ 997 adbActionState = ADB_ACTION_OUT; /* set next state */ 998 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */ 999 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */ 1000 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */ 1001 ADB_SET_STATE_CMD(); /* tell ADB that we want to 1002 * send */ 1003 break; 1004 } else { 1005 /* send talk to last device instead */ 1006 adbOutputBuffer[0] = 1; 1007 adbOutputBuffer[1] = 1008 ADBTALK(ADB_CMDADDR(adbOutputBuffer[1]), 0); 1009 1010 adbSentChars = 0; /* nothing sent yet */ 1011 adbActionState = ADB_ACTION_IDLE; /* set next state */ 1012 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */ 1013 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */ 1014 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */ 1015 ADB_SET_STATE_CMD(); /* tell ADB that we want to */ 1016 break; 1017 } 1018 } 1019 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; 1020 switch (adbBusState) { /* advance to next state */ 1021 case ADB_BUS_EVEN: 1022 ADB_SET_STATE_ODD(); /* set state to odd */ 1023 adbBusState = ADB_BUS_ODD; 1024 break; 1025 1026 case ADB_BUS_CMD: 1027 case ADB_BUS_ODD: 1028 ADB_SET_STATE_EVEN(); /* set state to even */ 1029 adbBusState = ADB_BUS_EVEN; 1030 break; 1031 1032 default: 1033 #ifdef ADB_DEBUG 1034 if (adb_debug) { 1035 printf_intr("strange state!!! (0x%x)\n", 1036 adbBusState); 1037 } 1038 #endif 1039 break; 1040 } 1041 break; 1042 1043 default: 1044 #ifdef ADB_DEBUG 1045 if (adb_debug) 1046 printf_intr("adb: unknown ADB state (during intr)\n"); 1047 #endif 1048 break; 1049 } 1050 1051 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */ 1052 1053 splx(s); /* restore */ 1054 1055 return; 1056 1057 } 1058 1059 1060 /* 1061 * send_adb version for II series machines 1062 */ 1063 int 1064 send_adb_II(u_char *in, u_char *buffer, void *compRout, void *data, int command) 1065 { 1066 int s, len; 1067 1068 if (adbActionState == ADB_ACTION_NOTREADY) /* return if ADB not 1069 * available */ 1070 return 1; 1071 1072 /* Don't interrupt while we are messing with the ADB */ 1073 s = splhigh(); 1074 1075 if (0 != adbOutQueueHasData) { /* right now, "has data" means "full" */ 1076 splx(s); /* sorry, try again later */ 1077 return 1; 1078 } 1079 if ((long)in == (long)0) { /* need to convert? */ 1080 /* 1081 * Don't need to use adb_cmd_extra here because this section 1082 * will be called ONLY when it is an ADB command (no RTC or 1083 * PRAM), especially on II series! 1084 */ 1085 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if 1086 * doing a listen! */ 1087 len = buffer[0]; /* length of additional data */ 1088 else 1089 len = 0;/* no additional data */ 1090 1091 adbOutQueue.outBuf[0] = 1 + len; /* command + addl. data */ 1092 adbOutQueue.outBuf[1] = (u_char)command; /* load command */ 1093 1094 /* copy additional output data, if any */ 1095 memcpy(adbOutQueue.outBuf + 2, buffer + 1, len); 1096 } else 1097 /* if data ready, just copy over */ 1098 memcpy(adbOutQueue.outBuf, in, in[0] + 2); 1099 1100 adbOutQueue.saveBuf = buffer; /* save buffer to know where to save 1101 * result */ 1102 adbOutQueue.compRout = compRout; /* save completion routine 1103 * pointer */ 1104 adbOutQueue.data = data;/* save completion routine data pointer */ 1105 1106 if ((adbActionState == ADB_ACTION_IDLE) && /* is ADB available? */ 1107 (ADB_INTR_IS_OFF)) { /* and no incoming interrupts? */ 1108 /* then start command now */ 1109 memcpy(adbOutputBuffer, adbOutQueue.outBuf, 1110 adbOutQueue.outBuf[0] + 2); /* copy over data */ 1111 1112 adbBuffer = adbOutQueue.saveBuf; /* pointer to user data 1113 * area */ 1114 adbCompRout = adbOutQueue.compRout; /* pointer to the 1115 * completion routine */ 1116 adbCompData = adbOutQueue.data; /* pointer to the completion 1117 * routine data */ 1118 1119 adbSentChars = 0; /* nothing sent yet */ 1120 adbActionState = ADB_ACTION_OUT; /* set next state */ 1121 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */ 1122 1123 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */ 1124 1125 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */ 1126 ADB_SET_STATE_CMD(); /* tell ADB that we want to send */ 1127 adbOutQueueHasData = 0; /* currently processing "queue" entry */ 1128 } else 1129 adbOutQueueHasData = 1; /* something in the write "queue" */ 1130 1131 splx(s); 1132 1133 if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked? */ 1134 /* poll until message done */ 1135 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON) 1136 || (adbWaiting == 1)) 1137 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */ 1138 adb_intr_II(NULL); /* go process it */ 1139 if (adb_polling) 1140 adb_soft_intr(); 1141 } 1142 1143 return 0; 1144 } 1145 1146 1147 /* 1148 * This routine is called from the II series interrupt routine 1149 * to determine what the "next" device is that should be polled. 1150 */ 1151 int 1152 adb_guess_next_device(void) 1153 { 1154 int last, i, dummy; 1155 1156 if (adbStarting) { 1157 /* 1158 * Start polling EVERY device, since we can't be sure there is 1159 * anything in the device table yet 1160 */ 1161 if (adbLastDevice < 1 || adbLastDevice > 15) 1162 adbLastDevice = 1; 1163 if (++adbLastDevice > 15) /* point to next one */ 1164 adbLastDevice = 1; 1165 } else { 1166 /* find the next device using the device table */ 1167 if (adbLastDevice < 1 || adbLastDevice > 15) /* let's be parinoid */ 1168 adbLastDevice = 2; 1169 last = 1; /* default index location */ 1170 1171 for (i = 1; i < 16; i++) /* find index entry */ 1172 if (ADBDevTable[i].currentAddr == adbLastDevice) { /* look for device */ 1173 last = i; /* found it */ 1174 break; 1175 } 1176 dummy = last; /* index to start at */ 1177 for (;;) { /* find next device in index */ 1178 if (++dummy > 15) /* wrap around if needed */ 1179 dummy = 1; 1180 if (dummy == last) { /* didn't find any other 1181 * device! This can happen if 1182 * there are no devices on the 1183 * bus */ 1184 dummy = 1; 1185 break; 1186 } 1187 /* found the next device */ 1188 if (ADBDevTable[dummy].devType != 0) 1189 break; 1190 } 1191 adbLastDevice = ADBDevTable[dummy].currentAddr; 1192 } 1193 return adbLastDevice; 1194 } 1195 1196 1197 /* 1198 * Called when when an adb interrupt happens. 1199 * This routine simply transfers control over to the appropriate 1200 * code for the machine we are running on. 1201 */ 1202 void 1203 adb_intr(void *arg) 1204 { 1205 switch (adbHardware) { 1206 case ADB_HW_II: 1207 adb_intr_II(arg); 1208 break; 1209 1210 case ADB_HW_IISI: 1211 adb_intr_IIsi(arg); 1212 break; 1213 1214 case ADB_HW_PB: /* Should not come through here. */ 1215 break; 1216 1217 case ADB_HW_CUDA: 1218 adb_intr_cuda(arg); 1219 break; 1220 1221 case ADB_HW_IOP: /* Should not come through here. */ 1222 break; 1223 1224 case ADB_HW_UNKNOWN: 1225 break; 1226 } 1227 } 1228 1229 1230 /* 1231 * called when when an adb interrupt happens 1232 * 1233 * IIsi version of adb_intr 1234 * 1235 */ 1236 void 1237 adb_intr_IIsi(void *arg) 1238 { 1239 struct adbCommand packet; 1240 int i, ending; 1241 unsigned int s; 1242 1243 s = splhigh(); /* can't be too careful - might be called */ 1244 /* from a routine, NOT an interrupt */ 1245 1246 ADB_VIA_CLR_INTR(); /* clear interrupt */ 1247 1248 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */ 1249 1250 switch_start: 1251 switch (adbActionState) { 1252 case ADB_ACTION_IDLE: 1253 delay(ADB_DELAY); /* short delay is required before the 1254 * first byte */ 1255 1256 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */ 1257 ADB_SET_STATE_ACTIVE(); /* signal start of data frame */ 1258 adbInputBuffer[1] = ADB_SR(); /* get byte */ 1259 adbInputBuffer[0] = 1; 1260 adbActionState = ADB_ACTION_IN; /* set next state */ 1261 1262 ADB_SET_STATE_ACKON(); /* start ACK to ADB chip */ 1263 delay(ADB_DELAY); /* delay */ 1264 ADB_SET_STATE_ACKOFF(); /* end ACK to ADB chip */ 1265 (void)intr_dispatch(0x70); /* grab any serial interrupts */ 1266 break; 1267 1268 case ADB_ACTION_IN: 1269 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */ 1270 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR(); /* get byte */ 1271 if (ADB_INTR_IS_OFF) /* check for end of frame */ 1272 ending = 1; 1273 else 1274 ending = 0; 1275 1276 ADB_SET_STATE_ACKON(); /* start ACK to ADB chip */ 1277 delay(ADB_DELAY); /* delay */ 1278 ADB_SET_STATE_ACKOFF(); /* end ACK to ADB chip */ 1279 (void)intr_dispatch(0x70); /* grab any serial interrupts */ 1280 1281 if (1 == ending) { /* end of message? */ 1282 ADB_SET_STATE_INACTIVE(); /* signal end of frame */ 1283 /* 1284 * This section _should_ handle all ADB and RTC/PRAM 1285 * type commands, but there may be more... Note: 1286 * commands are always at [4], even for rtc/pram 1287 * commands 1288 */ 1289 /* set up data for adb_pass_up */ 1290 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1); 1291 1292 if ((adbWaiting == 1) && /* are we waiting AND */ 1293 (adbInputBuffer[4] == adbWaitingCmd) && /* the cmd we sent AND */ 1294 ((adbInputBuffer[2] == 0x00) || /* it's from the ADB 1295 * device OR */ 1296 (adbInputBuffer[2] == 0x01))) { /* it's from the 1297 * PRAM/RTC device */ 1298 1299 packet.saveBuf = adbBuffer; 1300 packet.compRout = adbCompRout; 1301 packet.compData = adbCompData; 1302 packet.unsol = 0; 1303 packet.ack_only = 0; 1304 adb_pass_up(&packet); 1305 1306 adbWaitingCmd = 0; /* reset "waiting" vars */ 1307 adbWaiting = 0; 1308 adbBuffer = (long)0; 1309 adbCompRout = (long)0; 1310 adbCompData = (long)0; 1311 } else { 1312 packet.unsol = 1; 1313 packet.ack_only = 0; 1314 adb_pass_up(&packet); 1315 } 1316 1317 adbActionState = ADB_ACTION_IDLE; 1318 adbInputBuffer[0] = 0; /* reset length */ 1319 1320 if (adbWriteDelay == 1) { /* were we waiting to 1321 * write? */ 1322 adbSentChars = 0; /* nothing sent yet */ 1323 adbActionState = ADB_ACTION_OUT; /* set next state */ 1324 1325 delay(ADB_DELAY); /* delay */ 1326 (void)intr_dispatch(0x70); /* grab any serial interrupts */ 1327 1328 if (ADB_INTR_IS_ON) { /* ADB intr low during 1329 * write */ 1330 ADB_SET_STATE_IDLE_IISI(); /* reset */ 1331 ADB_SET_SR_INPUT(); /* make sure SR is set 1332 * to IN */ 1333 adbSentChars = 0; /* must start all over */ 1334 adbActionState = ADB_ACTION_IDLE; /* new state */ 1335 adbInputBuffer[0] = 0; 1336 /* may be able to take this out later */ 1337 delay(ADB_DELAY); /* delay */ 1338 break; 1339 } 1340 ADB_SET_STATE_ACTIVE(); /* tell ADB that we want 1341 * to send */ 1342 ADB_SET_STATE_ACKOFF(); /* make sure */ 1343 ADB_SET_SR_OUTPUT(); /* set shift register 1344 * for OUT */ 1345 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; 1346 ADB_SET_STATE_ACKON(); /* tell ADB byte ready 1347 * to shift */ 1348 } 1349 } 1350 break; 1351 1352 case ADB_ACTION_OUT: 1353 i = ADB_SR(); /* reset SR-intr in IFR */ 1354 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */ 1355 1356 ADB_SET_STATE_ACKOFF(); /* finish ACK */ 1357 adbSentChars++; 1358 if (ADB_INTR_IS_ON) { /* ADB intr low during write */ 1359 ADB_SET_STATE_IDLE_IISI(); /* reset */ 1360 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */ 1361 adbSentChars = 0; /* must start all over */ 1362 adbActionState = ADB_ACTION_IDLE; /* new state */ 1363 adbInputBuffer[0] = 0; 1364 adbWriteDelay = 1; /* must retry when done with 1365 * read */ 1366 delay(ADB_DELAY); /* delay */ 1367 (void)intr_dispatch(0x70); /* grab any serial interrupts */ 1368 goto switch_start; /* process next state right 1369 * now */ 1370 break; 1371 } 1372 delay(ADB_DELAY); /* required delay */ 1373 (void)intr_dispatch(0x70); /* grab any serial interrupts */ 1374 1375 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */ 1376 if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data 1377 * back? */ 1378 adbWaiting = 1; /* signal waiting for return */ 1379 adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */ 1380 } else {/* no talk, so done */ 1381 /* set up stuff for adb_pass_up */ 1382 memcpy(packet.data, adbInputBuffer, 1383 adbInputBuffer[0] + 1); 1384 packet.saveBuf = adbBuffer; 1385 packet.compRout = adbCompRout; 1386 packet.compData = adbCompData; 1387 packet.cmd = adbWaitingCmd; 1388 packet.unsol = 0; 1389 packet.ack_only = 1; 1390 adb_pass_up(&packet); 1391 1392 /* reset "waiting" vars, just in case */ 1393 adbWaitingCmd = 0; 1394 adbBuffer = (long)0; 1395 adbCompRout = (long)0; 1396 adbCompData = (long)0; 1397 } 1398 1399 adbWriteDelay = 0; /* done writing */ 1400 adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */ 1401 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */ 1402 ADB_SET_STATE_INACTIVE(); /* end of frame */ 1403 } else { 1404 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* send next byte */ 1405 ADB_SET_STATE_ACKON(); /* signal byte ready to shift */ 1406 } 1407 break; 1408 1409 case ADB_ACTION_NOTREADY: 1410 #ifdef ADB_DEBUG 1411 if (adb_debug) 1412 printf_intr("adb: not yet initialized\n"); 1413 #endif 1414 break; 1415 1416 default: 1417 #ifdef ADB_DEBUG 1418 if (adb_debug) 1419 printf_intr("intr: unknown ADB state\n"); 1420 #endif 1421 break; 1422 } 1423 1424 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */ 1425 1426 splx(s); /* restore */ 1427 1428 return; 1429 } /* end adb_intr_IIsi */ 1430 1431 1432 /***************************************************************************** 1433 * if the device is currently busy, and there is no data waiting to go out, then 1434 * the data is "queued" in the outgoing buffer. If we are already waiting, then 1435 * we return. 1436 * in: if (in == 0) then the command string is built from command and buffer 1437 * if (in != 0) then in is used as the command string 1438 * buffer: additional data to be sent (used only if in == 0) 1439 * this is also where return data is stored 1440 * compRout: the completion routine that is called when then return value 1441 * is received (if a return value is expected) 1442 * data: a data pointer that can be used by the completion routine 1443 * command: an ADB command to be sent (used only if in == 0) 1444 * 1445 */ 1446 int 1447 send_adb_IIsi(u_char *in, u_char *buffer, void *compRout, void *data, int 1448 command) 1449 { 1450 int s, len; 1451 1452 if (adbActionState == ADB_ACTION_NOTREADY) 1453 return 1; 1454 1455 /* Don't interrupt while we are messing with the ADB */ 1456 s = splhigh(); 1457 1458 if ((adbActionState == ADB_ACTION_IDLE) && /* ADB available? */ 1459 (ADB_INTR_IS_OFF)) {/* and no incoming interrupt? */ 1460 1461 } else 1462 if (adbWriteDelay == 0) /* it's busy, but is anything waiting? */ 1463 adbWriteDelay = 1; /* if no, then we'll "queue" 1464 * it up */ 1465 else { 1466 splx(s); 1467 return 1; /* really busy! */ 1468 } 1469 1470 if ((long)in == (long)0) { /* need to convert? */ 1471 /* 1472 * Don't need to use adb_cmd_extra here because this section 1473 * will be called ONLY when it is an ADB command (no RTC or 1474 * PRAM) 1475 */ 1476 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if 1477 * doing a listen! */ 1478 len = buffer[0]; /* length of additional data */ 1479 else 1480 len = 0;/* no additional data */ 1481 1482 adbOutputBuffer[0] = 2 + len; /* dev. type + command + addl. 1483 * data */ 1484 adbOutputBuffer[1] = 0x00; /* mark as an ADB command */ 1485 adbOutputBuffer[2] = (u_char)command; /* load command */ 1486 1487 /* copy additional output data, if any */ 1488 memcpy(adbOutputBuffer + 3, buffer + 1, len); 1489 } else 1490 /* if data ready, just copy over */ 1491 memcpy(adbOutputBuffer, in, in[0] + 2); 1492 1493 adbSentChars = 0; /* nothing sent yet */ 1494 adbBuffer = buffer; /* save buffer to know where to save result */ 1495 adbCompRout = compRout; /* save completion routine pointer */ 1496 adbCompData = data; /* save completion routine data pointer */ 1497 adbWaitingCmd = adbOutputBuffer[2]; /* save wait command */ 1498 1499 if (adbWriteDelay != 1) { /* start command now? */ 1500 adbActionState = ADB_ACTION_OUT; /* set next state */ 1501 1502 ADB_SET_STATE_ACTIVE(); /* tell ADB that we want to send */ 1503 ADB_SET_STATE_ACKOFF(); /* make sure */ 1504 1505 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */ 1506 1507 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */ 1508 1509 ADB_SET_STATE_ACKON(); /* tell ADB byte ready to shift */ 1510 } 1511 adbWriteDelay = 1; /* something in the write "queue" */ 1512 1513 splx(s); 1514 1515 if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked? */ 1516 /* poll until byte done */ 1517 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON) 1518 || (adbWaiting == 1)) 1519 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */ 1520 adb_intr_IIsi(NULL); /* go process it */ 1521 if (adb_polling) 1522 adb_soft_intr(); 1523 } 1524 1525 return 0; 1526 } /* send_adb_IIsi */ 1527 1528 void 1529 adb_iop_recv(IOP *iop, struct iop_msg *msg) 1530 { 1531 struct adbCommand pkt; 1532 unsigned flags; 1533 1534 if (adbActionState != ADB_ACTION_RUNNING) 1535 return; 1536 1537 switch (msg->status) { 1538 case IOP_MSGSTAT_SENT: 1539 if (0 == adb_cmd_result(msg->msg + 1)) { 1540 adbWaiting = 1; 1541 adbWaitingCmd = msg->msg[2]; 1542 } 1543 break; 1544 case IOP_MSGSTAT_RECEIVED: 1545 case IOP_MSGSTAT_UNEXPECTED: 1546 flags = msg->msg[0]; 1547 if (flags != 0) { 1548 printf("ADB FLAGS 0x%x", flags); 1549 break; 1550 } 1551 if (adbWaiting && 1552 (msg->msg[2] == adbWaitingCmd)) { 1553 pkt.saveBuf = msg->msg + 1; 1554 pkt.compRout = adbCompRout; 1555 pkt.compData = adbCompData; 1556 pkt.unsol = 0; 1557 pkt.ack_only = 0; 1558 adb_pass_up(&pkt); 1559 1560 adbWaitingCmd = 0; 1561 adbWaiting = 0; 1562 } else { 1563 pkt.unsol = 1; 1564 pkt.ack_only = 0; 1565 adb_pass_up(&pkt); 1566 } 1567 break; 1568 default: 1569 return; 1570 } 1571 } 1572 1573 int 1574 send_adb_iop(int cmd, u_char * buffer, void *compRout, void *data) 1575 { 1576 u_char buff[32]; 1577 int cnt; 1578 1579 if (adbActionState != ADB_ACTION_RUNNING) 1580 return -1; 1581 1582 buff[0] = IOP_ADB_FL_EXPLICIT; 1583 buff[1] = buffer[0]; 1584 buff[2] = cmd; 1585 cnt = (int) buff[1]; 1586 memcpy(buff + 3, buffer + 1, cnt); 1587 return iop_send_msg(ISM_IOP, IOP_CHAN_ADB, buff, cnt+3, 1588 adb_iop_recv, NULL); 1589 } 1590 1591 /* 1592 * adb_pass_up is called by the interrupt-time routines. 1593 * It takes the raw packet data that was received from the 1594 * device and puts it into the queue that the upper half 1595 * processes. It then signals for a soft ADB interrupt which 1596 * will eventually call the upper half routine (adb_soft_intr). 1597 * 1598 * If in->unsol is 0, then this is either the notification 1599 * that the packet was sent (on a LISTEN, for example), or the 1600 * response from the device (on a TALK). The completion routine 1601 * is called only if the user specified one. 1602 * 1603 * If in->unsol is 1, then this packet was unsolicited and 1604 * so we look up the device in the ADB device table to determine 1605 * what it's default service routine is. 1606 * 1607 * If in->ack_only is 1, then we really only need to call 1608 * the completion routine, so don't do any other stuff. 1609 * 1610 * Note that in->data contains the packet header AND data, 1611 * while adbInbound[]->data contains ONLY data. 1612 * 1613 * Note: Called only at interrupt time. Assumes this. 1614 */ 1615 void 1616 adb_pass_up(struct adbCommand *in) 1617 { 1618 int start = 0, len = 0, cmd = 0; 1619 ADBDataBlock block; 1620 1621 /* temp for testing */ 1622 /*u_char *buffer = 0;*/ 1623 /*u_char *compdata = 0;*/ 1624 /*u_char *comprout = 0;*/ 1625 1626 if (adbInCount >= ADB_QUEUE) { 1627 #ifdef ADB_DEBUG 1628 if (adb_debug) 1629 printf_intr("adb: ring buffer overflow\n"); 1630 #endif 1631 return; 1632 } 1633 1634 if (in->ack_only) { 1635 len = in->data[0]; 1636 cmd = in->cmd; 1637 start = 0; 1638 } else { 1639 switch (adbHardware) { 1640 case ADB_HW_IOP: 1641 case ADB_HW_II: 1642 cmd = in->data[1]; 1643 if (in->data[0] < 2) 1644 len = 0; 1645 else 1646 len = in->data[0]-1; 1647 start = 1; 1648 break; 1649 1650 case ADB_HW_IISI: 1651 case ADB_HW_CUDA: 1652 /* If it's unsolicited, accept only ADB data for now */ 1653 if (in->unsol) 1654 if (0 != in->data[2]) 1655 return; 1656 cmd = in->data[4]; 1657 if (in->data[0] < 5) 1658 len = 0; 1659 else 1660 len = in->data[0]-4; 1661 start = 4; 1662 break; 1663 1664 case ADB_HW_PB: 1665 cmd = in->data[1]; 1666 if (in->data[0] < 2) 1667 len = 0; 1668 else 1669 len = in->data[0]-1; 1670 start = 1; 1671 break; 1672 1673 case ADB_HW_UNKNOWN: 1674 return; 1675 } 1676 1677 /* Make sure there is a valid device entry for this device */ 1678 if (in->unsol) { 1679 /* ignore unsolicited data during adbreinit */ 1680 if (adbStarting) 1681 return; 1682 /* get device's comp. routine and data area */ 1683 if (-1 == get_adb_info(&block, ADB_CMDADDR(cmd))) 1684 return; 1685 } 1686 } 1687 1688 /* 1689 * If this is an unsolicited packet, we need to fill in 1690 * some info so adb_soft_intr can process this packet 1691 * properly. If it's not unsolicited, then use what 1692 * the caller sent us. 1693 */ 1694 if (in->unsol) { 1695 adbInbound[adbInTail].compRout = (void *)block.dbServiceRtPtr; 1696 adbInbound[adbInTail].compData = (void *)block.dbDataAreaAddr; 1697 adbInbound[adbInTail].saveBuf = (void *)adbInbound[adbInTail].data; 1698 } else { 1699 adbInbound[adbInTail].compRout = (void *)in->compRout; 1700 adbInbound[adbInTail].compData = (void *)in->compData; 1701 adbInbound[adbInTail].saveBuf = (void *)in->saveBuf; 1702 } 1703 1704 #ifdef ADB_DEBUG 1705 if (adb_debug && in->data[1] == 2) 1706 printf_intr("adb: caught error\n"); 1707 #endif 1708 1709 /* copy the packet data over */ 1710 /* 1711 * TO DO: If the *_intr routines fed their incoming data 1712 * directly into an adbCommand struct, which is passed to 1713 * this routine, then we could eliminate this copy. 1714 */ 1715 memcpy(adbInbound[adbInTail].data + 1, in->data + start + 1, len); 1716 adbInbound[adbInTail].data[0] = len; 1717 adbInbound[adbInTail].cmd = cmd; 1718 1719 adbInCount++; 1720 if (++adbInTail >= ADB_QUEUE) 1721 adbInTail = 0; 1722 1723 /* 1724 * If the debugger is running, call upper half manually. 1725 * Otherwise, trigger a soft interrupt to handle the rest later. 1726 */ 1727 if (adb_polling) 1728 adb_soft_intr(); 1729 else 1730 softintr_schedule(adb_softintr_cookie); 1731 1732 return; 1733 } 1734 1735 1736 /* 1737 * Called to process the packets after they have been 1738 * placed in the incoming queue. 1739 * 1740 */ 1741 void 1742 adb_soft_intr(void) 1743 { 1744 int s; 1745 int cmd = 0; 1746 u_char *buffer = 0; 1747 u_char *comprout = 0; 1748 u_char *compdata = 0; 1749 1750 #if 0 1751 s = splhigh(); 1752 printf_intr("sr: %x\n", (s & 0x0700)); 1753 splx(s); 1754 #endif 1755 1756 /*delay(2*ADB_DELAY);*/ 1757 1758 while (adbInCount) { 1759 #ifdef ADB_DEBUG 1760 if (adb_debug & 0x80) 1761 printf_intr("%x %x %x ", 1762 adbInCount, adbInHead, adbInTail); 1763 #endif 1764 /* get the data we need from the queue */ 1765 buffer = adbInbound[adbInHead].saveBuf; 1766 comprout = adbInbound[adbInHead].compRout; 1767 compdata = adbInbound[adbInHead].compData; 1768 cmd = adbInbound[adbInHead].cmd; 1769 1770 /* copy over data to data area if it's valid */ 1771 /* 1772 * Note that for unsol packets we don't want to copy the 1773 * data anywhere, so buffer was already set to 0. 1774 * For ack_only buffer was set to 0, so don't copy. 1775 */ 1776 if (buffer) 1777 memcpy(buffer, adbInbound[adbInHead].data, 1778 adbInbound[adbInHead].data[0] + 1); 1779 1780 #ifdef ADB_DEBUG 1781 if (adb_debug & 0x80) { 1782 printf_intr("%p %p %p %x ", 1783 buffer, comprout, compdata, (short)cmd); 1784 printf_intr("buf: "); 1785 print_single(adbInbound[adbInHead].data); 1786 } 1787 #endif 1788 1789 /* call default completion routine if it's valid */ 1790 if (comprout) { 1791 #ifdef __NetBSD__ 1792 __asm volatile ( 1793 " movml #0xffff,%%sp@- \n" /* save all regs */ 1794 " movl %0,%%a2 \n" /* compdata */ 1795 " movl %1,%%a1 \n" /* comprout */ 1796 " movl %2,%%a0 \n" /* buffer */ 1797 " movl %3,%%d0 \n" /* cmd */ 1798 " jbsr %%a1@ \n" /* go call routine */ 1799 " movml %%sp@+,#0xffff" /* restore all regs */ 1800 : 1801 : "g"(compdata), "g"(comprout), 1802 "g"(buffer), "g"(cmd) 1803 : "d0", "a0", "a1", "a2"); 1804 #else /* for macos based testing */ 1805 asm 1806 { 1807 movem.l a0/a1/a2/d0, -(a7) 1808 move.l compdata, a2 1809 move.l comprout, a1 1810 move.l buffer, a0 1811 move.w cmd, d0 1812 jsr(a1) 1813 movem.l(a7)+, d0/a2/a1/a0 1814 } 1815 #endif 1816 } 1817 1818 s = splhigh(); 1819 adbInCount--; 1820 if (++adbInHead >= ADB_QUEUE) 1821 adbInHead = 0; 1822 splx(s); 1823 1824 } 1825 return; 1826 } 1827 1828 1829 /* 1830 * This is my version of the ADBOp routine. It mainly just calls the 1831 * hardware-specific routine. 1832 * 1833 * data : pointer to data area to be used by compRout 1834 * compRout : completion routine 1835 * buffer : for LISTEN: points to data to send - MAX 8 data bytes, 1836 * byte 0 = # of bytes 1837 * : for TALK: points to place to save return data 1838 * command : the adb command to send 1839 * result : 0 = success 1840 * : -1 = could not complete 1841 */ 1842 int 1843 adb_op(Ptr buffer, Ptr compRout, Ptr data, short command) 1844 { 1845 int result; 1846 1847 switch (adbHardware) { 1848 case ADB_HW_II: 1849 result = send_adb_II((u_char *)0, (u_char *)buffer, 1850 (void *)compRout, (void *)data, (int)command); 1851 if (result == 0) 1852 return 0; 1853 else 1854 return -1; 1855 break; 1856 1857 case ADB_HW_IOP: 1858 #ifdef __notyet__ 1859 result = send_adb_iop((int)command, (u_char *)buffer, 1860 (void *)compRout, (void *)data); 1861 if (result == 0) 1862 return 0; 1863 else 1864 #endif 1865 return -1; 1866 break; 1867 1868 case ADB_HW_IISI: 1869 result = send_adb_IIsi((u_char *)0, (u_char *)buffer, 1870 (void *)compRout, (void *)data, (int)command); 1871 /* 1872 * I wish I knew why this delay is needed. It usually needs to 1873 * be here when several commands are sent in close succession, 1874 * especially early in device probes when doing collision 1875 * detection. It must be some race condition. Sigh. - jpw 1876 */ 1877 delay(100); 1878 if (result == 0) 1879 return 0; 1880 else 1881 return -1; 1882 break; 1883 1884 case ADB_HW_PB: 1885 result = pm_adb_op((u_char *)buffer, (void *)compRout, 1886 (void *)data, (int)command); 1887 1888 if (result == 0) 1889 return 0; 1890 else 1891 return -1; 1892 break; 1893 1894 case ADB_HW_CUDA: 1895 result = send_adb_cuda((u_char *)0, (u_char *)buffer, 1896 (void *)compRout, (void *)data, (int)command); 1897 if (result == 0) 1898 return 0; 1899 else 1900 return -1; 1901 break; 1902 1903 case ADB_HW_UNKNOWN: 1904 default: 1905 return -1; 1906 } 1907 } 1908 1909 1910 /* 1911 * adb_hw_setup 1912 * This routine sets up the possible machine specific hardware 1913 * config (mainly VIA settings) for the various models. 1914 */ 1915 void 1916 adb_hw_setup(void) 1917 { 1918 volatile int i; 1919 u_char send_string[ADB_MAX_MSG_LENGTH]; 1920 1921 switch (adbHardware) { 1922 case ADB_HW_II: 1923 via1_register_irq(2, adb_intr_II, NULL); 1924 1925 via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5: 1926 * outputs */ 1927 via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */ 1928 via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set 1929 * to IN (II, IIsi) */ 1930 adbActionState = ADB_ACTION_IDLE; /* used by all types of 1931 * hardware (II, IIsi) */ 1932 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series 1933 * code only */ 1934 via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts 1935 * are on (II, IIsi) */ 1936 ADB_SET_STATE_IDLE_II(); /* set ADB bus state to idle */ 1937 1938 ADB_VIA_CLR_INTR(); /* clear interrupt */ 1939 break; 1940 1941 case ADB_HW_IOP: 1942 via_reg(VIA1, vIER) = 0x84; 1943 via_reg(VIA1, vIFR) = 0x04; 1944 #ifdef __notyet__ 1945 adbActionState = ADB_ACTION_RUNNING; 1946 #endif 1947 break; 1948 1949 case ADB_HW_IISI: 1950 via1_register_irq(2, adb_intr_IIsi, NULL); 1951 via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5: 1952 * outputs */ 1953 via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */ 1954 via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set 1955 * to IN (II, IIsi) */ 1956 adbActionState = ADB_ACTION_IDLE; /* used by all types of 1957 * hardware (II, IIsi) */ 1958 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series 1959 * code only */ 1960 via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts 1961 * are on (II, IIsi) */ 1962 ADB_SET_STATE_IDLE_IISI(); /* set ADB bus state to idle */ 1963 1964 /* get those pesky clock ticks we missed while booting */ 1965 for (i = 0; i < 30; i++) { 1966 delay(ADB_DELAY); 1967 adb_hw_setup_IIsi(send_string); 1968 #ifdef ADB_DEBUG 1969 if (adb_debug) { 1970 printf_intr("adb: cleanup: "); 1971 print_single(send_string); 1972 } 1973 #endif 1974 delay(ADB_DELAY); 1975 if (ADB_INTR_IS_OFF) 1976 break; 1977 } 1978 break; 1979 1980 case ADB_HW_PB: 1981 /* 1982 * XXX - really PM_VIA_CLR_INTR - should we put it in 1983 * pm_direct.h? 1984 */ 1985 pm_hw_setup(); 1986 break; 1987 1988 case ADB_HW_CUDA: 1989 via1_register_irq(2, adb_intr_cuda, NULL); 1990 via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5: 1991 * outputs */ 1992 via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */ 1993 via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set 1994 * to IN */ 1995 via_reg(VIA1, vACR) = (via_reg(VIA1, vACR) | 0x0c) & ~0x10; 1996 adbActionState = ADB_ACTION_IDLE; /* used by all types of 1997 * hardware */ 1998 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series 1999 * code only */ 2000 via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts 2001 * are on */ 2002 ADB_SET_STATE_IDLE_CUDA(); /* set ADB bus state to idle */ 2003 2004 /* sort of a device reset */ 2005 i = ADB_SR(); /* clear interrupt */ 2006 ADB_VIA_INTR_DISABLE(); /* no interrupts while clearing */ 2007 ADB_SET_STATE_IDLE_CUDA(); /* reset state to idle */ 2008 delay(ADB_DELAY); 2009 ADB_SET_STATE_TIP(); /* signal start of frame */ 2010 delay(ADB_DELAY); 2011 ADB_TOGGLE_STATE_ACK_CUDA(); 2012 delay(ADB_DELAY); 2013 ADB_CLR_STATE_TIP(); 2014 delay(ADB_DELAY); 2015 ADB_SET_STATE_IDLE_CUDA(); /* back to idle state */ 2016 i = ADB_SR(); /* clear interrupt */ 2017 ADB_VIA_INTR_ENABLE(); /* ints ok now */ 2018 break; 2019 2020 case ADB_HW_UNKNOWN: 2021 default: 2022 via_reg(VIA1, vIER) = 0x04; /* turn interrupts off - TO 2023 * DO: turn PB ints off? */ 2024 return; 2025 break; 2026 } 2027 } 2028 2029 2030 /* 2031 * adb_hw_setup_IIsi 2032 * This is sort of a "read" routine that forces the adb hardware through a read cycle 2033 * if there is something waiting. This helps "clean up" any commands that may have gotten 2034 * stuck or stopped during the boot process. 2035 * 2036 */ 2037 void 2038 adb_hw_setup_IIsi(u_char *buffer) 2039 { 2040 int i; 2041 int dummy; 2042 int s; 2043 long my_time; 2044 int endofframe; 2045 2046 delay(ADB_DELAY); 2047 2048 i = 1; /* skip over [0] */ 2049 s = splhigh(); /* block ALL interrupts while we are working */ 2050 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */ 2051 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */ 2052 /* this is required, especially on faster machines */ 2053 delay(ADB_DELAY); 2054 2055 if (ADB_INTR_IS_ON) { 2056 ADB_SET_STATE_ACTIVE(); /* signal start of data frame */ 2057 2058 endofframe = 0; 2059 while (0 == endofframe) { 2060 /* 2061 * Poll for ADB interrupt and watch for timeout. 2062 * If time out, keep going in hopes of not hanging 2063 * the ADB chip - I think 2064 */ 2065 my_time = ADB_DELAY * 5; 2066 while ((ADB_SR_INTR_IS_OFF) && (my_time-- > 0)) 2067 dummy = via_reg(VIA1, vBufB); 2068 2069 buffer[i++] = ADB_SR(); /* reset interrupt flag by 2070 * reading vSR */ 2071 /* 2072 * Perhaps put in a check here that ignores all data 2073 * after the first ADB_MAX_MSG_LENGTH bytes ??? 2074 */ 2075 if (ADB_INTR_IS_OFF) /* check for end of frame */ 2076 endofframe = 1; 2077 2078 ADB_SET_STATE_ACKON(); /* send ACK to ADB chip */ 2079 delay(ADB_DELAY); /* delay */ 2080 ADB_SET_STATE_ACKOFF(); /* send ACK to ADB chip */ 2081 } 2082 ADB_SET_STATE_INACTIVE(); /* signal end of frame and 2083 * delay */ 2084 2085 /* probably don't need to delay this long */ 2086 delay(ADB_DELAY); 2087 } 2088 buffer[0] = --i; /* [0] is length of message */ 2089 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */ 2090 splx(s); /* restore interrupts */ 2091 2092 return; 2093 } /* adb_hw_setup_IIsi */ 2094 2095 2096 2097 /* 2098 * adb_reinit sets up the adb stuff 2099 * 2100 */ 2101 void 2102 adb_reinit(void) 2103 { 2104 u_char send_string[ADB_MAX_MSG_LENGTH]; 2105 ADBDataBlock data; /* temp. holder for getting device info */ 2106 volatile int i, x; 2107 int s; 2108 int command; 2109 int result; 2110 int saveptr; /* point to next free relocation address */ 2111 int device; 2112 int nonewtimes; /* times thru loop w/o any new devices */ 2113 static bool again; 2114 2115 if (!again) { 2116 callout_init(&adb_cuda_tickle_ch, 0); 2117 again = true; 2118 } 2119 2120 adb_setup_hw_type(); /* setup hardware type */ 2121 2122 /* Make sure we are not interrupted while building the table. */ 2123 /* ints must be on for PB & IOP (at least, for now) */ 2124 if (adbHardware != ADB_HW_PB && adbHardware != ADB_HW_IOP) 2125 s = splhigh(); 2126 else 2127 s = 0; /* XXX shut the compiler up*/ 2128 2129 ADBNumDevices = 0; /* no devices yet */ 2130 2131 /* Let intr routines know we are running reinit */ 2132 adbStarting = 1; 2133 2134 /* 2135 * Initialize the ADB table. For now, we'll always use the same table 2136 * that is defined at the beginning of this file - no mallocs. 2137 */ 2138 for (i = 0; i < 16; i++) { 2139 ADBDevTable[i].devType = 0; 2140 ADBDevTable[i].origAddr = ADBDevTable[i].currentAddr = 0; 2141 } 2142 2143 adb_hw_setup(); /* init the VIA bits and hard reset ADB */ 2144 2145 delay(1000); 2146 2147 /* send an ADB reset first */ 2148 (void)adb_op_sync((Ptr)0, (Ptr)0, (Ptr)0, (short)0x00); 2149 delay(3000); 2150 2151 /* 2152 * Probe for ADB devices. Probe devices 1-15 quickly to determine 2153 * which device addresses are in use and which are free. For each 2154 * address that is in use, move the device at that address to a higher 2155 * free address. Continue doing this at that address until no device 2156 * responds at that address. Then move the last device that was moved 2157 * back to the original address. Do this for the remaining addresses 2158 * that we determined were in use. 2159 * 2160 * When finished, do this entire process over again with the updated 2161 * list of in use addresses. Do this until no new devices have been 2162 * found in 20 passes though the in use address list. (This probably 2163 * seems long and complicated, but it's the best way to detect multiple 2164 * devices at the same address - sometimes it takes a couple of tries 2165 * before the collision is detected.) 2166 */ 2167 2168 /* initial scan through the devices */ 2169 for (i = 1; i < 16; i++) { 2170 command = ADBTALK(i, 3); 2171 result = adb_op_sync((Ptr)send_string, (Ptr)0, 2172 (Ptr)0, (short)command); 2173 2174 if (result == 0 && send_string[0] != 0) { 2175 /* found a device */ 2176 ++ADBNumDevices; 2177 KASSERT(ADBNumDevices < 16); 2178 ADBDevTable[ADBNumDevices].devType = 2179 (int)(send_string[2]); 2180 ADBDevTable[ADBNumDevices].origAddr = i; 2181 ADBDevTable[ADBNumDevices].currentAddr = i; 2182 ADBDevTable[ADBNumDevices].DataAreaAddr = 2183 (long)0; 2184 ADBDevTable[ADBNumDevices].ServiceRtPtr = (void *)0; 2185 pm_check_adb_devices(i); /* tell pm driver device 2186 * is here */ 2187 } 2188 } 2189 2190 /* find highest unused address */ 2191 for (saveptr = 15; saveptr > 0; saveptr--) 2192 if (-1 == get_adb_info(&data, saveptr)) 2193 break; 2194 2195 #ifdef ADB_DEBUG 2196 if (adb_debug & 0x80) { 2197 printf_intr("first free is: 0x%02x\n", saveptr); 2198 printf_intr("devices: %i\n", ADBNumDevices); 2199 } 2200 #endif 2201 2202 nonewtimes = 0; /* no loops w/o new devices */ 2203 while (saveptr > 0 && nonewtimes++ < 11) { 2204 for (i = 1;saveptr > 0 && i <= ADBNumDevices; i++) { 2205 device = ADBDevTable[i].currentAddr; 2206 #ifdef ADB_DEBUG 2207 if (adb_debug & 0x80) 2208 printf_intr("moving device 0x%02x to 0x%02x " 2209 "(index 0x%02x) ", device, saveptr, i); 2210 #endif 2211 2212 /* send TALK R3 to address */ 2213 command = ADBTALK(device, 3); 2214 (void)adb_op_sync((Ptr)send_string, (Ptr)0, 2215 (Ptr)0, (short)command); 2216 2217 /* move device to higher address */ 2218 command = ADBLISTEN(device, 3); 2219 send_string[0] = 2; 2220 send_string[1] = (u_char)(saveptr | 0x60); 2221 send_string[2] = 0xfe; 2222 (void)adb_op_sync((Ptr)send_string, (Ptr)0, 2223 (Ptr)0, (short)command); 2224 delay(1000); 2225 2226 /* send TALK R3 - anthing at new address? */ 2227 command = ADBTALK(saveptr, 3); 2228 send_string[0] = 0; 2229 result = adb_op_sync((Ptr)send_string, (Ptr)0, 2230 (Ptr)0, (short)command); 2231 delay(1000); 2232 2233 if (result != 0 || send_string[0] == 0) { 2234 /* 2235 * maybe there's a communication breakdown; 2236 * just in case, move it back from whence it 2237 * came, and we'll try again later 2238 */ 2239 command = ADBLISTEN(saveptr, 3); 2240 send_string[0] = 2; 2241 send_string[1] = (u_char)(device | 0x60); 2242 send_string[2] = 0x00; 2243 (void)adb_op_sync((Ptr)send_string, (Ptr)0, 2244 (Ptr)0, (short)command); 2245 #ifdef ADB_DEBUG 2246 if (adb_debug & 0x80) 2247 printf_intr("failed, continuing\n"); 2248 #endif 2249 delay(1000); 2250 continue; 2251 } 2252 2253 /* send TALK R3 - anything at old address? */ 2254 command = ADBTALK(device, 3); 2255 send_string[0] = 0; 2256 result = adb_op_sync((Ptr)send_string, (Ptr)0, 2257 (Ptr)0, (short)command); 2258 if (result == 0 && send_string[0] != 0) { 2259 /* new device found */ 2260 /* update data for previously moved device */ 2261 ADBDevTable[i].currentAddr = saveptr; 2262 #ifdef ADB_DEBUG 2263 if (adb_debug & 0x80) 2264 printf_intr("old device at index %i\n",i); 2265 #endif 2266 /* add new device in table */ 2267 #ifdef ADB_DEBUG 2268 if (adb_debug & 0x80) 2269 printf_intr("new device found\n"); 2270 #endif 2271 if (saveptr > ADBNumDevices) { 2272 ++ADBNumDevices; 2273 KASSERT(ADBNumDevices < 16); 2274 } 2275 ADBDevTable[ADBNumDevices].devType = 2276 (int)(send_string[2]); 2277 ADBDevTable[ADBNumDevices].origAddr = device; 2278 ADBDevTable[ADBNumDevices].currentAddr = device; 2279 /* These will be set correctly in adbsys.c */ 2280 /* Until then, unsol. data will be ignored. */ 2281 ADBDevTable[ADBNumDevices].DataAreaAddr = 2282 (long)0; 2283 ADBDevTable[ADBNumDevices].ServiceRtPtr = 2284 (void *)0; 2285 /* find next unused address */ 2286 for (x = saveptr; x > 0; x--) { 2287 if (-1 == get_adb_info(&data, x)) { 2288 saveptr = x; 2289 break; 2290 } 2291 } 2292 if (x == 0) 2293 saveptr = 0; 2294 #ifdef ADB_DEBUG 2295 if (adb_debug & 0x80) 2296 printf_intr("new free is 0x%02x\n", 2297 saveptr); 2298 #endif 2299 nonewtimes = 0; 2300 /* tell pm driver device is here */ 2301 pm_check_adb_devices(device); 2302 } else { 2303 #ifdef ADB_DEBUG 2304 if (adb_debug & 0x80) 2305 printf_intr("moving back...\n"); 2306 #endif 2307 /* move old device back */ 2308 command = ADBLISTEN(saveptr, 3); 2309 send_string[0] = 2; 2310 send_string[1] = (u_char)(device | 0x60); 2311 send_string[2] = 0xfe; 2312 (void)adb_op_sync((Ptr)send_string, (Ptr)0, 2313 (Ptr)0, (short)command); 2314 delay(1000); 2315 } 2316 } 2317 } 2318 2319 #ifdef ADB_DEBUG 2320 if (adb_debug) { 2321 for (i = 1; i <= ADBNumDevices; i++) { 2322 x = get_ind_adb_info(&data, i); 2323 if (x != -1) 2324 printf_intr("index 0x%x, addr 0x%x, type 0x%hx\n", 2325 i, x, data.devType); 2326 } 2327 } 2328 #endif 2329 2330 #ifndef MRG_ADB 2331 /* enable the programmer's switch, if we have one */ 2332 adb_prog_switch_enable(); 2333 #endif 2334 2335 #ifdef ADB_DEBUG 2336 if (adb_debug) { 2337 if (0 == ADBNumDevices) /* tell user if no devices found */ 2338 printf_intr("adb: no devices found\n"); 2339 } 2340 #endif 2341 2342 adbStarting = 0; /* not starting anymore */ 2343 #ifdef ADB_DEBUG 2344 if (adb_debug) 2345 printf_intr("adb: ADBReInit complete\n"); 2346 #endif 2347 2348 if (adbHardware == ADB_HW_CUDA) 2349 callout_reset(&adb_cuda_tickle_ch, ADB_TICKLE_TICKS, 2350 (void *)adb_cuda_tickle, NULL); 2351 2352 /* ints must be on for PB & IOP (at least, for now) */ 2353 if (adbHardware != ADB_HW_PB && adbHardware != ADB_HW_IOP) 2354 splx(s); 2355 2356 return; 2357 } 2358 2359 2360 /* 2361 * adb_comp_exec 2362 * This is a general routine that calls the completion routine if there is one. 2363 * NOTE: This routine is now only used by pm_direct.c 2364 * All the code in this file (adb_direct.c) uses 2365 * the adb_pass_up routine now. 2366 */ 2367 void 2368 adb_comp_exec(void) 2369 { 2370 if ((long)0 != adbCompRout) /* don't call if empty return location */ 2371 #ifdef __NetBSD__ 2372 __asm volatile( 2373 " movml #0xffff,%%sp@- \n" /* save all registers */ 2374 " movl %0,%%a2 \n" /* adbCompData */ 2375 " movl %1,%%a1 \n" /* adbCompRout */ 2376 " movl %2,%%a0 \n" /* adbBuffer */ 2377 " movl %3,%%d0 \n" /* adbWaitingCmd */ 2378 " jbsr %%a1@ \n" /* go call the routine */ 2379 " movml %%sp@+,#0xffff" /* restore all registers */ 2380 : 2381 : "g"(adbCompData), "g"(adbCompRout), 2382 "g"(adbBuffer), "g"(adbWaitingCmd) 2383 : "d0", "a0", "a1", "a2"); 2384 #else /* for Mac OS-based testing */ 2385 asm { 2386 movem.l a0/a1/a2/d0, -(a7) 2387 move.l adbCompData, a2 2388 move.l adbCompRout, a1 2389 move.l adbBuffer, a0 2390 move.w adbWaitingCmd, d0 2391 jsr(a1) 2392 movem.l(a7) +, d0/a2/a1/a0 2393 } 2394 #endif 2395 } 2396 2397 2398 /* 2399 * adb_cmd_result 2400 * 2401 * This routine lets the caller know whether the specified adb command string 2402 * should expect a returned result, such as a TALK command. 2403 * 2404 * returns: 0 if a result should be expected 2405 * 1 if a result should NOT be expected 2406 */ 2407 int 2408 adb_cmd_result(u_char *in) 2409 { 2410 switch (adbHardware) { 2411 case ADB_HW_IOP: 2412 case ADB_HW_II: 2413 /* was it an ADB talk command? */ 2414 if ((in[1] & 0x0c) == 0x0c) 2415 return 0; 2416 return 1; 2417 2418 case ADB_HW_IISI: 2419 case ADB_HW_CUDA: 2420 /* was it an ADB talk command? */ 2421 if ((in[1] == 0x00) && ((in[2] & 0x0c) == 0x0c)) 2422 return 0; 2423 /* was it an RTC/PRAM read date/time? */ 2424 if ((in[1] == 0x01) && (in[2] == 0x03)) 2425 return 0; 2426 return 1; 2427 2428 case ADB_HW_PB: 2429 return 1; 2430 2431 case ADB_HW_UNKNOWN: 2432 default: 2433 return 1; 2434 } 2435 } 2436 2437 2438 /* 2439 * adb_cmd_extra 2440 * 2441 * This routine lets the caller know whether the specified adb command string 2442 * may have extra data appended to the end of it, such as a LISTEN command. 2443 * 2444 * returns: 0 if extra data is allowed 2445 * 1 if extra data is NOT allowed 2446 */ 2447 int 2448 adb_cmd_extra(u_char *in) 2449 { 2450 switch (adbHardware) { 2451 case ADB_HW_II: 2452 case ADB_HW_IOP: 2453 if ((in[1] & 0x0c) == 0x08) /* was it a listen command? */ 2454 return 0; 2455 return 1; 2456 2457 case ADB_HW_IISI: 2458 case ADB_HW_CUDA: 2459 /* 2460 * TO DO: support needs to be added to recognize RTC and PRAM 2461 * commands 2462 */ 2463 if ((in[2] & 0x0c) == 0x08) /* was it a listen command? */ 2464 return 0; 2465 /* add others later */ 2466 return 1; 2467 2468 case ADB_HW_PB: 2469 return 1; 2470 2471 case ADB_HW_UNKNOWN: 2472 default: 2473 return 1; 2474 } 2475 } 2476 2477 2478 void 2479 adb_setup_hw_type(void) 2480 { 2481 long response; 2482 2483 response = mac68k_machine.machineid; 2484 2485 /* 2486 * Determine what type of ADB hardware we are running on. 2487 */ 2488 switch (response) { 2489 case MACH_MACC610: /* Centris 610 */ 2490 case MACH_MACC650: /* Centris 650 */ 2491 case MACH_MACII: /* II */ 2492 case MACH_MACIICI: /* IIci */ 2493 case MACH_MACIICX: /* IIcx */ 2494 case MACH_MACIIX: /* IIx */ 2495 case MACH_MACQ610: /* Quadra 610 */ 2496 case MACH_MACQ650: /* Quadra 650 */ 2497 case MACH_MACQ700: /* Quadra 700 */ 2498 case MACH_MACQ800: /* Quadra 800 */ 2499 case MACH_MACSE30: /* SE/30 */ 2500 adbHardware = ADB_HW_II; 2501 #ifdef ADB_DEBUG 2502 if (adb_debug) 2503 printf_intr("adb: using II series hardware support\n"); 2504 #endif 2505 break; 2506 2507 case MACH_MACCLASSICII: /* Classic II */ 2508 case MACH_MACLCII: /* LC II, Performa 400/405/430 */ 2509 case MACH_MACLCIII: /* LC III, Performa 450 */ 2510 case MACH_MACIISI: /* IIsi */ 2511 case MACH_MACIIVI: /* IIvi */ 2512 case MACH_MACIIVX: /* IIvx */ 2513 case MACH_MACP460: /* Performa 460/465/467 */ 2514 case MACH_MACP600: /* Performa 600 */ 2515 adbHardware = ADB_HW_IISI; 2516 #ifdef ADB_DEBUG 2517 if (adb_debug) 2518 printf_intr("adb: using IIsi series hardware support\n"); 2519 #endif 2520 break; 2521 2522 case MACH_MACPB140: /* PowerBook 140 */ 2523 case MACH_MACPB145: /* PowerBook 145 */ 2524 case MACH_MACPB160: /* PowerBook 160 */ 2525 case MACH_MACPB165: /* PowerBook 165 */ 2526 case MACH_MACPB165C: /* PowerBook 165c */ 2527 case MACH_MACPB170: /* PowerBook 170 */ 2528 case MACH_MACPB180: /* PowerBook 180 */ 2529 case MACH_MACPB180C: /* PowerBook 180c */ 2530 adbHardware = ADB_HW_PB; 2531 pm_setup_adb(); 2532 #ifdef ADB_DEBUG 2533 if (adb_debug) 2534 printf_intr("adb: using PowerBook 100-series hardware support\n"); 2535 #endif 2536 break; 2537 2538 case MACH_MACPB150: /* PowerBook 150 */ 2539 case MACH_MACPB210: /* PowerBook Duo 210 */ 2540 case MACH_MACPB230: /* PowerBook Duo 230 */ 2541 case MACH_MACPB250: /* PowerBook Duo 250 */ 2542 case MACH_MACPB270: /* PowerBook Duo 270 */ 2543 case MACH_MACPB280: /* PowerBook Duo 280 */ 2544 case MACH_MACPB280C: /* PowerBook Duo 280c */ 2545 case MACH_MACPB500: /* PowerBook 500 series */ 2546 case MACH_MACPB190: /* PowerBook 190 */ 2547 case MACH_MACPB190CS: /* PowerBook 190cs */ 2548 adbHardware = ADB_HW_PB; 2549 pm_setup_adb(); 2550 #ifdef ADB_DEBUG 2551 if (adb_debug) 2552 printf_intr("adb: using PowerBook Duo-series and PowerBook 500-series hardware support\n"); 2553 #endif 2554 break; 2555 2556 case MACH_MACC660AV: /* Centris 660AV */ 2557 case MACH_MACCCLASSIC: /* Color Classic */ 2558 case MACH_MACCCLASSICII: /* Color Classic II */ 2559 case MACH_MACLC475: /* LC 475, Performa 475/476 */ 2560 case MACH_MACLC475_33: /* Clock-chipped 47x */ 2561 case MACH_MACLC520: /* LC 520 */ 2562 case MACH_MACLC575: /* LC 575, Performa 575/577/578 */ 2563 case MACH_MACP550: /* LC 550, Performa 550 */ 2564 case MACH_MACTV: /* Macintosh TV */ 2565 case MACH_MACP580: /* Performa 580/588 */ 2566 case MACH_MACQ605: /* Quadra 605 */ 2567 case MACH_MACQ605_33: /* Clock-chipped Quadra 605 */ 2568 case MACH_MACQ630: /* LC 630, Performa 630, Quadra 630 */ 2569 case MACH_MACQ840AV: /* Quadra 840AV */ 2570 adbHardware = ADB_HW_CUDA; 2571 #ifdef ADB_DEBUG 2572 if (adb_debug) 2573 printf_intr("adb: using Cuda series hardware support\n"); 2574 #endif 2575 break; 2576 2577 case MACH_MACQ900: /* Quadra 900 */ 2578 case MACH_MACQ950: /* Quadra 950 */ 2579 case MACH_MACIIFX: /* Mac IIfx */ 2580 adbHardware = ADB_HW_IOP; 2581 iop_register_listener(ISM_IOP, IOP_CHAN_ADB, adb_iop_recv, NULL); 2582 #ifdef ADB_DEBUG 2583 if (adb_debug) 2584 printf_intr("adb: using IOP-based ADB\n"); 2585 #endif 2586 break; 2587 2588 default: 2589 adbHardware = ADB_HW_UNKNOWN; 2590 #ifdef ADB_DEBUG 2591 if (adb_debug) { 2592 printf_intr("adb: hardware type unknown for this machine\n"); 2593 printf_intr("adb: ADB support is disabled\n"); 2594 } 2595 #endif 2596 break; 2597 } 2598 2599 /* 2600 * Determine whether this machine has ADB based soft power. 2601 */ 2602 switch (response) { 2603 case MACH_MACCCLASSIC: /* Color Classic */ 2604 case MACH_MACCCLASSICII: /* Color Classic II */ 2605 case MACH_MACIISI: /* IIsi */ 2606 case MACH_MACIIVI: /* IIvi */ 2607 case MACH_MACIIVX: /* IIvx */ 2608 case MACH_MACLC520: /* LC 520 */ 2609 case MACH_MACLC575: /* LC 575, Performa 575/577/578 */ 2610 case MACH_MACP550: /* LC 550, Performa 550 */ 2611 case MACH_MACTV: /* Macintosh TV */ 2612 case MACH_MACP580: /* Performa 580/588 */ 2613 case MACH_MACP600: /* Performa 600 */ 2614 case MACH_MACQ630: /* LC 630, Performa 630, Quadra 630 */ 2615 case MACH_MACQ840AV: /* Quadra 840AV */ 2616 adbSoftPower = 1; 2617 break; 2618 } 2619 } 2620 2621 int 2622 count_adbs(void) 2623 { 2624 int i; 2625 int found; 2626 2627 found = 0; 2628 2629 for (i = 1; i < 16; i++) 2630 if (0 != ADBDevTable[i].currentAddr) 2631 found++; 2632 2633 return found; 2634 } 2635 2636 int 2637 get_ind_adb_info(ADBDataBlock *info, int index) 2638 { 2639 if ((index < 1) || (index > 15)) /* check range 1-15 */ 2640 return (-1); 2641 2642 #ifdef ADB_DEBUG 2643 if (adb_debug & 0x80) 2644 printf_intr("index 0x%x devType is: 0x%x\n", index, 2645 ADBDevTable[index].devType); 2646 #endif 2647 if (0 == ADBDevTable[index].devType) /* make sure it's a valid entry */ 2648 return (-1); 2649 2650 info->devType = (unsigned char)(ADBDevTable[index].devType); 2651 info->origADBAddr = (unsigned char)(ADBDevTable[index].origAddr); 2652 info->dbServiceRtPtr = (Ptr)ADBDevTable[index].ServiceRtPtr; 2653 info->dbDataAreaAddr = (Ptr)ADBDevTable[index].DataAreaAddr; 2654 2655 return (ADBDevTable[index].currentAddr); 2656 } 2657 2658 int 2659 get_adb_info(ADBDataBlock *info, int adbAddr) 2660 { 2661 int i; 2662 2663 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */ 2664 return (-1); 2665 2666 for (i = 1; i < 15; i++) 2667 if (ADBDevTable[i].currentAddr == adbAddr) { 2668 info->devType = (unsigned char)(ADBDevTable[i].devType); 2669 info->origADBAddr = (unsigned char)(ADBDevTable[i].origAddr); 2670 info->dbServiceRtPtr = (Ptr)ADBDevTable[i].ServiceRtPtr; 2671 info->dbDataAreaAddr = ADBDevTable[i].DataAreaAddr; 2672 return 0; /* found */ 2673 } 2674 2675 return (-1); /* not found */ 2676 } 2677 2678 int 2679 set_adb_info(ADBSetInfoBlock *info, int adbAddr) 2680 { 2681 int i; 2682 2683 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */ 2684 return (-1); 2685 2686 for (i = 1; i < 15; i++) 2687 if (ADBDevTable[i].currentAddr == adbAddr) { 2688 ADBDevTable[i].ServiceRtPtr = 2689 (void *)(info->siServiceRtPtr); 2690 ADBDevTable[i].DataAreaAddr = info->siDataAreaAddr; 2691 return 0; /* found */ 2692 } 2693 2694 return (-1); /* not found */ 2695 2696 } 2697 2698 #ifndef MRG_ADB 2699 long 2700 mrg_adbintr(void) 2701 { 2702 adb_intr(NULL); 2703 return 1; /* mimic mrg_adbintr in macrom.h just in case */ 2704 } 2705 2706 long 2707 mrg_pmintr(void) 2708 { 2709 pm_intr(NULL); 2710 return 1; /* mimic mrg_pmintr in macrom.h just in case */ 2711 } 2712 2713 /* caller should really use machine-independent version: getPramTime */ 2714 /* this version does pseudo-adb access only */ 2715 int 2716 adb_read_date_time(unsigned long *curtime) 2717 { 2718 u_char output[ADB_MAX_MSG_LENGTH]; 2719 int result; 2720 volatile int flag = 0; 2721 2722 switch (adbHardware) { 2723 case ADB_HW_II: 2724 return -1; 2725 2726 case ADB_HW_IOP: 2727 return -1; 2728 2729 case ADB_HW_IISI: 2730 output[0] = 0x02; /* 2 byte message */ 2731 output[1] = 0x01; /* to pram/rtc device */ 2732 output[2] = 0x03; /* read date/time */ 2733 result = send_adb_IIsi((u_char *)output, (u_char *)output, 2734 (void *)adb_op_comprout, __UNVOLATILE(&flag), (int)0); 2735 if (result != 0) /* exit if not sent */ 2736 return -1; 2737 2738 while (0 == flag) /* wait for result */ 2739 ; 2740 2741 *curtime = (long)(*(long *)(output + 1)); 2742 return 0; 2743 2744 case ADB_HW_PB: 2745 return -1; 2746 2747 case ADB_HW_CUDA: 2748 output[0] = 0x02; /* 2 byte message */ 2749 output[1] = 0x01; /* to pram/rtc device */ 2750 output[2] = 0x03; /* read date/time */ 2751 result = send_adb_cuda((u_char *)output, (u_char *)output, 2752 (void *)adb_op_comprout, __UNVOLATILE(&flag), (int)0); 2753 if (result != 0) /* exit if not sent */ 2754 return -1; 2755 2756 while (0 == flag) /* wait for result */ 2757 ; 2758 2759 *curtime = (long)(*(long *)(output + 1)); 2760 return 0; 2761 2762 case ADB_HW_UNKNOWN: 2763 default: 2764 return -1; 2765 } 2766 } 2767 2768 /* caller should really use machine-independent version: setPramTime */ 2769 /* this version does pseudo-adb access only */ 2770 int 2771 adb_set_date_time(unsigned long curtime) 2772 { 2773 u_char output[ADB_MAX_MSG_LENGTH]; 2774 int result; 2775 volatile int flag = 0; 2776 2777 switch (adbHardware) { 2778 case ADB_HW_II: 2779 return -1; 2780 2781 case ADB_HW_IOP: 2782 return -1; 2783 2784 case ADB_HW_IISI: 2785 output[0] = 0x06; /* 6 byte message */ 2786 output[1] = 0x01; /* to pram/rtc device */ 2787 output[2] = 0x09; /* set date/time */ 2788 output[3] = (u_char)(curtime >> 24); 2789 output[4] = (u_char)(curtime >> 16); 2790 output[5] = (u_char)(curtime >> 8); 2791 output[6] = (u_char)(curtime); 2792 result = send_adb_IIsi((u_char *)output, (u_char *)0, 2793 (void *)adb_op_comprout, __UNVOLATILE(&flag), (int)0); 2794 if (result != 0) /* exit if not sent */ 2795 return -1; 2796 2797 while (0 == flag) /* wait for send to finish */ 2798 ; 2799 2800 return 0; 2801 2802 case ADB_HW_PB: 2803 return -1; 2804 2805 case ADB_HW_CUDA: 2806 output[0] = 0x06; /* 6 byte message */ 2807 output[1] = 0x01; /* to pram/rtc device */ 2808 output[2] = 0x09; /* set date/time */ 2809 output[3] = (u_char)(curtime >> 24); 2810 output[4] = (u_char)(curtime >> 16); 2811 output[5] = (u_char)(curtime >> 8); 2812 output[6] = (u_char)(curtime); 2813 result = send_adb_cuda((u_char *)output, (u_char *)0, 2814 (void *)adb_op_comprout, __UNVOLATILE(&flag), (int)0); 2815 if (result != 0) /* exit if not sent */ 2816 return -1; 2817 2818 while (0 == flag) /* wait for send to finish */ 2819 ; 2820 2821 return 0; 2822 2823 case ADB_HW_UNKNOWN: 2824 default: 2825 return -1; 2826 } 2827 } 2828 2829 2830 int 2831 adb_poweroff(void) 2832 { 2833 u_char output[ADB_MAX_MSG_LENGTH]; 2834 int result; 2835 2836 if (!adbSoftPower) 2837 return -1; 2838 2839 adb_polling = 1; 2840 2841 switch (adbHardware) { 2842 case ADB_HW_IISI: 2843 output[0] = 0x02; /* 2 byte message */ 2844 output[1] = 0x01; /* to pram/rtc/soft-power device */ 2845 output[2] = 0x0a; /* set date/time */ 2846 result = send_adb_IIsi((u_char *)output, (u_char *)0, 2847 (void *)0, (void *)0, (int)0); 2848 if (result != 0) /* exit if not sent */ 2849 return -1; 2850 2851 for (;;); /* wait for power off */ 2852 2853 return 0; 2854 2855 case ADB_HW_PB: 2856 return -1; 2857 2858 case ADB_HW_CUDA: 2859 output[0] = 0x02; /* 2 byte message */ 2860 output[1] = 0x01; /* to pram/rtc/soft-power device */ 2861 output[2] = 0x0a; /* set date/time */ 2862 result = send_adb_cuda((u_char *)output, (u_char *)0, 2863 (void *)0, (void *)0, (int)0); 2864 if (result != 0) /* exit if not sent */ 2865 return -1; 2866 2867 for (;;); /* wait for power off */ 2868 2869 return 0; 2870 2871 case ADB_HW_II: /* II models don't do ADB soft power */ 2872 case ADB_HW_IOP: /* IOP models don't do ADB soft power */ 2873 case ADB_HW_UNKNOWN: 2874 default: 2875 return -1; 2876 } 2877 } 2878 2879 int 2880 adb_prog_switch_enable(void) 2881 { 2882 u_char output[ADB_MAX_MSG_LENGTH]; 2883 int result; 2884 volatile int flag = 0; 2885 2886 switch (adbHardware) { 2887 case ADB_HW_IISI: 2888 output[0] = 0x03; /* 3 byte message */ 2889 output[1] = 0x01; /* to pram/rtc/soft-power device */ 2890 output[2] = 0x1c; /* prog. switch control */ 2891 output[3] = 0x01; /* enable */ 2892 result = send_adb_IIsi((u_char *)output, (u_char *)0, 2893 (void *)adb_op_comprout, __UNVOLATILE(&flag), (int)0); 2894 if (result != 0) /* exit if not sent */ 2895 return -1; 2896 2897 while (0 == flag) /* wait for send to finish */ 2898 ; 2899 2900 return 0; 2901 2902 case ADB_HW_PB: 2903 return -1; 2904 2905 case ADB_HW_II: /* II models don't do prog. switch */ 2906 case ADB_HW_IOP: /* IOP models don't do prog. switch */ 2907 case ADB_HW_CUDA: /* cuda doesn't do prog. switch TO DO: verify this */ 2908 case ADB_HW_UNKNOWN: 2909 default: 2910 return -1; 2911 } 2912 } 2913 2914 int 2915 adb_prog_switch_disable(void) 2916 { 2917 u_char output[ADB_MAX_MSG_LENGTH]; 2918 int result; 2919 volatile int flag = 0; 2920 2921 switch (adbHardware) { 2922 case ADB_HW_IISI: 2923 output[0] = 0x03; /* 3 byte message */ 2924 output[1] = 0x01; /* to pram/rtc/soft-power device */ 2925 output[2] = 0x1c; /* prog. switch control */ 2926 output[3] = 0x01; /* disable */ 2927 result = send_adb_IIsi((u_char *)output, (u_char *)0, 2928 (void *)adb_op_comprout, __UNVOLATILE(&flag), (int)0); 2929 if (result != 0) /* exit if not sent */ 2930 return -1; 2931 2932 while (0 == flag) /* wait for send to finish */ 2933 ; 2934 2935 return 0; 2936 2937 case ADB_HW_PB: 2938 return -1; 2939 2940 case ADB_HW_II: /* II models don't do prog. switch */ 2941 case ADB_HW_IOP: /* IOP models don't do prog. switch */ 2942 case ADB_HW_CUDA: /* cuda doesn't do prog. switch */ 2943 case ADB_HW_UNKNOWN: 2944 default: 2945 return -1; 2946 } 2947 } 2948 2949 int 2950 CountADBs(void) 2951 { 2952 return (count_adbs()); 2953 } 2954 2955 void 2956 ADBReInit(void) 2957 { 2958 adb_reinit(); 2959 } 2960 2961 int 2962 GetIndADB(ADBDataBlock *info, int index) 2963 { 2964 return (get_ind_adb_info(info, index)); 2965 } 2966 2967 int 2968 GetADBInfo(ADBDataBlock *info, int adbAddr) 2969 { 2970 return (get_adb_info(info, adbAddr)); 2971 } 2972 2973 int 2974 SetADBInfo(ADBSetInfoBlock *info, int adbAddr) 2975 { 2976 return (set_adb_info(info, adbAddr)); 2977 } 2978 2979 int 2980 ADBOp(Ptr buffer, Ptr compRout, Ptr data, short commandNum) 2981 { 2982 return (adb_op(buffer, compRout, data, commandNum)); 2983 } 2984 2985 #endif 2986