xref: /netbsd-src/sys/arch/mac68k/dev/adb_direct.c (revision b1c86f5f087524e68db12794ee9c3e3da1ab17a0)
1 /*	$NetBSD: adb_direct.c,v 1.63 2008/04/04 09:16:59 yamt Exp $	*/
2 
3 /* From: adb_direct.c 2.02 4/18/97 jpw */
4 
5 /*
6  * Copyright (C) 1996, 1997 John P. Wittkoski
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *  This product includes software developed by John P. Wittkoski.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * This code is rather messy, but I don't have time right now
37  * to clean it up as much as I would like.
38  * But it works, so I'm happy. :-) jpw
39  */
40 
41 /*
42  * TO DO:
43  *  - We could reduce the time spent in the adb_intr_* routines
44  *    by having them save the incoming and outgoing data directly
45  *    in the adbInbound and adbOutbound queues, as it would reduce
46  *    the number of times we need to copy the data around. It
47  *    would also make the code more readable and easier to follow.
48  *  - (Related to above) Use the header part of adbCommand to
49  *    reduce the number of copies we have to do of the data.
50  *  - (Related to above) Actually implement the adbOutbound queue.
51  *    This is fairly easy once you switch all the intr routines
52  *    over to using adbCommand structs directly.
53  *  - There is a bug in the state machine of adb_intr_cuda
54  *    code that causes hangs, especially on 030 machines, probably
55  *    because of some timing issues. Because I have been unable to
56  *    determine the exact cause of this bug, I used the timeout function
57  *    to check for and recover from this condition. If anyone finds
58  *    the actual cause of this bug, the calls to timeout and the
59  *    adb_cuda_tickle routine can be removed.
60  */
61 
62 #ifdef __NetBSD__
63 
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: adb_direct.c,v 1.63 2008/04/04 09:16:59 yamt Exp $");
66 
67 #include "opt_adb.h"
68 
69 #include <sys/param.h>
70 #include <sys/pool.h>
71 #include <sys/queue.h>
72 #include <sys/systm.h>
73 #include <sys/callout.h>
74 #include <sys/cpu.h>
75 #include <sys/intr.h>
76 
77 #include <machine/viareg.h>
78 #include <machine/param.h>
79 #include <machine/adbsys.h>			/* required for adbvar.h */
80 #include <machine/iopreg.h>			/* required for IOP support */
81 
82 #include <mac68k/mac68k/macrom.h>
83 #include <mac68k/dev/adbvar.h>
84 #define printf_intr printf
85 #else /* !__NetBSD__, i.e. Mac OS */
86 #include "via.h"				/* for macos based testing */
87 /* #define ADB_DEBUG */				/* more verbose for testing */
88 
89 /* Types of ADB hardware that we support */
90 #define ADB_HW_UNKNOWN		0x0	/* don't know */
91 #define ADB_HW_II		0x1	/* Mac II series */
92 #define ADB_HW_IISI		0x2	/* Mac IIsi series */
93 #define ADB_HW_PB		0x3	/* PowerBook series */
94 #define ADB_HW_CUDA		0x4	/* Machines with a Cuda chip */
95 #endif /* __NetBSD__ */
96 
97 /* some misc. leftovers */
98 #define vPB		0x0000
99 #define vPB3		0x08
100 #define vPB4		0x10
101 #define vPB5		0x20
102 #define vSR_INT		0x04
103 #define vSR_OUT		0x10
104 
105 /* the type of ADB action that we are currently preforming */
106 #define ADB_ACTION_NOTREADY	0x1	/* has not been initialized yet */
107 #define ADB_ACTION_IDLE		0x2	/* the bus is currently idle */
108 #define ADB_ACTION_OUT		0x3	/* sending out a command */
109 #define ADB_ACTION_IN		0x4	/* receiving data */
110 #define ADB_ACTION_POLLING	0x5	/* polling - II only */
111 #define ADB_ACTION_RUNNING	0x6	/* running - IOP only */
112 
113 /*
114  * These describe the state of the ADB bus itself, although they
115  * don't necessarily correspond directly to ADB states.
116  * Note: these are not really used in the IIsi code.
117  */
118 #define ADB_BUS_UNKNOWN		0x1	/* we don't know yet - all models */
119 #define ADB_BUS_IDLE		0x2	/* bus is idle - all models */
120 #define ADB_BUS_CMD		0x3	/* starting a command - II models */
121 #define ADB_BUS_ODD		0x4	/* the "odd" state - II models */
122 #define ADB_BUS_EVEN		0x5	/* the "even" state - II models */
123 #define ADB_BUS_ACTIVE		0x6	/* active state - IIsi models */
124 #define ADB_BUS_ACK		0x7	/* currently ACKing - IIsi models */
125 
126 /*
127  * Shortcuts for setting or testing the VIA bit states.
128  * Not all shortcuts are used for every type of ADB hardware.
129  */
130 #define ADB_SET_STATE_IDLE_II()		via_reg(VIA1, vBufB) |= (vPB4 | vPB5)
131 #define ADB_SET_STATE_IDLE_IISI()	via_reg(VIA1, vBufB) &= ~(vPB4 | vPB5)
132 #define ADB_SET_STATE_IDLE_CUDA()	via_reg(VIA1, vBufB) |= (vPB4 | vPB5)
133 #define ADB_SET_STATE_CMD()		via_reg(VIA1, vBufB) &= ~(vPB4 | vPB5)
134 #define ADB_SET_STATE_EVEN()		via_reg(VIA1, vBufB) = ((via_reg(VIA1, \
135 						vBufB) | vPB4) & ~vPB5)
136 #define ADB_SET_STATE_ODD()		via_reg(VIA1, vBufB) = ((via_reg(VIA1, \
137 						vBufB) | vPB5) & ~vPB4)
138 #define ADB_SET_STATE_ACTIVE() 		via_reg(VIA1, vBufB) |= vPB5
139 #define ADB_SET_STATE_INACTIVE()	via_reg(VIA1, vBufB) &= ~vPB5
140 #define ADB_SET_STATE_TIP()		via_reg(VIA1, vBufB) &= ~vPB5
141 #define ADB_CLR_STATE_TIP() 		via_reg(VIA1, vBufB) |= vPB5
142 #define ADB_SET_STATE_ACKON()		via_reg(VIA1, vBufB) |= vPB4
143 #define ADB_SET_STATE_ACKOFF()		via_reg(VIA1, vBufB) &= ~vPB4
144 #define ADB_TOGGLE_STATE_ACK_CUDA()	via_reg(VIA1, vBufB) ^= vPB4
145 #define ADB_SET_STATE_ACKON_CUDA()	via_reg(VIA1, vBufB) &= ~vPB4
146 #define ADB_SET_STATE_ACKOFF_CUDA()	via_reg(VIA1, vBufB) |= vPB4
147 #define ADB_SET_SR_INPUT()		via_reg(VIA1, vACR) &= ~vSR_OUT
148 #define ADB_SET_SR_OUTPUT()		via_reg(VIA1, vACR) |= vSR_OUT
149 #define ADB_SR()			via_reg(VIA1, vSR)
150 #define ADB_VIA_INTR_ENABLE()		via_reg(VIA1, vIER) = 0x84
151 #define ADB_VIA_INTR_DISABLE()		via_reg(VIA1, vIER) = 0x04
152 #define ADB_VIA_CLR_INTR()		via_reg(VIA1, vIFR) = 0x04
153 #define ADB_INTR_IS_OFF			(vPB3 == (via_reg(VIA1, vBufB) & vPB3))
154 #define ADB_INTR_IS_ON			(0 == (via_reg(VIA1, vBufB) & vPB3))
155 #define ADB_SR_INTR_IS_OFF		(0 == (via_reg(VIA1, vIFR) & vSR_INT))
156 #define ADB_SR_INTR_IS_ON		(vSR_INT == (via_reg(VIA1, \
157 						vIFR) & vSR_INT))
158 
159 /*
160  * This is the delay that is required (in uS) between certain
161  * ADB transactions. The actual timing delay for for each uS is
162  * calculated at boot time to account for differences in machine speed.
163  */
164 #define ADB_DELAY	150
165 
166 /*
167  * Maximum ADB message length; includes space for data, result, and
168  * device code - plus a little for safety.
169  */
170 #define ADB_MAX_MSG_LENGTH	16
171 #define ADB_MAX_HDR_LENGTH	8
172 
173 #define ADB_QUEUE		32
174 #define ADB_TICKLE_TICKS	4
175 
176 /*
177  * A structure for storing information about each ADB device.
178  */
179 struct ADBDevEntry {
180 	void	(*ServiceRtPtr)(void);
181 	void	*DataAreaAddr;
182 	int	devType;
183 	int	origAddr;
184 	int	currentAddr;
185 };
186 
187 /*
188  * Used to hold ADB commands that are waiting to be sent out.
189  */
190 struct adbCmdHoldEntry {
191 	u_char	outBuf[ADB_MAX_MSG_LENGTH];	/* our message */
192 	u_char	*saveBuf;	/* buffer to know where to save result */
193 	u_char	*compRout;	/* completion routine pointer */
194 	u_char	*data;		/* completion routine data pointer */
195 };
196 
197 /*
198  * Eventually used for two separate queues, the queue between
199  * the upper and lower halves, and the outgoing packet queue.
200  * TO DO: adbCommand can replace all of adbCmdHoldEntry eventually
201  */
202 struct adbCommand {
203 	u_char	header[ADB_MAX_HDR_LENGTH];	/* not used yet */
204 	u_char	data[ADB_MAX_MSG_LENGTH];	/* packet data only */
205 	u_char	*saveBuf;	/* where to save result */
206 	u_char	*compRout;	/* completion routine pointer */
207 	u_char	*compData;	/* completion routine data pointer */
208 	u_int	cmd;		/* the original command for this data */
209 	u_int	unsol;		/* 1 if packet was unsolicited */
210 	u_int	ack_only;	/* 1 for no special processing */
211 };
212 
213 /*
214  * Text representations of each hardware class
215  */
216 const char	*adbHardwareDescr[MAX_ADB_HW + 1] = {
217 	"unknown",
218 	"II series",
219 	"IIsi series",
220 	"PowerBook",
221 	"Cuda",
222 	"IOP",
223 };
224 
225 /*
226  * A few variables that we need and their initial values.
227  */
228 int	adbHardware = ADB_HW_UNKNOWN;
229 int	adbActionState = ADB_ACTION_NOTREADY;
230 int	adbBusState = ADB_BUS_UNKNOWN;
231 int	adbWaiting = 0;		/* waiting for return data from the device */
232 int	adbWriteDelay = 0;	/* working on (or waiting to do) a write */
233 int	adbOutQueueHasData = 0;	/* something in the queue waiting to go out */
234 int	adbNextEnd = 0;		/* the next incoming bute is the last (II) */
235 int	adbSoftPower = 0;	/* machine supports soft power */
236 
237 int	adbWaitingCmd = 0;	/* ADB command we are waiting for */
238 u_char	*adbBuffer = (long)0;	/* pointer to user data area */
239 void	*adbCompRout = (long)0;	/* pointer to the completion routine */
240 void	*adbCompData = (long)0;	/* pointer to the completion routine data */
241 long	adbFakeInts = 0;	/* keeps track of fake ADB interrupts for
242 				 * timeouts (II) */
243 int	adbStarting = 1;	/* doing ADBReInit so do polling differently */
244 int	adbSendTalk = 0;	/* the intr routine is sending the talk, not
245 				 * the user (II) */
246 int	adbPolling = 0;		/* we are polling for service request */
247 int	adbPollCmd = 0;		/* the last poll command we sent */
248 
249 u_char	adbInputBuffer[ADB_MAX_MSG_LENGTH];	/* data input buffer */
250 u_char	adbOutputBuffer[ADB_MAX_MSG_LENGTH];	/* data output buffer */
251 struct	adbCmdHoldEntry adbOutQueue;		/* our 1 entry output queue */
252 
253 int	adbSentChars = 0;	/* how many characters we have sent */
254 int	adbLastDevice = 0;	/* last ADB dev we heard from (II ONLY) */
255 int	adbLastDevIndex = 0;	/* last ADB dev loc in dev table (II ONLY) */
256 int	adbLastCommand = 0;	/* the last ADB command we sent (II) */
257 
258 struct	ADBDevEntry ADBDevTable[16];	/* our ADB device table */
259 int	ADBNumDevices;		/* num. of ADB devices found with ADBReInit */
260 
261 struct	adbCommand adbInbound[ADB_QUEUE];	/* incoming queue */
262 volatile int	adbInCount = 0;		/* how many packets in in queue */
263 int	adbInHead = 0;			/* head of in queue */
264 int	adbInTail = 0;			/* tail of in queue */
265 struct	adbCommand adbOutbound[ADB_QUEUE]; /* outgoing queue - not used yet */
266 int	adbOutCount = 0;		/* how many packets in out queue */
267 int	adbOutHead = 0;			/* head of out queue */
268 int	adbOutTail = 0;			/* tail of out queue */
269 
270 int	tickle_count = 0;		/* how many tickles seen for this packet? */
271 int	tickle_serial = 0;		/* the last packet tickled */
272 int	adb_cuda_serial = 0;		/* the current packet */
273 
274 callout_t adb_cuda_tickle_ch;
275 
276 void *adb_softintr_cookie;
277 
278 extern struct mac68k_machine_S mac68k_machine;
279 
280 void	pm_setup_adb(void);
281 void	pm_hw_setup(void);
282 void	pm_check_adb_devices(int);
283 void	pm_intr(void *);
284 int	pm_adb_op(u_char *, void *, void *, int);
285 void	pm_init_adb_device(void);
286 
287 /*
288  * The following are private routines.
289  */
290 #ifdef ADB_DEBUG
291 void	print_single(u_char *);
292 #endif
293 void	adb_intr(void *);
294 void	adb_intr_II(void *);
295 void	adb_intr_IIsi(void *);
296 void	adb_intr_cuda(void *);
297 void	adb_soft_intr(void);
298 int	send_adb_II(u_char *, u_char *, void *, void *, int);
299 int	send_adb_IIsi(u_char *, u_char *, void *, void *, int);
300 int	send_adb_cuda(u_char *, u_char *, void *, void *, int);
301 void	adb_intr_cuda_test(void);
302 void	adb_cuda_tickle(void);
303 void	adb_pass_up(struct adbCommand *);
304 void	adb_op_comprout(void);
305 void	adb_reinit(void);
306 int	count_adbs(void);
307 int	get_ind_adb_info(ADBDataBlock *, int);
308 int	get_adb_info(ADBDataBlock *, int);
309 int	set_adb_info(ADBSetInfoBlock *, int);
310 void	adb_setup_hw_type(void);
311 int	adb_op(Ptr, Ptr, Ptr, short);
312 void	adb_read_II(u_char *);
313 void	adb_hw_setup(void);
314 void	adb_hw_setup_IIsi(u_char *);
315 void	adb_comp_exec(void);
316 int	adb_cmd_result(u_char *);
317 int	adb_cmd_extra(u_char *);
318 int	adb_guess_next_device(void);
319 int	adb_prog_switch_enable(void);
320 int	adb_prog_switch_disable(void);
321 /* we should create this and it will be the public version */
322 int	send_adb(u_char *, void *, void *);
323 void	adb_iop_recv(IOP *, struct iop_msg *);
324 int	send_adb_iop(int, u_char *, void *, void *);
325 
326 #ifdef ADB_DEBUG
327 /*
328  * print_single
329  * Diagnostic display routine. Displays the hex values of the
330  * specified elements of the u_char. The length of the "string"
331  * is in [0].
332  */
333 void
334 print_single(u_char *str)
335 {
336 	int x;
337 
338 	if (str == 0) {
339 		printf_intr("no data - null pointer\n");
340 		return;
341 	}
342 	if (*str == 0) {
343 		printf_intr("nothing returned\n");
344 		return;
345 	}
346 	if (*str > 20) {
347 		printf_intr("ADB: ACK > 20 no way!\n");
348 		*str = (u_char)20;
349 	}
350 	printf_intr("(length=0x%x):", (u_int)*str);
351 	for (x = 1; x <= *str; x++)
352 		printf_intr("  0x%02x", (u_int)*(str + x));
353 	printf_intr("\n");
354 }
355 #endif
356 
357 void
358 adb_cuda_tickle(void)
359 {
360 	volatile int s;
361 
362 	if (adbActionState == ADB_ACTION_IN) {
363 		if (tickle_serial == adb_cuda_serial) {
364 			if (++tickle_count > 0) {
365 				s = splhigh();
366 				adbActionState = ADB_ACTION_IDLE;
367 				adbInputBuffer[0] = 0;
368 				ADB_SET_STATE_IDLE_CUDA();
369 				splx(s);
370 			}
371 		} else {
372 			tickle_serial = adb_cuda_serial;
373 			tickle_count = 0;
374 		}
375 	} else {
376 		tickle_serial = adb_cuda_serial;
377 		tickle_count = 0;
378 	}
379 
380 	callout_reset(&adb_cuda_tickle_ch, ADB_TICKLE_TICKS,
381 	    (void *)adb_cuda_tickle, NULL);
382 }
383 
384 /*
385  * called when when an adb interrupt happens
386  *
387  * Cuda version of adb_intr
388  * TO DO: do we want to add some calls to intr_dispatch() here to
389  * grab serial interrupts?
390  */
391 void
392 adb_intr_cuda(void *arg)
393 {
394 	volatile int i, ending;
395 	volatile unsigned int s;
396 	struct adbCommand packet;
397 
398 	s = splhigh();		/* can't be too careful - might be called */
399 	/* from a routine, NOT an interrupt */
400 
401 	ADB_VIA_CLR_INTR();	/* clear interrupt */
402 	ADB_VIA_INTR_DISABLE();	/* disable ADB interrupt on IIs. */
403 
404 switch_start:
405 	switch (adbActionState) {
406 	case ADB_ACTION_IDLE:
407 		/*
408 		 * This is an unexpected packet, so grab the first (dummy)
409 		 * byte, set up the proper vars, and tell the chip we are
410 		 * starting to receive the packet by setting the TIP bit.
411 		 */
412 		adbInputBuffer[1] = ADB_SR();
413 		adb_cuda_serial++;
414 		if (ADB_INTR_IS_OFF)	/* must have been a fake start */
415 			break;
416 
417 		ADB_SET_SR_INPUT();
418 		ADB_SET_STATE_TIP();
419 
420 		adbInputBuffer[0] = 1;
421 		adbActionState = ADB_ACTION_IN;
422 #ifdef ADB_DEBUG
423 		if (adb_debug)
424 			printf_intr("idle 0x%02x ", adbInputBuffer[1]);
425 #endif
426 		break;
427 
428 	case ADB_ACTION_IN:
429 		adbInputBuffer[++adbInputBuffer[0]] = ADB_SR();
430 		/* intr off means this is the last byte (end of frame) */
431 		if (ADB_INTR_IS_OFF)
432 			ending = 1;
433 		else
434 			ending = 0;
435 
436 		if (1 == ending) {	/* end of message? */
437 #ifdef ADB_DEBUG
438 			if (adb_debug) {
439 				printf_intr("in end 0x%02x ",
440 				    adbInputBuffer[adbInputBuffer[0]]);
441 				print_single(adbInputBuffer);
442 			}
443 #endif
444 
445 			/*
446 			 * Are we waiting AND does this packet match what we
447 			 * are waiting for AND is it coming from either the
448 			 * ADB or RTC/PRAM sub-device? This section _should_
449 			 * recognize all ADB and RTC/PRAM type commands, but
450 			 * there may be more... NOTE: commands are always at
451 			 * [4], even for RTC/PRAM commands.
452 			 */
453 			/* set up data for adb_pass_up */
454 			memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
455 
456 			if ((adbWaiting == 1) &&
457 			    (adbInputBuffer[4] == adbWaitingCmd) &&
458 			    ((adbInputBuffer[2] == 0x00) ||
459 			    (adbInputBuffer[2] == 0x01))) {
460 				packet.saveBuf = adbBuffer;
461 				packet.compRout = adbCompRout;
462 				packet.compData = adbCompData;
463 				packet.unsol = 0;
464 				packet.ack_only = 0;
465 				adb_pass_up(&packet);
466 
467 				adbWaitingCmd = 0;	/* reset "waiting" vars */
468 				adbWaiting = 0;
469 				adbBuffer = (long)0;
470 				adbCompRout = (long)0;
471 				adbCompData = (long)0;
472 			} else {
473 				packet.unsol = 1;
474 				packet.ack_only = 0;
475 				adb_pass_up(&packet);
476 			}
477 
478 
479 			/* reset vars and signal the end of this frame */
480 			adbActionState = ADB_ACTION_IDLE;
481 			adbInputBuffer[0] = 0;
482 			ADB_SET_STATE_IDLE_CUDA();
483 			/*ADB_SET_SR_INPUT();*/
484 
485 			/*
486 			 * If there is something waiting to be sent out,
487 			 * the set everything up and send the first byte.
488 			 */
489 			if (adbWriteDelay == 1) {
490 				delay(ADB_DELAY);	/* required */
491 				adbSentChars = 0;
492 				adbActionState = ADB_ACTION_OUT;
493 				/*
494 				 * If the interrupt is on, we were too slow
495 				 * and the chip has already started to send
496 				 * something to us, so back out of the write
497 				 * and start a read cycle.
498 				 */
499 				if (ADB_INTR_IS_ON) {
500 					ADB_SET_SR_INPUT();
501 					ADB_SET_STATE_IDLE_CUDA();
502 					adbSentChars = 0;
503 					adbActionState = ADB_ACTION_IDLE;
504 					adbInputBuffer[0] = 0;
505 					break;
506 				}
507 				/*
508 				 * If we got here, it's ok to start sending
509 				 * so load the first byte and tell the chip
510 				 * we want to send.
511 				 */
512 				ADB_SET_STATE_TIP();
513 				ADB_SET_SR_OUTPUT();
514 				ADB_SR() = adbOutputBuffer[adbSentChars + 1];
515 			}
516 		} else {
517 			ADB_TOGGLE_STATE_ACK_CUDA();
518 #ifdef ADB_DEBUG
519 			if (adb_debug)
520 				printf_intr("in 0x%02x ",
521 				    adbInputBuffer[adbInputBuffer[0]]);
522 #endif
523 		}
524 		break;
525 
526 	case ADB_ACTION_OUT:
527 		i = ADB_SR();	/* reset SR-intr in IFR */
528 #ifdef ADB_DEBUG
529 		if (adb_debug)
530 			printf_intr("intr out 0x%02x ", i);
531 #endif
532 
533 		adbSentChars++;
534 		if (ADB_INTR_IS_ON) {	/* ADB intr low during write */
535 #ifdef ADB_DEBUG
536 			if (adb_debug)
537 				printf_intr("intr was on ");
538 #endif
539 			ADB_SET_SR_INPUT();	/* make sure SR is set to IN */
540 			ADB_SET_STATE_IDLE_CUDA();
541 			adbSentChars = 0;	/* must start all over */
542 			adbActionState = ADB_ACTION_IDLE;	/* new state */
543 			adbInputBuffer[0] = 0;
544 			adbWriteDelay = 1;	/* must retry when done with
545 						 * read */
546 			delay(ADB_DELAY);
547 			goto switch_start;	/* process next state right
548 						 * now */
549 			break;
550 		}
551 		if (adbOutputBuffer[0] == adbSentChars) {	/* check for done */
552 			if (0 == adb_cmd_result(adbOutputBuffer)) {	/* do we expect data
553 									 * back? */
554 				adbWaiting = 1;	/* signal waiting for return */
555 				adbWaitingCmd = adbOutputBuffer[2];	/* save waiting command */
556 			} else {	/* no talk, so done */
557 				/* set up stuff for adb_pass_up */
558 				memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
559 				packet.saveBuf = adbBuffer;
560 				packet.compRout = adbCompRout;
561 				packet.compData = adbCompData;
562 				packet.cmd = adbWaitingCmd;
563 				packet.unsol = 0;
564 				packet.ack_only = 1;
565 				adb_pass_up(&packet);
566 
567 				/* reset "waiting" vars, just in case */
568 				adbWaitingCmd = 0;
569 				adbBuffer = (long)0;
570 				adbCompRout = (long)0;
571 				adbCompData = (long)0;
572 			}
573 
574 			adbWriteDelay = 0;	/* done writing */
575 			adbActionState = ADB_ACTION_IDLE;	/* signal bus is idle */
576 			ADB_SET_SR_INPUT();
577 			ADB_SET_STATE_IDLE_CUDA();
578 #ifdef ADB_DEBUG
579 			if (adb_debug)
580 				printf_intr("write done ");
581 #endif
582 		} else {
583 			ADB_SR() = adbOutputBuffer[adbSentChars + 1];	/* send next byte */
584 			ADB_TOGGLE_STATE_ACK_CUDA();	/* signal byte ready to
585 							 * shift */
586 #ifdef ADB_DEBUG
587 			if (adb_debug)
588 				printf_intr("toggle ");
589 #endif
590 		}
591 		break;
592 
593 	case ADB_ACTION_NOTREADY:
594 #ifdef ADB_DEBUG
595 		if (adb_debug)
596 			printf_intr("adb: not yet initialized\n");
597 #endif
598 		break;
599 
600 	default:
601 #ifdef ADB_DEBUG
602 		if (adb_debug)
603 			printf_intr("intr: unknown ADB state\n");
604 #endif
605 		break;
606 	}
607 
608 	ADB_VIA_INTR_ENABLE();	/* enable ADB interrupt on IIs. */
609 
610 	splx(s);		/* restore */
611 
612 	return;
613 }				/* end adb_intr_cuda */
614 
615 
616 int
617 send_adb_cuda(u_char *in, u_char *buffer, void *compRout, void *data, int
618 	command)
619 {
620 	int s, len;
621 
622 #ifdef ADB_DEBUG
623 	if (adb_debug)
624 		printf_intr("SEND\n");
625 #endif
626 
627 	if (adbActionState == ADB_ACTION_NOTREADY)
628 		return 1;
629 
630 	/* Don't interrupt while we are messing with the ADB */
631 	s = splhigh();
632 
633 	if ((adbActionState == ADB_ACTION_IDLE) &&	/* ADB available? */
634 	    (ADB_INTR_IS_OFF)) {	/* and no incoming interrupt? */
635 	} else
636 		if (adbWriteDelay == 0)	/* it's busy, but is anything waiting? */
637 			adbWriteDelay = 1;	/* if no, then we'll "queue"
638 						 * it up */
639 		else {
640 			splx(s);
641 			return 1;	/* really busy! */
642 		}
643 
644 #ifdef ADB_DEBUG
645 	if (adb_debug)
646 		printf_intr("QUEUE\n");
647 #endif
648 	if ((long)in == (long)0) {	/* need to convert? */
649 		/*
650 		 * Don't need to use adb_cmd_extra here because this section
651 		 * will be called ONLY when it is an ADB command (no RTC or
652 		 * PRAM)
653 		 */
654 		if ((command & 0x0c) == 0x08)	/* copy addl data ONLY if
655 						 * doing a listen! */
656 			len = buffer[0];	/* length of additional data */
657 		else
658 			len = 0;/* no additional data */
659 
660 		adbOutputBuffer[0] = 2 + len;	/* dev. type + command + addl.
661 						 * data */
662 		adbOutputBuffer[1] = 0x00;	/* mark as an ADB command */
663 		adbOutputBuffer[2] = (u_char)command;	/* load command */
664 
665 		/* copy additional output data, if any */
666 		memcpy(adbOutputBuffer + 3, buffer + 1, len);
667 	} else
668 		/* if data ready, just copy over */
669 		memcpy(adbOutputBuffer, in, in[0] + 2);
670 
671 	adbSentChars = 0;	/* nothing sent yet */
672 	adbBuffer = buffer;	/* save buffer to know where to save result */
673 	adbCompRout = compRout;	/* save completion routine pointer */
674 	adbCompData = data;	/* save completion routine data pointer */
675 	adbWaitingCmd = adbOutputBuffer[2];	/* save wait command */
676 
677 	if (adbWriteDelay != 1) {	/* start command now? */
678 #ifdef ADB_DEBUG
679 		if (adb_debug)
680 			printf_intr("out start NOW");
681 #endif
682 		delay(ADB_DELAY);
683 		adbActionState = ADB_ACTION_OUT;	/* set next state */
684 		ADB_SET_SR_OUTPUT();	/* set shift register for OUT */
685 		ADB_SR() = adbOutputBuffer[adbSentChars + 1];	/* load byte for output */
686 		ADB_SET_STATE_ACKOFF_CUDA();
687 		ADB_SET_STATE_TIP();	/* tell ADB that we want to send */
688 	}
689 	adbWriteDelay = 1;	/* something in the write "queue" */
690 
691 	splx(s);
692 
693 	if (0x0100 <= (s & 0x0700))	/* were VIA1 interrupts blocked? */
694 		/* poll until byte done */
695 		while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
696 		    || (adbWaiting == 1))
697 			if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
698 				adb_intr_cuda(NULL); /* go process it */
699 				if (adb_polling)
700 					adb_soft_intr();
701 			}
702 
703 	return 0;
704 }				/* send_adb_cuda */
705 
706 
707 void
708 adb_intr_II(void *arg)
709 {
710 	struct adbCommand packet;
711 	int i, intr_on = 0;
712 	int send = 0;
713 	unsigned int s;
714 
715 	s = splhigh();		/* can't be too careful - might be called */
716 	/* from a routine, NOT an interrupt */
717 
718 	ADB_VIA_CLR_INTR();	/* clear interrupt */
719 
720 	ADB_VIA_INTR_DISABLE();	/* disable ADB interrupt on IIs. */
721 
722 	delay(ADB_DELAY);	/* yuck (don't remove) */
723 
724 	(void)intr_dispatch(0x70); /* grab any serial interrupts */
725 
726 	if (ADB_INTR_IS_ON)
727 		intr_on = 1;	/* save for later */
728 
729 switch_start:
730 	switch (adbActionState) {
731 	case ADB_ACTION_POLLING:
732 		if (!intr_on) {
733 			if (adbOutQueueHasData) {
734 #ifdef ADB_DEBUG
735 				if (adb_debug & 0x80)
736 					printf_intr("POLL-doing-out-queue. ");
737 #endif
738 				ADB_SET_STATE_IDLE_II();
739 				delay(ADB_DELAY);
740 
741 				/* copy over data */
742 				memcpy(adbOutputBuffer, adbOutQueue.outBuf,
743 				    adbOutQueue.outBuf[0] + 2);
744 
745 				adbBuffer = adbOutQueue.saveBuf;	/* user data area */
746 				adbCompRout = adbOutQueue.compRout;	/* completion routine */
747 				adbCompData = adbOutQueue.data;	/* comp. rout. data */
748 				adbOutQueueHasData = 0;	/* currently processing
749 							 * "queue" entry */
750 				adbSentChars = 0;	/* nothing sent yet */
751 				adbActionState = ADB_ACTION_OUT;	/* set next state */
752 				ADB_SET_SR_OUTPUT();	/* set shift register for OUT */
753 				ADB_SR() = adbOutputBuffer[1];	/* load byte for output */
754 				adbBusState = ADB_BUS_CMD;	/* set bus to cmd state */
755 				ADB_SET_STATE_CMD();	/* tell ADB that we want to send */
756 				break;
757 			} else {
758 #ifdef ADB_DEBUG
759 				if (adb_debug)
760 					printf_intr("pIDLE ");
761 #endif
762 				adbActionState = ADB_ACTION_IDLE;
763 			}
764 		} else {
765 #ifdef ADB_DEBUG
766 			if (adb_debug & 0x80)
767 				printf_intr("pIN ");
768 #endif
769 			adbActionState = ADB_ACTION_IN;
770 		}
771 		delay(ADB_DELAY);
772 		(void)intr_dispatch(0x70); /* grab any serial interrupts */
773 		goto switch_start;
774 		break;
775 	case ADB_ACTION_IDLE:
776 		if (!intr_on) {
777 			i = ADB_SR();
778 			adbBusState = ADB_BUS_IDLE;
779 			adbActionState = ADB_ACTION_IDLE;
780 			ADB_SET_STATE_IDLE_II();
781 			break;
782 		}
783 		adbInputBuffer[0] = 1;
784 		adbInputBuffer[1] = ADB_SR();	/* get first byte */
785 #ifdef ADB_DEBUG
786 		if (adb_debug & 0x80)
787 			printf_intr("idle 0x%02x ", adbInputBuffer[1]);
788 #endif
789 		ADB_SET_SR_INPUT();	/* make sure SR is set to IN */
790 		adbActionState = ADB_ACTION_IN;	/* set next state */
791 		ADB_SET_STATE_EVEN();	/* set bus state to even */
792 		adbBusState = ADB_BUS_EVEN;
793 		break;
794 
795 	case ADB_ACTION_IN:
796 		adbInputBuffer[++adbInputBuffer[0]] = ADB_SR();	/* get byte */
797 #ifdef ADB_DEBUG
798 		if (adb_debug & 0x80)
799 			printf_intr("in 0x%02x ",
800 			    adbInputBuffer[adbInputBuffer[0]]);
801 #endif
802 		ADB_SET_SR_INPUT();	/* make sure SR is set to IN */
803 
804 		if (intr_on) {	/* process last byte of packet */
805 			adbInputBuffer[0]--;	/* minus one */
806 			/*
807 			 * If intr_on was true, and it's the second byte, then
808 			 * the byte we just discarded is really valid, so
809 			 * adjust the count
810 			 */
811 			if (adbInputBuffer[0] == 2) {
812 				adbInputBuffer[0]++;
813 			}
814 
815 #ifdef ADB_DEBUG
816 			if (adb_debug & 0x80) {
817 				printf_intr("done: ");
818 				print_single(adbInputBuffer);
819 			}
820 #endif
821 
822 			adbLastDevice = ADB_CMDADDR(adbInputBuffer[1]);
823 
824 			if (adbInputBuffer[0] == 1 && !adbWaiting) {	/* SRQ!!!*/
825 #ifdef ADB_DEBUG
826 				if (adb_debug & 0x80)
827 					printf_intr(" xSRQ! ");
828 #endif
829 				adb_guess_next_device();
830 #ifdef ADB_DEBUG
831 				if (adb_debug & 0x80)
832 					printf_intr("try 0x%0x ",
833 					    adbLastDevice);
834 #endif
835 				adbOutputBuffer[0] = 1;
836 				adbOutputBuffer[1] = ADBTALK(adbLastDevice, 0);
837 
838 				adbSentChars = 0;	/* nothing sent yet */
839 				adbActionState = ADB_ACTION_POLLING;	/* set next state */
840 				ADB_SET_SR_OUTPUT();	/* set shift register for OUT */
841 				ADB_SR() = adbOutputBuffer[1];	/* load byte for output */
842 				adbBusState = ADB_BUS_CMD;	/* set bus to cmd state */
843 				ADB_SET_STATE_CMD();	/* tell ADB that we want to */
844 				break;
845 			}
846 
847 			/* set up data for adb_pass_up */
848 			memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
849 
850 			if (!adbWaiting && (adbInputBuffer[0] != 0)) {
851 				packet.unsol = 1;
852 				packet.ack_only = 0;
853 				adb_pass_up(&packet);
854 			} else {
855 				packet.saveBuf = adbBuffer;
856 				packet.compRout = adbCompRout;
857 				packet.compData = adbCompData;
858 				packet.unsol = 0;
859 				packet.ack_only = 0;
860 				adb_pass_up(&packet);
861 			}
862 
863 			adbWaiting = 0;
864 			adbInputBuffer[0] = 0;
865 			adbBuffer = (long)0;
866 			adbCompRout = (long)0;
867 			adbCompData = (long)0;
868 			/*
869 			 * Since we are done, check whether there is any data
870 			 * waiting to do out. If so, start the sending the data.
871 			 */
872 			if (adbOutQueueHasData == 1) {
873 #ifdef ADB_DEBUG
874 				if (adb_debug & 0x80)
875 					printf_intr("XXX: DOING OUT QUEUE\n");
876 #endif
877 				/* copy over data */
878 				memcpy(adbOutputBuffer, adbOutQueue.outBuf,
879 				    adbOutQueue.outBuf[0] + 2);
880 				adbBuffer = adbOutQueue.saveBuf;	/* user data area */
881 				adbCompRout = adbOutQueue.compRout;	/* completion routine */
882 				adbCompData = adbOutQueue.data;	/* comp. rout. data */
883 				adbOutQueueHasData = 0;	/* currently processing
884 							 * "queue" entry */
885 				send = 1;
886 			} else {
887 #ifdef ADB_DEBUG
888 				if (adb_debug & 0x80)
889 					printf_intr("XXending ");
890 #endif
891 				adb_guess_next_device();
892 				adbOutputBuffer[0] = 1;
893 				adbOutputBuffer[1] = ((adbLastDevice & 0x0f) << 4) | 0x0c;
894 				adbSentChars = 0;	/* nothing sent yet */
895 				adbActionState = ADB_ACTION_POLLING;	/* set next state */
896 				ADB_SET_SR_OUTPUT();	/* set shift register for OUT */
897 				ADB_SR() = adbOutputBuffer[1];	/* load byte for output */
898 				adbBusState = ADB_BUS_CMD;	/* set bus to cmd state */
899 				ADB_SET_STATE_CMD();	/* tell ADB that we want to */
900 				break;
901 			}
902 		}
903 
904 		/*
905 		 * If send is true then something above determined that
906 		 * the message has ended and we need to start sending out
907 		 * a new message immediately. This could be because there
908 		 * is data waiting to go out or because an SRQ was seen.
909 		 */
910 		if (send) {
911 			adbSentChars = 0;	/* nothing sent yet */
912 			adbActionState = ADB_ACTION_OUT;	/* set next state */
913 			ADB_SET_SR_OUTPUT();	/* set shift register for OUT */
914 			ADB_SR() = adbOutputBuffer[1];	/* load byte for output */
915 			adbBusState = ADB_BUS_CMD;	/* set bus to cmd state */
916 			ADB_SET_STATE_CMD();	/* tell ADB that we want to
917 						 * send */
918 			break;
919 		}
920 		/* We only get this far if the message hasn't ended yet. */
921 		switch (adbBusState) {	/* set to next state */
922 		case ADB_BUS_EVEN:
923 			ADB_SET_STATE_ODD();	/* set state to odd */
924 			adbBusState = ADB_BUS_ODD;
925 			break;
926 
927 		case ADB_BUS_ODD:
928 			ADB_SET_STATE_EVEN();	/* set state to even */
929 			adbBusState = ADB_BUS_EVEN;
930 			break;
931 		default:
932 			printf_intr("strange state!!!\n");	/* huh? */
933 			break;
934 		}
935 		break;
936 
937 	case ADB_ACTION_OUT:
938 		i = ADB_SR();	/* clear interrupt */
939 		adbSentChars++;
940 		/*
941 		 * If the outgoing data was a TALK, we must
942 		 * switch to input mode to get the result.
943 		 */
944 		if ((adbOutputBuffer[1] & 0x0c) == 0x0c) {
945 			adbInputBuffer[0] = 1;
946 			adbInputBuffer[1] = i;
947 			adbActionState = ADB_ACTION_IN;
948 			ADB_SET_SR_INPUT();
949 			adbBusState = ADB_BUS_EVEN;
950 			ADB_SET_STATE_EVEN();
951 #ifdef ADB_DEBUG
952 			if (adb_debug & 0x80)
953 				printf_intr("talk out 0x%02x ", i);
954 #endif
955 			/* we want something back */
956 			adbWaiting = 1;
957 			break;
958 		}
959 		/*
960 		 * If it's not a TALK, check whether all data has been sent.
961 		 * If so, call the completion routine and clean up. If not,
962 		 * advance to the next state.
963 		 */
964 #ifdef ADB_DEBUG
965 		if (adb_debug & 0x80)
966 			printf_intr("non-talk out 0x%0x ", i);
967 #endif
968 		ADB_SET_SR_OUTPUT();
969 		if (adbOutputBuffer[0] == adbSentChars) {	/* check for done */
970 #ifdef ADB_DEBUG
971 			if (adb_debug & 0x80)
972 				printf_intr("done \n");
973 #endif
974 			/* set up stuff for adb_pass_up */
975 			memcpy(packet.data, adbOutputBuffer, adbOutputBuffer[0] + 1);
976 			packet.saveBuf = adbBuffer;
977 			packet.compRout = adbCompRout;
978 			packet.compData = adbCompData;
979 			packet.cmd = adbWaitingCmd;
980 			packet.unsol = 0;
981 			packet.ack_only = 1;
982 			adb_pass_up(&packet);
983 
984 			/* reset "waiting" vars, just in case */
985 			adbBuffer = (long)0;
986 			adbCompRout = (long)0;
987 			adbCompData = (long)0;
988 			if (adbOutQueueHasData == 1) {
989 				/* copy over data */
990 				memcpy(adbOutputBuffer, adbOutQueue.outBuf,
991 				    adbOutQueue.outBuf[0] + 2);
992 				adbBuffer = adbOutQueue.saveBuf;	/* user data area */
993 				adbCompRout = adbOutQueue.compRout;	/* completion routine */
994 				adbCompData = adbOutQueue.data;	/* comp. rout. data */
995 				adbOutQueueHasData = 0;	/* currently processing
996 							 * "queue" entry */
997 				adbSentChars = 0;	/* nothing sent yet */
998 				adbActionState = ADB_ACTION_OUT;	/* set next state */
999 				ADB_SET_SR_OUTPUT();	/* set shift register for OUT */
1000 				ADB_SR() = adbOutputBuffer[1];	/* load byte for output */
1001 				adbBusState = ADB_BUS_CMD;	/* set bus to cmd state */
1002 				ADB_SET_STATE_CMD();	/* tell ADB that we want to
1003 							 * send */
1004 				break;
1005 			} else {
1006 				/* send talk to last device instead */
1007 				adbOutputBuffer[0] = 1;
1008 				adbOutputBuffer[1] =
1009 				    ADBTALK(ADB_CMDADDR(adbOutputBuffer[1]), 0);
1010 
1011 				adbSentChars = 0;	/* nothing sent yet */
1012 				adbActionState = ADB_ACTION_IDLE;	/* set next state */
1013 				ADB_SET_SR_OUTPUT();	/* set shift register for OUT */
1014 				ADB_SR() = adbOutputBuffer[1];	/* load byte for output */
1015 				adbBusState = ADB_BUS_CMD;	/* set bus to cmd state */
1016 				ADB_SET_STATE_CMD();	/* tell ADB that we want to */
1017 				break;
1018 			}
1019 		}
1020 		ADB_SR() = adbOutputBuffer[adbSentChars + 1];
1021 		switch (adbBusState) {	/* advance to next state */
1022 		case ADB_BUS_EVEN:
1023 			ADB_SET_STATE_ODD();	/* set state to odd */
1024 			adbBusState = ADB_BUS_ODD;
1025 			break;
1026 
1027 		case ADB_BUS_CMD:
1028 		case ADB_BUS_ODD:
1029 			ADB_SET_STATE_EVEN();	/* set state to even */
1030 			adbBusState = ADB_BUS_EVEN;
1031 			break;
1032 
1033 		default:
1034 #ifdef ADB_DEBUG
1035 			if (adb_debug) {
1036 				printf_intr("strange state!!! (0x%x)\n",
1037 				    adbBusState);
1038 			}
1039 #endif
1040 			break;
1041 		}
1042 		break;
1043 
1044 	default:
1045 #ifdef ADB_DEBUG
1046 		if (adb_debug)
1047 			printf_intr("adb: unknown ADB state (during intr)\n");
1048 #endif
1049 		break;
1050 	}
1051 
1052 	ADB_VIA_INTR_ENABLE();	/* enable ADB interrupt on IIs. */
1053 
1054 	splx(s);		/* restore */
1055 
1056 	return;
1057 
1058 }
1059 
1060 
1061 /*
1062  * send_adb version for II series machines
1063  */
1064 int
1065 send_adb_II(u_char *in, u_char *buffer, void *compRout, void *data, int command)
1066 {
1067 	int s, len;
1068 
1069 	if (adbActionState == ADB_ACTION_NOTREADY)	/* return if ADB not
1070 							 * available */
1071 		return 1;
1072 
1073 	/* Don't interrupt while we are messing with the ADB */
1074 	s = splhigh();
1075 
1076 	if (0 != adbOutQueueHasData) {	/* right now, "has data" means "full" */
1077 		splx(s);	/* sorry, try again later */
1078 		return 1;
1079 	}
1080 	if ((long)in == (long)0) {	/* need to convert? */
1081 		/*
1082 		 * Don't need to use adb_cmd_extra here because this section
1083 		 * will be called ONLY when it is an ADB command (no RTC or
1084 		 * PRAM), especially on II series!
1085 		 */
1086 		if ((command & 0x0c) == 0x08)	/* copy addl data ONLY if
1087 						 * doing a listen! */
1088 			len = buffer[0];	/* length of additional data */
1089 		else
1090 			len = 0;/* no additional data */
1091 
1092 		adbOutQueue.outBuf[0] = 1 + len;	/* command + addl. data */
1093 		adbOutQueue.outBuf[1] = (u_char)command;	/* load command */
1094 
1095 		/* copy additional output data, if any */
1096 		memcpy(adbOutQueue.outBuf + 2, buffer + 1, len);
1097 	} else
1098 		/* if data ready, just copy over */
1099 		memcpy(adbOutQueue.outBuf, in, in[0] + 2);
1100 
1101 	adbOutQueue.saveBuf = buffer;	/* save buffer to know where to save
1102 					 * result */
1103 	adbOutQueue.compRout = compRout;	/* save completion routine
1104 						 * pointer */
1105 	adbOutQueue.data = data;/* save completion routine data pointer */
1106 
1107 	if ((adbActionState == ADB_ACTION_IDLE) &&	/* is ADB available? */
1108 	    (ADB_INTR_IS_OFF)) {	/* and no incoming interrupts? */
1109 		/* then start command now */
1110 		memcpy(adbOutputBuffer, adbOutQueue.outBuf,
1111 		    adbOutQueue.outBuf[0] + 2);		/* copy over data */
1112 
1113 		adbBuffer = adbOutQueue.saveBuf;	/* pointer to user data
1114 							 * area */
1115 		adbCompRout = adbOutQueue.compRout;	/* pointer to the
1116 							 * completion routine */
1117 		adbCompData = adbOutQueue.data;	/* pointer to the completion
1118 						 * routine data */
1119 
1120 		adbSentChars = 0;	/* nothing sent yet */
1121 		adbActionState = ADB_ACTION_OUT;	/* set next state */
1122 		adbBusState = ADB_BUS_CMD;	/* set bus to cmd state */
1123 
1124 		ADB_SET_SR_OUTPUT();	/* set shift register for OUT */
1125 
1126 		ADB_SR() = adbOutputBuffer[adbSentChars + 1];	/* load byte for output */
1127 		ADB_SET_STATE_CMD();	/* tell ADB that we want to send */
1128 		adbOutQueueHasData = 0;	/* currently processing "queue" entry */
1129 	} else
1130 		adbOutQueueHasData = 1;	/* something in the write "queue" */
1131 
1132 	splx(s);
1133 
1134 	if (0x0100 <= (s & 0x0700))	/* were VIA1 interrupts blocked? */
1135 		/* poll until message done */
1136 		while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
1137 		    || (adbWaiting == 1))
1138 			if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
1139 				adb_intr_II(NULL); /* go process it */
1140 				if (adb_polling)
1141 					adb_soft_intr();
1142 			}
1143 
1144 	return 0;
1145 }
1146 
1147 
1148 /*
1149  * This routine is called from the II series interrupt routine
1150  * to determine what the "next" device is that should be polled.
1151  */
1152 int
1153 adb_guess_next_device(void)
1154 {
1155 	int last, i, dummy;
1156 
1157 	if (adbStarting) {
1158 		/*
1159 		 * Start polling EVERY device, since we can't be sure there is
1160 		 * anything in the device table yet
1161 		 */
1162 		if (adbLastDevice < 1 || adbLastDevice > 15)
1163 			adbLastDevice = 1;
1164 		if (++adbLastDevice > 15)	/* point to next one */
1165 			adbLastDevice = 1;
1166 	} else {
1167 		/* find the next device using the device table */
1168 		if (adbLastDevice < 1 || adbLastDevice > 15)	/* let's be parinoid */
1169 			adbLastDevice = 2;
1170 		last = 1;	/* default index location */
1171 
1172 		for (i = 1; i < 16; i++)	/* find index entry */
1173 			if (ADBDevTable[i].currentAddr == adbLastDevice) {	/* look for device */
1174 				last = i;	/* found it */
1175 				break;
1176 			}
1177 		dummy = last;	/* index to start at */
1178 		for (;;) {	/* find next device in index */
1179 			if (++dummy > 15)	/* wrap around if needed */
1180 				dummy = 1;
1181 			if (dummy == last) {	/* didn't find any other
1182 						 * device! This can happen if
1183 						 * there are no devices on the
1184 						 * bus */
1185 				dummy = 1;
1186 				break;
1187 			}
1188 			/* found the next device */
1189 			if (ADBDevTable[dummy].devType != 0)
1190 				break;
1191 		}
1192 		adbLastDevice = ADBDevTable[dummy].currentAddr;
1193 	}
1194 	return adbLastDevice;
1195 }
1196 
1197 
1198 /*
1199  * Called when when an adb interrupt happens.
1200  * This routine simply transfers control over to the appropriate
1201  * code for the machine we are running on.
1202  */
1203 void
1204 adb_intr(void *arg)
1205 {
1206 	switch (adbHardware) {
1207 	case ADB_HW_II:
1208 		adb_intr_II(arg);
1209 		break;
1210 
1211 	case ADB_HW_IISI:
1212 		adb_intr_IIsi(arg);
1213 		break;
1214 
1215 	case ADB_HW_PB:		/* Should not come through here. */
1216 		break;
1217 
1218 	case ADB_HW_CUDA:
1219 		adb_intr_cuda(arg);
1220 		break;
1221 
1222 	case ADB_HW_IOP:	/* Should not come through here. */
1223 		break;
1224 
1225 	case ADB_HW_UNKNOWN:
1226 		break;
1227 	}
1228 }
1229 
1230 
1231 /*
1232  * called when when an adb interrupt happens
1233  *
1234  * IIsi version of adb_intr
1235  *
1236  */
1237 void
1238 adb_intr_IIsi(void *arg)
1239 {
1240 	struct adbCommand packet;
1241 	int i, ending;
1242 	unsigned int s;
1243 
1244 	s = splhigh();		/* can't be too careful - might be called */
1245 	/* from a routine, NOT an interrupt */
1246 
1247 	ADB_VIA_CLR_INTR();	/* clear interrupt */
1248 
1249 	ADB_VIA_INTR_DISABLE();	/* disable ADB interrupt on IIs. */
1250 
1251 switch_start:
1252 	switch (adbActionState) {
1253 	case ADB_ACTION_IDLE:
1254 		delay(ADB_DELAY);	/* short delay is required before the
1255 					 * first byte */
1256 
1257 		ADB_SET_SR_INPUT();	/* make sure SR is set to IN */
1258 		ADB_SET_STATE_ACTIVE();	/* signal start of data frame */
1259 		adbInputBuffer[1] = ADB_SR();	/* get byte */
1260 		adbInputBuffer[0] = 1;
1261 		adbActionState = ADB_ACTION_IN;	/* set next state */
1262 
1263 		ADB_SET_STATE_ACKON();	/* start ACK to ADB chip */
1264 		delay(ADB_DELAY);	/* delay */
1265 		ADB_SET_STATE_ACKOFF();	/* end ACK to ADB chip */
1266 		(void)intr_dispatch(0x70); /* grab any serial interrupts */
1267 		break;
1268 
1269 	case ADB_ACTION_IN:
1270 		ADB_SET_SR_INPUT();	/* make sure SR is set to IN */
1271 		adbInputBuffer[++adbInputBuffer[0]] = ADB_SR();	/* get byte */
1272 		if (ADB_INTR_IS_OFF)	/* check for end of frame */
1273 			ending = 1;
1274 		else
1275 			ending = 0;
1276 
1277 		ADB_SET_STATE_ACKON();	/* start ACK to ADB chip */
1278 		delay(ADB_DELAY);	/* delay */
1279 		ADB_SET_STATE_ACKOFF();	/* end ACK to ADB chip */
1280 		(void)intr_dispatch(0x70); /* grab any serial interrupts */
1281 
1282 		if (1 == ending) {	/* end of message? */
1283 			ADB_SET_STATE_INACTIVE();	/* signal end of frame */
1284 			/*
1285 			 * This section _should_ handle all ADB and RTC/PRAM
1286 			 * type commands, but there may be more...  Note:
1287 			 * commands are always at [4], even for rtc/pram
1288 			 * commands
1289 			 */
1290 			/* set up data for adb_pass_up */
1291 			memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
1292 
1293 			if ((adbWaiting == 1) &&	/* are we waiting AND */
1294 			    (adbInputBuffer[4] == adbWaitingCmd) &&	/* the cmd we sent AND */
1295 			    ((adbInputBuffer[2] == 0x00) ||	/* it's from the ADB
1296 								 * device OR */
1297 				(adbInputBuffer[2] == 0x01))) {	/* it's from the
1298 								 * PRAM/RTC device */
1299 
1300 				packet.saveBuf = adbBuffer;
1301 				packet.compRout = adbCompRout;
1302 				packet.compData = adbCompData;
1303 				packet.unsol = 0;
1304 				packet.ack_only = 0;
1305 				adb_pass_up(&packet);
1306 
1307 				adbWaitingCmd = 0;	/* reset "waiting" vars */
1308 				adbWaiting = 0;
1309 				adbBuffer = (long)0;
1310 				adbCompRout = (long)0;
1311 				adbCompData = (long)0;
1312 			} else {
1313 				packet.unsol = 1;
1314 				packet.ack_only = 0;
1315 				adb_pass_up(&packet);
1316 			}
1317 
1318 			adbActionState = ADB_ACTION_IDLE;
1319 			adbInputBuffer[0] = 0;	/* reset length */
1320 
1321 			if (adbWriteDelay == 1) {	/* were we waiting to
1322 							 * write? */
1323 				adbSentChars = 0;	/* nothing sent yet */
1324 				adbActionState = ADB_ACTION_OUT;	/* set next state */
1325 
1326 				delay(ADB_DELAY);	/* delay */
1327 				(void)intr_dispatch(0x70); /* grab any serial interrupts */
1328 
1329 				if (ADB_INTR_IS_ON) {	/* ADB intr low during
1330 							 * write */
1331 					ADB_SET_STATE_IDLE_IISI();	/* reset */
1332 					ADB_SET_SR_INPUT();	/* make sure SR is set
1333 								 * to IN */
1334 					adbSentChars = 0;	/* must start all over */
1335 					adbActionState = ADB_ACTION_IDLE;	/* new state */
1336 					adbInputBuffer[0] = 0;
1337 					/* may be able to take this out later */
1338 					delay(ADB_DELAY);	/* delay */
1339 					break;
1340 				}
1341 				ADB_SET_STATE_ACTIVE();	/* tell ADB that we want
1342 							 * to send */
1343 				ADB_SET_STATE_ACKOFF();	/* make sure */
1344 				ADB_SET_SR_OUTPUT();	/* set shift register
1345 							 * for OUT */
1346 				ADB_SR() = adbOutputBuffer[adbSentChars + 1];
1347 				ADB_SET_STATE_ACKON();	/* tell ADB byte ready
1348 							 * to shift */
1349 			}
1350 		}
1351 		break;
1352 
1353 	case ADB_ACTION_OUT:
1354 		i = ADB_SR();	/* reset SR-intr in IFR */
1355 		ADB_SET_SR_OUTPUT();	/* set shift register for OUT */
1356 
1357 		ADB_SET_STATE_ACKOFF();	/* finish ACK */
1358 		adbSentChars++;
1359 		if (ADB_INTR_IS_ON) {	/* ADB intr low during write */
1360 			ADB_SET_STATE_IDLE_IISI();	/* reset */
1361 			ADB_SET_SR_INPUT();	/* make sure SR is set to IN */
1362 			adbSentChars = 0;	/* must start all over */
1363 			adbActionState = ADB_ACTION_IDLE;	/* new state */
1364 			adbInputBuffer[0] = 0;
1365 			adbWriteDelay = 1;	/* must retry when done with
1366 						 * read */
1367 			delay(ADB_DELAY);	/* delay */
1368 			(void)intr_dispatch(0x70); /* grab any serial interrupts */
1369 			goto switch_start;	/* process next state right
1370 						 * now */
1371 			break;
1372 		}
1373 		delay(ADB_DELAY);	/* required delay */
1374 		(void)intr_dispatch(0x70); /* grab any serial interrupts */
1375 
1376 		if (adbOutputBuffer[0] == adbSentChars) {	/* check for done */
1377 			if (0 == adb_cmd_result(adbOutputBuffer)) {	/* do we expect data
1378 									 * back? */
1379 				adbWaiting = 1;	/* signal waiting for return */
1380 				adbWaitingCmd = adbOutputBuffer[2];	/* save waiting command */
1381 			} else {/* no talk, so done */
1382 				/* set up stuff for adb_pass_up */
1383 				memcpy(packet.data, adbInputBuffer,
1384 				    adbInputBuffer[0] + 1);
1385 				packet.saveBuf = adbBuffer;
1386 				packet.compRout = adbCompRout;
1387 				packet.compData = adbCompData;
1388 				packet.cmd = adbWaitingCmd;
1389 				packet.unsol = 0;
1390 				packet.ack_only = 1;
1391 				adb_pass_up(&packet);
1392 
1393 				/* reset "waiting" vars, just in case */
1394 				adbWaitingCmd = 0;
1395 				adbBuffer = (long)0;
1396 				adbCompRout = (long)0;
1397 				adbCompData = (long)0;
1398 			}
1399 
1400 			adbWriteDelay = 0;	/* done writing */
1401 			adbActionState = ADB_ACTION_IDLE;	/* signal bus is idle */
1402 			ADB_SET_SR_INPUT();	/* make sure SR is set to IN */
1403 			ADB_SET_STATE_INACTIVE();	/* end of frame */
1404 		} else {
1405 			ADB_SR() = adbOutputBuffer[adbSentChars + 1];	/* send next byte */
1406 			ADB_SET_STATE_ACKON();	/* signal byte ready to shift */
1407 		}
1408 		break;
1409 
1410 	case ADB_ACTION_NOTREADY:
1411 #ifdef ADB_DEBUG
1412 		if (adb_debug)
1413 			printf_intr("adb: not yet initialized\n");
1414 #endif
1415 		break;
1416 
1417 	default:
1418 #ifdef ADB_DEBUG
1419 		if (adb_debug)
1420 			printf_intr("intr: unknown ADB state\n");
1421 #endif
1422 		break;
1423 	}
1424 
1425 	ADB_VIA_INTR_ENABLE();	/* enable ADB interrupt on IIs. */
1426 
1427 	splx(s);		/* restore */
1428 
1429 	return;
1430 }				/* end adb_intr_IIsi */
1431 
1432 
1433 /*****************************************************************************
1434  * if the device is currently busy, and there is no data waiting to go out, then
1435  * the data is "queued" in the outgoing buffer. If we are already waiting, then
1436  * we return.
1437  * in: if (in == 0) then the command string is built from command and buffer
1438  *     if (in != 0) then in is used as the command string
1439  * buffer: additional data to be sent (used only if in == 0)
1440  *         this is also where return data is stored
1441  * compRout: the completion routine that is called when then return value
1442  *	     is received (if a return value is expected)
1443  * data: a data pointer that can be used by the completion routine
1444  * command: an ADB command to be sent (used only if in == 0)
1445  *
1446  */
1447 int
1448 send_adb_IIsi(u_char *in, u_char *buffer, void *compRout, void *data, int
1449 	command)
1450 {
1451 	int s, len;
1452 
1453 	if (adbActionState == ADB_ACTION_NOTREADY)
1454 		return 1;
1455 
1456 	/* Don't interrupt while we are messing with the ADB */
1457 	s = splhigh();
1458 
1459 	if ((adbActionState == ADB_ACTION_IDLE) &&	/* ADB available? */
1460 	    (ADB_INTR_IS_OFF)) {/* and no incoming interrupt? */
1461 
1462 	} else
1463 		if (adbWriteDelay == 0)	/* it's busy, but is anything waiting? */
1464 			adbWriteDelay = 1;	/* if no, then we'll "queue"
1465 						 * it up */
1466 		else {
1467 			splx(s);
1468 			return 1;	/* really busy! */
1469 		}
1470 
1471 	if ((long)in == (long)0) {	/* need to convert? */
1472 		/*
1473 		 * Don't need to use adb_cmd_extra here because this section
1474 		 * will be called ONLY when it is an ADB command (no RTC or
1475 		 * PRAM)
1476 		 */
1477 		if ((command & 0x0c) == 0x08)	/* copy addl data ONLY if
1478 						 * doing a listen! */
1479 			len = buffer[0];	/* length of additional data */
1480 		else
1481 			len = 0;/* no additional data */
1482 
1483 		adbOutputBuffer[0] = 2 + len;	/* dev. type + command + addl.
1484 						 * data */
1485 		adbOutputBuffer[1] = 0x00;	/* mark as an ADB command */
1486 		adbOutputBuffer[2] = (u_char)command;	/* load command */
1487 
1488 		/* copy additional output data, if any */
1489 		memcpy(adbOutputBuffer + 3, buffer + 1, len);
1490 	} else
1491 		/* if data ready, just copy over */
1492 		memcpy(adbOutputBuffer, in, in[0] + 2);
1493 
1494 	adbSentChars = 0;	/* nothing sent yet */
1495 	adbBuffer = buffer;	/* save buffer to know where to save result */
1496 	adbCompRout = compRout;	/* save completion routine pointer */
1497 	adbCompData = data;	/* save completion routine data pointer */
1498 	adbWaitingCmd = adbOutputBuffer[2];	/* save wait command */
1499 
1500 	if (adbWriteDelay != 1) {	/* start command now? */
1501 		adbActionState = ADB_ACTION_OUT;	/* set next state */
1502 
1503 		ADB_SET_STATE_ACTIVE();	/* tell ADB that we want to send */
1504 		ADB_SET_STATE_ACKOFF();	/* make sure */
1505 
1506 		ADB_SET_SR_OUTPUT();	/* set shift register for OUT */
1507 
1508 		ADB_SR() = adbOutputBuffer[adbSentChars + 1];	/* load byte for output */
1509 
1510 		ADB_SET_STATE_ACKON();	/* tell ADB byte ready to shift */
1511 	}
1512 	adbWriteDelay = 1;	/* something in the write "queue" */
1513 
1514 	splx(s);
1515 
1516 	if (0x0100 <= (s & 0x0700))	/* were VIA1 interrupts blocked? */
1517 		/* poll until byte done */
1518 		while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
1519 		    || (adbWaiting == 1))
1520 			if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
1521 				adb_intr_IIsi(NULL); /* go process it */
1522 				if (adb_polling)
1523 					adb_soft_intr();
1524 			}
1525 
1526 	 return 0;
1527 }				/* send_adb_IIsi */
1528 
1529 void
1530 adb_iop_recv(IOP *iop, struct iop_msg *msg)
1531 {
1532 	struct adbCommand	pkt;
1533 	unsigned		flags;
1534 
1535 	if (adbActionState != ADB_ACTION_RUNNING)
1536 		return;
1537 
1538 	switch (msg->status) {
1539 	case IOP_MSGSTAT_SENT:
1540 		if (0 == adb_cmd_result(msg->msg + 1)) {
1541 			adbWaiting = 1;
1542 			adbWaitingCmd = msg->msg[2];
1543 		}
1544 		break;
1545 	case IOP_MSGSTAT_RECEIVED:
1546 	case IOP_MSGSTAT_UNEXPECTED:
1547 		flags = msg->msg[0];
1548 		if (flags != 0) {
1549 			printf("ADB FLAGS 0x%x", flags);
1550 			break;
1551 		}
1552 		if (adbWaiting &&
1553 		    (msg->msg[2] == adbWaitingCmd)) {
1554 			pkt.saveBuf = msg->msg + 1;
1555 			pkt.compRout = adbCompRout;
1556 			pkt.compData = adbCompData;
1557 			pkt.unsol = 0;
1558 			pkt.ack_only = 0;
1559 			adb_pass_up(&pkt);
1560 
1561 			adbWaitingCmd = 0;
1562 			adbWaiting = 0;
1563 		} else {
1564 			pkt.unsol = 1;
1565 			pkt.ack_only = 0;
1566 			adb_pass_up(&pkt);
1567 		}
1568 		break;
1569 	default:
1570 		return;
1571 	}
1572 }
1573 
1574 int
1575 send_adb_iop(int cmd, u_char * buffer, void *compRout, void *data)
1576 {
1577 	u_char	buff[32];
1578 	int	cnt;
1579 
1580 	if (adbActionState != ADB_ACTION_RUNNING)
1581 		return -1;
1582 
1583 	buff[0] = IOP_ADB_FL_EXPLICIT;
1584 	buff[1] = buffer[0];
1585 	buff[2] = cmd;
1586 	cnt = (int) buff[1];
1587 	memcpy(buff + 3, buffer + 1, cnt);
1588 	return iop_send_msg(ISM_IOP, IOP_CHAN_ADB, buff, cnt+3,
1589 			    adb_iop_recv, NULL);
1590 }
1591 
1592 /*
1593  * adb_pass_up is called by the interrupt-time routines.
1594  * It takes the raw packet data that was received from the
1595  * device and puts it into the queue that the upper half
1596  * processes. It then signals for a soft ADB interrupt which
1597  * will eventually call the upper half routine (adb_soft_intr).
1598  *
1599  * If in->unsol is 0, then this is either the notification
1600  * that the packet was sent (on a LISTEN, for example), or the
1601  * response from the device (on a TALK). The completion routine
1602  * is called only if the user specified one.
1603  *
1604  * If in->unsol is 1, then this packet was unsolicited and
1605  * so we look up the device in the ADB device table to determine
1606  * what it's default service routine is.
1607  *
1608  * If in->ack_only is 1, then we really only need to call
1609  * the completion routine, so don't do any other stuff.
1610  *
1611  * Note that in->data contains the packet header AND data,
1612  * while adbInbound[]->data contains ONLY data.
1613  *
1614  * Note: Called only at interrupt time. Assumes this.
1615  */
1616 void
1617 adb_pass_up(struct adbCommand *in)
1618 {
1619 	int start = 0, len = 0, cmd = 0;
1620 	ADBDataBlock block;
1621 
1622 	/* temp for testing */
1623 	/*u_char *buffer = 0;*/
1624 	/*u_char *compdata = 0;*/
1625 	/*u_char *comprout = 0;*/
1626 
1627 	if (adbInCount >= ADB_QUEUE) {
1628 #ifdef ADB_DEBUG
1629 		if (adb_debug)
1630 			printf_intr("adb: ring buffer overflow\n");
1631 #endif
1632 		return;
1633 	}
1634 
1635 	if (in->ack_only) {
1636 		len = in->data[0];
1637 		cmd = in->cmd;
1638 		start = 0;
1639 	} else {
1640 		switch (adbHardware) {
1641 		case ADB_HW_IOP:
1642 		case ADB_HW_II:
1643 			cmd = in->data[1];
1644 			if (in->data[0] < 2)
1645 				len = 0;
1646 			else
1647 				len = in->data[0]-1;
1648 			start = 1;
1649 			break;
1650 
1651 		case ADB_HW_IISI:
1652 		case ADB_HW_CUDA:
1653 			/* If it's unsolicited, accept only ADB data for now */
1654 			if (in->unsol)
1655 				if (0 != in->data[2])
1656 					return;
1657 			cmd = in->data[4];
1658 			if (in->data[0] < 5)
1659 				len = 0;
1660 			else
1661 				len = in->data[0]-4;
1662 			start = 4;
1663 			break;
1664 
1665 		case ADB_HW_PB:
1666 			cmd = in->data[1];
1667 			if (in->data[0] < 2)
1668 				len = 0;
1669 			else
1670 				len = in->data[0]-1;
1671 			start = 1;
1672 			break;
1673 
1674 		case ADB_HW_UNKNOWN:
1675 			return;
1676 		}
1677 
1678 		/* Make sure there is a valid device entry for this device */
1679 		if (in->unsol) {
1680 			/* ignore unsolicited data during adbreinit */
1681 			if (adbStarting)
1682 				return;
1683 			/* get device's comp. routine and data area */
1684 			if (-1 == get_adb_info(&block, ADB_CMDADDR(cmd)))
1685 				return;
1686 		}
1687 	}
1688 
1689 	/*
1690  	 * If this is an unsolicited packet, we need to fill in
1691  	 * some info so adb_soft_intr can process this packet
1692  	 * properly. If it's not unsolicited, then use what
1693  	 * the caller sent us.
1694  	 */
1695 	if (in->unsol) {
1696 		adbInbound[adbInTail].compRout = (void *)block.dbServiceRtPtr;
1697 		adbInbound[adbInTail].compData = (void *)block.dbDataAreaAddr;
1698 		adbInbound[adbInTail].saveBuf = (void *)adbInbound[adbInTail].data;
1699 	} else {
1700 		adbInbound[adbInTail].compRout = (void *)in->compRout;
1701 		adbInbound[adbInTail].compData = (void *)in->compData;
1702 		adbInbound[adbInTail].saveBuf = (void *)in->saveBuf;
1703 	}
1704 
1705 #ifdef ADB_DEBUG
1706 	if (adb_debug && in->data[1] == 2)
1707 		printf_intr("adb: caught error\n");
1708 #endif
1709 
1710 	/* copy the packet data over */
1711 	/*
1712 	 * TO DO: If the *_intr routines fed their incoming data
1713 	 * directly into an adbCommand struct, which is passed to
1714 	 * this routine, then we could eliminate this copy.
1715 	 */
1716 	memcpy(adbInbound[adbInTail].data + 1, in->data + start + 1, len);
1717 	adbInbound[adbInTail].data[0] = len;
1718 	adbInbound[adbInTail].cmd = cmd;
1719 
1720 	adbInCount++;
1721 	if (++adbInTail >= ADB_QUEUE)
1722 		adbInTail = 0;
1723 
1724 	/*
1725 	 * If the debugger is running, call upper half manually.
1726 	 * Otherwise, trigger a soft interrupt to handle the rest later.
1727 	 */
1728 	if (adb_polling)
1729 		adb_soft_intr();
1730 	else
1731 		softint_schedule(adb_softintr_cookie);
1732 
1733 	return;
1734 }
1735 
1736 
1737 /*
1738  * Called to process the packets after they have been
1739  * placed in the incoming queue.
1740  *
1741  */
1742 void
1743 adb_soft_intr(void)
1744 {
1745 	int s;
1746 	int cmd = 0;
1747 	u_char *buffer = 0;
1748 	u_char *comprout = 0;
1749 	u_char *compdata = 0;
1750 
1751 #if 0
1752 	s = splhigh();
1753 	printf_intr("sr: %x\n", (s & 0x0700));
1754 	splx(s);
1755 #endif
1756 
1757 /*delay(2*ADB_DELAY);*/
1758 
1759 	while (adbInCount) {
1760 #ifdef ADB_DEBUG
1761 		if (adb_debug & 0x80)
1762 			printf_intr("%x %x %x ",
1763 			    adbInCount, adbInHead, adbInTail);
1764 #endif
1765 		/* get the data we need from the queue */
1766 		buffer = adbInbound[adbInHead].saveBuf;
1767 		comprout = adbInbound[adbInHead].compRout;
1768 		compdata = adbInbound[adbInHead].compData;
1769 		cmd = adbInbound[adbInHead].cmd;
1770 
1771 		/* copy over data to data area if it's valid */
1772 		/*
1773 		 * Note that for unsol packets we don't want to copy the
1774 	 	 * data anywhere, so buffer was already set to 0.
1775 	 	 * For ack_only buffer was set to 0, so don't copy.
1776 		 */
1777 		if (buffer)
1778 			memcpy(buffer, adbInbound[adbInHead].data,
1779 			    adbInbound[adbInHead].data[0] + 1);
1780 
1781 #ifdef ADB_DEBUG
1782 			if (adb_debug & 0x80) {
1783 				printf_intr("%p %p %p %x ",
1784 				    buffer, comprout, compdata, (short)cmd);
1785 				printf_intr("buf: ");
1786 				print_single(adbInbound[adbInHead].data);
1787 			}
1788 #endif
1789 
1790 		/* call default completion routine if it's valid */
1791 		if (comprout) {
1792 #ifdef __NetBSD__
1793 			__asm volatile (
1794 			"	movml #0xffff,%%sp@- \n" /* save all regs */
1795 			"	movl %0,%%a2	\n" 	/* compdata */
1796 			"	movl %1,%%a1	\n" 	/* comprout */
1797 			"	movl %2,%%a0 	\n"	/* buffer */
1798 			"	movl %3,%%d0 	\n"	/* cmd */
1799 			"	jbsr %%a1@ 	\n"	/* go call routine */
1800 			"	movml %%sp@+,#0xffff"	/* restore all regs */
1801 			    :
1802 			    : "g"(compdata), "g"(comprout),
1803 				"g"(buffer), "g"(cmd)
1804 			    : "d0", "a0", "a1", "a2");
1805 #else					/* for macos based testing */
1806 			asm
1807 			{
1808 				movem.l a0/a1/a2/d0, -(a7)
1809 				move.l compdata, a2
1810 				move.l comprout, a1
1811 				move.l buffer, a0
1812 				move.w cmd, d0
1813 				jsr(a1)
1814 				movem.l(a7)+, d0/a2/a1/a0
1815 			}
1816 #endif
1817 
1818 		}
1819 
1820 		s = splhigh();
1821 		adbInCount--;
1822 		if (++adbInHead >= ADB_QUEUE)
1823 			adbInHead = 0;
1824 		splx(s);
1825 
1826 	}
1827 	return;
1828 }
1829 
1830 
1831 /*
1832  * This is my version of the ADBOp routine. It mainly just calls the
1833  * hardware-specific routine.
1834  *
1835  *   data 	: pointer to data area to be used by compRout
1836  *   compRout	: completion routine
1837  *   buffer	: for LISTEN: points to data to send - MAX 8 data bytes,
1838  *		  byte 0 = # of bytes
1839  *		: for TALK: points to place to save return data
1840  *   command	: the adb command to send
1841  *   result	: 0 = success
1842  *		: -1 = could not complete
1843  */
1844 int
1845 adb_op(Ptr buffer, Ptr compRout, Ptr data, short command)
1846 {
1847 	int result;
1848 
1849 	switch (adbHardware) {
1850 	case ADB_HW_II:
1851 		result = send_adb_II((u_char *)0, (u_char *)buffer,
1852 		    (void *)compRout, (void *)data, (int)command);
1853 		if (result == 0)
1854 			return 0;
1855 		else
1856 			return -1;
1857 		break;
1858 
1859 	case ADB_HW_IOP:
1860 #ifdef __notyet__
1861 		result = send_adb_iop((int)command, (u_char *)buffer,
1862 		    (void *)compRout, (void *)data);
1863 		if (result == 0)
1864 			return 0;
1865 		else
1866 #endif
1867 			return -1;
1868 		break;
1869 
1870 	case ADB_HW_IISI:
1871 		result = send_adb_IIsi((u_char *)0, (u_char *)buffer,
1872 		    (void *)compRout, (void *)data, (int)command);
1873 		/*
1874 		 * I wish I knew why this delay is needed. It usually needs to
1875 		 * be here when several commands are sent in close succession,
1876 		 * especially early in device probes when doing collision
1877 		 * detection. It must be some race condition. Sigh. - jpw
1878 		 */
1879 		delay(100);
1880 		if (result == 0)
1881 			return 0;
1882 		else
1883 			return -1;
1884 		break;
1885 
1886 	case ADB_HW_PB:
1887 		result = pm_adb_op((u_char *)buffer, (void *)compRout,
1888 		    (void *)data, (int)command);
1889 
1890 		if (result == 0)
1891 			return 0;
1892 		else
1893 			return -1;
1894 		break;
1895 
1896 	case ADB_HW_CUDA:
1897 		result = send_adb_cuda((u_char *)0, (u_char *)buffer,
1898 		    (void *)compRout, (void *)data, (int)command);
1899 		if (result == 0)
1900 			return 0;
1901 		else
1902 			return -1;
1903 		break;
1904 
1905 	case ADB_HW_UNKNOWN:
1906 	default:
1907 		return -1;
1908 	}
1909 }
1910 
1911 
1912 /*
1913  * adb_hw_setup
1914  * This routine sets up the possible machine specific hardware
1915  * config (mainly VIA settings) for the various models.
1916  */
1917 void
1918 adb_hw_setup(void)
1919 {
1920 	volatile int i;
1921 	u_char send_string[ADB_MAX_MSG_LENGTH];
1922 
1923 	switch (adbHardware) {
1924 	case ADB_HW_II:
1925 		via1_register_irq(2, adb_intr_II, NULL);
1926 
1927 		via_reg(VIA1, vDirB) |= 0x30;	/* register B bits 4 and 5:
1928 						 * outputs */
1929 		via_reg(VIA1, vDirB) &= 0xf7;	/* register B bit 3: input */
1930 		via_reg(VIA1, vACR) &= ~vSR_OUT;	/* make sure SR is set
1931 							 * to IN (II, IIsi) */
1932 		adbActionState = ADB_ACTION_IDLE;	/* used by all types of
1933 							 * hardware (II, IIsi) */
1934 		adbBusState = ADB_BUS_IDLE;	/* this var. used in II-series
1935 						 * code only */
1936 		via_reg(VIA1, vIER) = 0x84;	/* make sure VIA interrupts
1937 						 * are on (II, IIsi) */
1938 		ADB_SET_STATE_IDLE_II();	/* set ADB bus state to idle */
1939 
1940 		ADB_VIA_CLR_INTR();	/* clear interrupt */
1941 		break;
1942 
1943 	case ADB_HW_IOP:
1944 		via_reg(VIA1, vIER) = 0x84;
1945 		via_reg(VIA1, vIFR) = 0x04;
1946 #ifdef __notyet__
1947 		adbActionState = ADB_ACTION_RUNNING;
1948 #endif
1949 		break;
1950 
1951 	case ADB_HW_IISI:
1952 		via1_register_irq(2, adb_intr_IIsi, NULL);
1953 		via_reg(VIA1, vDirB) |= 0x30;	/* register B bits 4 and 5:
1954 						 * outputs */
1955 		via_reg(VIA1, vDirB) &= 0xf7;	/* register B bit 3: input */
1956 		via_reg(VIA1, vACR) &= ~vSR_OUT;	/* make sure SR is set
1957 							 * to IN (II, IIsi) */
1958 		adbActionState = ADB_ACTION_IDLE;	/* used by all types of
1959 							 * hardware (II, IIsi) */
1960 		adbBusState = ADB_BUS_IDLE;	/* this var. used in II-series
1961 						 * code only */
1962 		via_reg(VIA1, vIER) = 0x84;	/* make sure VIA interrupts
1963 						 * are on (II, IIsi) */
1964 		ADB_SET_STATE_IDLE_IISI();	/* set ADB bus state to idle */
1965 
1966 		/* get those pesky clock ticks we missed while booting */
1967 		for (i = 0; i < 30; i++) {
1968 			delay(ADB_DELAY);
1969 			adb_hw_setup_IIsi(send_string);
1970 #ifdef ADB_DEBUG
1971 			if (adb_debug) {
1972 				printf_intr("adb: cleanup: ");
1973 				print_single(send_string);
1974 			}
1975 #endif
1976 			delay(ADB_DELAY);
1977 			if (ADB_INTR_IS_OFF)
1978 				break;
1979 		}
1980 		break;
1981 
1982 	case ADB_HW_PB:
1983 		/*
1984 		 * XXX - really PM_VIA_CLR_INTR - should we put it in
1985 		 * pm_direct.h?
1986 		 */
1987 		pm_hw_setup();
1988 		break;
1989 
1990 	case ADB_HW_CUDA:
1991 		via1_register_irq(2, adb_intr_cuda, NULL);
1992 		via_reg(VIA1, vDirB) |= 0x30;	/* register B bits 4 and 5:
1993 						 * outputs */
1994 		via_reg(VIA1, vDirB) &= 0xf7;	/* register B bit 3: input */
1995 		via_reg(VIA1, vACR) &= ~vSR_OUT;	/* make sure SR is set
1996 							 * to IN */
1997 		via_reg(VIA1, vACR) = (via_reg(VIA1, vACR) | 0x0c) & ~0x10;
1998 		adbActionState = ADB_ACTION_IDLE;	/* used by all types of
1999 							 * hardware */
2000 		adbBusState = ADB_BUS_IDLE;	/* this var. used in II-series
2001 						 * code only */
2002 		via_reg(VIA1, vIER) = 0x84;	/* make sure VIA interrupts
2003 						 * are on */
2004 		ADB_SET_STATE_IDLE_CUDA();	/* set ADB bus state to idle */
2005 
2006 		/* sort of a device reset */
2007 		i = ADB_SR();	/* clear interrupt */
2008 		ADB_VIA_INTR_DISABLE();	/* no interrupts while clearing */
2009 		ADB_SET_STATE_IDLE_CUDA();	/* reset state to idle */
2010 		delay(ADB_DELAY);
2011 		ADB_SET_STATE_TIP();	/* signal start of frame */
2012 		delay(ADB_DELAY);
2013 		ADB_TOGGLE_STATE_ACK_CUDA();
2014 		delay(ADB_DELAY);
2015 		ADB_CLR_STATE_TIP();
2016 		delay(ADB_DELAY);
2017 		ADB_SET_STATE_IDLE_CUDA();	/* back to idle state */
2018 		i = ADB_SR();	/* clear interrupt */
2019 		ADB_VIA_INTR_ENABLE();	/* ints ok now */
2020 		break;
2021 
2022 	case ADB_HW_UNKNOWN:
2023 	default:
2024 		via_reg(VIA1, vIER) = 0x04;	/* turn interrupts off - TO
2025 						 * DO: turn PB ints off? */
2026 		return;
2027 		break;
2028 	}
2029 }
2030 
2031 
2032 /*
2033  * adb_hw_setup_IIsi
2034  * This is sort of a "read" routine that forces the adb hardware through a read cycle
2035  * if there is something waiting. This helps "clean up" any commands that may have gotten
2036  * stuck or stopped during the boot process.
2037  *
2038  */
2039 void
2040 adb_hw_setup_IIsi(u_char *buffer)
2041 {
2042 	int i;
2043 	int dummy;
2044 	int s;
2045 	long my_time;
2046 	int endofframe;
2047 
2048 	delay(ADB_DELAY);
2049 
2050 	i = 1;			/* skip over [0] */
2051 	s = splhigh();		/* block ALL interrupts while we are working */
2052 	ADB_SET_SR_INPUT();	/* make sure SR is set to IN */
2053 	ADB_VIA_INTR_DISABLE();	/* disable ADB interrupt on IIs. */
2054 	/* this is required, especially on faster machines */
2055 	delay(ADB_DELAY);
2056 
2057 	if (ADB_INTR_IS_ON) {
2058 		ADB_SET_STATE_ACTIVE();	/* signal start of data frame */
2059 
2060 		endofframe = 0;
2061 		while (0 == endofframe) {
2062 			/*
2063 			 * Poll for ADB interrupt and watch for timeout.
2064 			 * If time out, keep going in hopes of not hanging
2065 			 * the ADB chip - I think
2066 			 */
2067 			my_time = ADB_DELAY * 5;
2068 			while ((ADB_SR_INTR_IS_OFF) && (my_time-- > 0))
2069 				dummy = via_reg(VIA1, vBufB);
2070 
2071 			buffer[i++] = ADB_SR();	/* reset interrupt flag by
2072 						 * reading vSR */
2073 			/*
2074 			 * Perhaps put in a check here that ignores all data
2075 			 * after the first ADB_MAX_MSG_LENGTH bytes ???
2076 			 */
2077 			if (ADB_INTR_IS_OFF)	/* check for end of frame */
2078 				endofframe = 1;
2079 
2080 			ADB_SET_STATE_ACKON();	/* send ACK to ADB chip */
2081 			delay(ADB_DELAY);	/* delay */
2082 			ADB_SET_STATE_ACKOFF();	/* send ACK to ADB chip */
2083 		}
2084 		ADB_SET_STATE_INACTIVE();	/* signal end of frame and
2085 						 * delay */
2086 
2087 		/* probably don't need to delay this long */
2088 		delay(ADB_DELAY);
2089 	}
2090 	buffer[0] = --i;	/* [0] is length of message */
2091 	ADB_VIA_INTR_ENABLE();	/* enable ADB interrupt on IIs. */
2092 	splx(s);		/* restore interrupts */
2093 
2094 	return;
2095 }				/* adb_hw_setup_IIsi */
2096 
2097 
2098 
2099 /*
2100  * adb_reinit sets up the adb stuff
2101  *
2102  */
2103 void
2104 adb_reinit(void)
2105 {
2106 	u_char send_string[ADB_MAX_MSG_LENGTH];
2107 	ADBDataBlock data;	/* temp. holder for getting device info */
2108 	volatile int i, x;
2109 	int s;
2110 	int command;
2111 	int result;
2112 	int saveptr;		/* point to next free relocation address */
2113 	int device;
2114 	int nonewtimes;		/* times thru loop w/o any new devices */
2115 	static bool again;
2116 
2117 	if (!again) {
2118 		callout_init(&adb_cuda_tickle_ch, 0);
2119 		again = true;
2120 	}
2121 
2122 	adb_setup_hw_type();	/* setup hardware type */
2123 
2124 	/* Make sure we are not interrupted while building the table. */
2125 	/* ints must be on for PB & IOP (at least, for now) */
2126 	if (adbHardware != ADB_HW_PB && adbHardware != ADB_HW_IOP)
2127 		s = splhigh();
2128 	else
2129 		s = 0;		/* XXX shut the compiler up*/
2130 
2131 	ADBNumDevices = 0;	/* no devices yet */
2132 
2133 	/* Let intr routines know we are running reinit */
2134 	adbStarting = 1;
2135 
2136 	/*
2137 	 * Initialize the ADB table.  For now, we'll always use the same table
2138 	 * that is defined at the beginning of this file - no mallocs.
2139 	 */
2140 	for (i = 0; i < 16; i++) {
2141 		ADBDevTable[i].devType = 0;
2142 		ADBDevTable[i].origAddr = ADBDevTable[i].currentAddr = 0;
2143 	}
2144 
2145 	adb_hw_setup();		/* init the VIA bits and hard reset ADB */
2146 
2147 	delay(1000);
2148 
2149 	/* send an ADB reset first */
2150 	(void)adb_op_sync((Ptr)0, (Ptr)0, (Ptr)0, (short)0x00);
2151 	delay(3000);
2152 
2153 	/*
2154 	 * Probe for ADB devices. Probe devices 1-15 quickly to determine
2155 	 * which device addresses are in use and which are free. For each
2156 	 * address that is in use, move the device at that address to a higher
2157 	 * free address. Continue doing this at that address until no device
2158 	 * responds at that address. Then move the last device that was moved
2159 	 * back to the original address. Do this for the remaining addresses
2160 	 * that we determined were in use.
2161 	 *
2162 	 * When finished, do this entire process over again with the updated
2163 	 * list of in use addresses. Do this until no new devices have been
2164 	 * found in 20 passes though the in use address list. (This probably
2165 	 * seems long and complicated, but it's the best way to detect multiple
2166 	 * devices at the same address - sometimes it takes a couple of tries
2167 	 * before the collision is detected.)
2168 	 */
2169 
2170 	/* initial scan through the devices */
2171 	for (i = 1; i < 16; i++) {
2172 		command = ADBTALK(i, 3);
2173 		result = adb_op_sync((Ptr)send_string, (Ptr)0,
2174 		    (Ptr)0, (short)command);
2175 
2176 		if (result == 0 && send_string[0] != 0) {
2177 			/* found a device */
2178 			++ADBNumDevices;
2179 			KASSERT(ADBNumDevices < 16);
2180 			ADBDevTable[ADBNumDevices].devType =
2181 				(int)(send_string[2]);
2182 			ADBDevTable[ADBNumDevices].origAddr = i;
2183 			ADBDevTable[ADBNumDevices].currentAddr = i;
2184 			ADBDevTable[ADBNumDevices].DataAreaAddr =
2185 			    (long)0;
2186 			ADBDevTable[ADBNumDevices].ServiceRtPtr = (void *)0;
2187 			pm_check_adb_devices(i);	/* tell pm driver device
2188 							 * is here */
2189 		}
2190 	}
2191 
2192 	/* find highest unused address */
2193 	for (saveptr = 15; saveptr > 0; saveptr--)
2194 		if (-1 == get_adb_info(&data, saveptr))
2195 			break;
2196 
2197 #ifdef ADB_DEBUG
2198 	if (adb_debug & 0x80) {
2199 		printf_intr("first free is: 0x%02x\n", saveptr);
2200 		printf_intr("devices: %i\n", ADBNumDevices);
2201 	}
2202 #endif
2203 
2204 	nonewtimes = 0;		/* no loops w/o new devices */
2205 	while (saveptr > 0 && nonewtimes++ < 11) {
2206 		for (i = 1;saveptr > 0 && i <= ADBNumDevices; i++) {
2207 			device = ADBDevTable[i].currentAddr;
2208 #ifdef ADB_DEBUG
2209 			if (adb_debug & 0x80)
2210 				printf_intr("moving device 0x%02x to 0x%02x "
2211 				    "(index 0x%02x)  ", device, saveptr, i);
2212 #endif
2213 
2214 			/* send TALK R3 to address */
2215 			command = ADBTALK(device, 3);
2216 			(void)adb_op_sync((Ptr)send_string, (Ptr)0,
2217 			    (Ptr)0, (short)command);
2218 
2219 			/* move device to higher address */
2220 			command = ADBLISTEN(device, 3);
2221 			send_string[0] = 2;
2222 			send_string[1] = (u_char)(saveptr | 0x60);
2223 			send_string[2] = 0xfe;
2224 			(void)adb_op_sync((Ptr)send_string, (Ptr)0,
2225 			    (Ptr)0, (short)command);
2226 			delay(1000);
2227 
2228 			/* send TALK R3 - anthing at new address? */
2229 			command = ADBTALK(saveptr, 3);
2230 			send_string[0] = 0;
2231 			result = adb_op_sync((Ptr)send_string, (Ptr)0,
2232 			    (Ptr)0, (short)command);
2233 			delay(1000);
2234 
2235 			if (result != 0 || send_string[0] == 0) {
2236 				/*
2237 				 * maybe there's a communication breakdown;
2238 				 * just in case, move it back from whence it
2239 				 * came, and we'll try again later
2240 				 */
2241 				command = ADBLISTEN(saveptr, 3);
2242 				send_string[0] = 2;
2243 				send_string[1] = (u_char)(device | 0x60);
2244 				send_string[2] = 0x00;
2245 				(void)adb_op_sync((Ptr)send_string, (Ptr)0,
2246 				    (Ptr)0, (short)command);
2247 #ifdef ADB_DEBUG
2248 				if (adb_debug & 0x80)
2249 					printf_intr("failed, continuing\n");
2250 #endif
2251 				delay(1000);
2252 				continue;
2253 			}
2254 
2255 			/* send TALK R3 - anything at old address? */
2256 			command = ADBTALK(device, 3);
2257 			send_string[0] = 0;
2258 			result = adb_op_sync((Ptr)send_string, (Ptr)0,
2259 			    (Ptr)0, (short)command);
2260 			if (result == 0 && send_string[0] != 0) {
2261 				/* new device found */
2262 				/* update data for previously moved device */
2263 				ADBDevTable[i].currentAddr = saveptr;
2264 #ifdef ADB_DEBUG
2265 				if (adb_debug & 0x80)
2266 					printf_intr("old device at index %i\n",i);
2267 #endif
2268 				/* add new device in table */
2269 #ifdef ADB_DEBUG
2270 				if (adb_debug & 0x80)
2271 					printf_intr("new device found\n");
2272 #endif
2273 				if (saveptr > ADBNumDevices) {
2274 					++ADBNumDevices;
2275 					KASSERT(ADBNumDevices < 16);
2276 				}
2277 				ADBDevTable[ADBNumDevices].devType =
2278 					(int)(send_string[2]);
2279 				ADBDevTable[ADBNumDevices].origAddr = device;
2280 				ADBDevTable[ADBNumDevices].currentAddr = device;
2281 				/* These will be set correctly in adbsys.c */
2282 				/* Until then, unsol. data will be ignored. */
2283 				ADBDevTable[ADBNumDevices].DataAreaAddr =
2284 				    (long)0;
2285 				ADBDevTable[ADBNumDevices].ServiceRtPtr =
2286 				    (void *)0;
2287 				/* find next unused address */
2288 				for (x = saveptr; x > 0; x--) {
2289 					if (-1 == get_adb_info(&data, x)) {
2290 						saveptr = x;
2291 						break;
2292 					}
2293 				}
2294 				if (x == 0)
2295 					saveptr = 0;
2296 #ifdef ADB_DEBUG
2297 				if (adb_debug & 0x80)
2298 					printf_intr("new free is 0x%02x\n",
2299 					    saveptr);
2300 #endif
2301 				nonewtimes = 0;
2302 				/* tell pm driver device is here */
2303 				pm_check_adb_devices(device);
2304 			} else {
2305 #ifdef ADB_DEBUG
2306 				if (adb_debug & 0x80)
2307 					printf_intr("moving back...\n");
2308 #endif
2309 				/* move old device back */
2310 				command = ADBLISTEN(saveptr, 3);
2311 				send_string[0] = 2;
2312 				send_string[1] = (u_char)(device | 0x60);
2313 				send_string[2] = 0xfe;
2314 				(void)adb_op_sync((Ptr)send_string, (Ptr)0,
2315 				    (Ptr)0, (short)command);
2316 				delay(1000);
2317 			}
2318 		}
2319 	}
2320 
2321 #ifdef ADB_DEBUG
2322 	if (adb_debug) {
2323 		for (i = 1; i <= ADBNumDevices; i++) {
2324 			x = get_ind_adb_info(&data, i);
2325 			if (x != -1)
2326 				printf_intr("index 0x%x, addr 0x%x, type 0x%hx\n",
2327 				    i, x, data.devType);
2328 		}
2329 	}
2330 #endif
2331 
2332 #ifndef MRG_ADB
2333 	/* enable the programmer's switch, if we have one */
2334 	adb_prog_switch_enable();
2335 #endif
2336 
2337 #ifdef ADB_DEBUG
2338 	if (adb_debug) {
2339 		if (0 == ADBNumDevices)	/* tell user if no devices found */
2340 			printf_intr("adb: no devices found\n");
2341 	}
2342 #endif
2343 
2344 	adbStarting = 0;	/* not starting anymore */
2345 #ifdef ADB_DEBUG
2346 	if (adb_debug)
2347 		printf_intr("adb: ADBReInit complete\n");
2348 #endif
2349 
2350 	if (adbHardware == ADB_HW_CUDA)
2351 		callout_reset(&adb_cuda_tickle_ch, ADB_TICKLE_TICKS,
2352 		    (void *)adb_cuda_tickle, NULL);
2353 
2354 	/* ints must be on for PB & IOP (at least, for now) */
2355 	if (adbHardware != ADB_HW_PB && adbHardware != ADB_HW_IOP)
2356 		splx(s);
2357 
2358 	return;
2359 }
2360 
2361 
2362 /*
2363  * adb_comp_exec
2364  * This is a general routine that calls the completion routine if there is one.
2365  * NOTE: This routine is now only used by pm_direct.c
2366  *       All the code in this file (adb_direct.c) uses
2367  *       the adb_pass_up routine now.
2368  */
2369 void
2370 adb_comp_exec(void)
2371 {
2372 	if ((long)0 != adbCompRout) /* don't call if empty return location */
2373 #ifdef __NetBSD__
2374 		__asm volatile(
2375 		"	movml #0xffff,%%sp@- \n" /* save all registers */
2376 		"	movl %0,%%a2 \n"	/* adbCompData */
2377 		"	movl %1,%%a1 \n"	/* adbCompRout */
2378 		"	movl %2,%%a0 \n"	/* adbBuffer */
2379 		"	movl %3,%%d0 \n"	/* adbWaitingCmd */
2380 		"	jbsr %%a1@ \n"		/* go call the routine */
2381 		"	movml %%sp@+,#0xffff"	/* restore all registers */
2382 		    :
2383 		    : "g"(adbCompData), "g"(adbCompRout),
2384 			"g"(adbBuffer), "g"(adbWaitingCmd)
2385 		    : "d0", "a0", "a1", "a2");
2386 #else /* for Mac OS-based testing */
2387 		asm {
2388 			movem.l a0/a1/a2/d0, -(a7)
2389 			move.l adbCompData, a2
2390 			move.l adbCompRout, a1
2391 			move.l adbBuffer, a0
2392 			move.w adbWaitingCmd, d0
2393 			jsr(a1)
2394 			movem.l(a7) +, d0/a2/a1/a0
2395 		}
2396 #endif
2397 }
2398 
2399 
2400 /*
2401  * adb_cmd_result
2402  *
2403  * This routine lets the caller know whether the specified adb command string
2404  * should expect a returned result, such as a TALK command.
2405  *
2406  * returns: 0 if a result should be expected
2407  *          1 if a result should NOT be expected
2408  */
2409 int
2410 adb_cmd_result(u_char *in)
2411 {
2412 	switch (adbHardware) {
2413 	case ADB_HW_IOP:
2414 	case ADB_HW_II:
2415 		/* was it an ADB talk command? */
2416 		if ((in[1] & 0x0c) == 0x0c)
2417 			return 0;
2418 		return 1;
2419 
2420 	case ADB_HW_IISI:
2421 	case ADB_HW_CUDA:
2422 		/* was it an ADB talk command? */
2423 		if ((in[1] == 0x00) && ((in[2] & 0x0c) == 0x0c))
2424 			return 0;
2425 		/* was it an RTC/PRAM read date/time? */
2426 		if ((in[1] == 0x01) && (in[2] == 0x03))
2427 			return 0;
2428 		return 1;
2429 
2430 	case ADB_HW_PB:
2431 		return 1;
2432 
2433 	case ADB_HW_UNKNOWN:
2434 	default:
2435 		return 1;
2436 	}
2437 }
2438 
2439 
2440 /*
2441  * adb_cmd_extra
2442  *
2443  * This routine lets the caller know whether the specified adb command string
2444  * may have extra data appended to the end of it, such as a LISTEN command.
2445  *
2446  * returns: 0 if extra data is allowed
2447  *          1 if extra data is NOT allowed
2448  */
2449 int
2450 adb_cmd_extra(u_char *in)
2451 {
2452 	switch (adbHardware) {
2453 	case ADB_HW_II:
2454 	case ADB_HW_IOP:
2455 		if ((in[1] & 0x0c) == 0x08)	/* was it a listen command? */
2456 			return 0;
2457 		return 1;
2458 
2459 	case ADB_HW_IISI:
2460 	case ADB_HW_CUDA:
2461 		/*
2462 		 * TO DO: support needs to be added to recognize RTC and PRAM
2463 		 * commands
2464 		 */
2465 		if ((in[2] & 0x0c) == 0x08)	/* was it a listen command? */
2466 			return 0;
2467 		/* add others later */
2468 		return 1;
2469 
2470 	case ADB_HW_PB:
2471 		return 1;
2472 
2473 	case ADB_HW_UNKNOWN:
2474 	default:
2475 		return 1;
2476 	}
2477 }
2478 
2479 
2480 void
2481 adb_setup_hw_type(void)
2482 {
2483 	long response;
2484 
2485 	response = mac68k_machine.machineid;
2486 
2487 	/*
2488 	 * Determine what type of ADB hardware we are running on.
2489 	 */
2490 	switch (response) {
2491 	case MACH_MACC610:		/* Centris 610 */
2492 	case MACH_MACC650:		/* Centris 650 */
2493 	case MACH_MACII:		/* II */
2494 	case MACH_MACIICI:		/* IIci */
2495 	case MACH_MACIICX:		/* IIcx */
2496 	case MACH_MACIIX:		/* IIx */
2497 	case MACH_MACQ610:		/* Quadra 610 */
2498 	case MACH_MACQ650:		/* Quadra 650 */
2499 	case MACH_MACQ700:		/* Quadra 700 */
2500 	case MACH_MACQ800:		/* Quadra 800 */
2501 	case MACH_MACSE30:		/* SE/30 */
2502 		adbHardware = ADB_HW_II;
2503 #ifdef ADB_DEBUG
2504 		if (adb_debug)
2505 			printf_intr("adb: using II series hardware support\n");
2506 #endif
2507 		break;
2508 
2509 	case MACH_MACCLASSICII:		/* Classic II */
2510 	case MACH_MACLCII:		/* LC II, Performa 400/405/430 */
2511 	case MACH_MACLCIII:		/* LC III, Performa 450 */
2512 	case MACH_MACIISI:		/* IIsi */
2513 	case MACH_MACIIVI:		/* IIvi */
2514 	case MACH_MACIIVX:		/* IIvx */
2515 	case MACH_MACP460:		/* Performa 460/465/467 */
2516 	case MACH_MACP600:		/* Performa 600 */
2517 		adbHardware = ADB_HW_IISI;
2518 #ifdef ADB_DEBUG
2519 		if (adb_debug)
2520 			printf_intr("adb: using IIsi series hardware support\n");
2521 #endif
2522 		break;
2523 
2524 	case MACH_MACPB140:		/* PowerBook 140 */
2525 	case MACH_MACPB145:		/* PowerBook 145 */
2526 	case MACH_MACPB160:		/* PowerBook 160 */
2527 	case MACH_MACPB165:		/* PowerBook 165 */
2528 	case MACH_MACPB165C:		/* PowerBook 165c */
2529 	case MACH_MACPB170:		/* PowerBook 170 */
2530 	case MACH_MACPB180:		/* PowerBook 180 */
2531 	case MACH_MACPB180C:		/* PowerBook 180c */
2532 		adbHardware = ADB_HW_PB;
2533 		pm_setup_adb();
2534 #ifdef ADB_DEBUG
2535 		if (adb_debug)
2536 			printf_intr("adb: using PowerBook 100-series hardware support\n");
2537 #endif
2538 		break;
2539 
2540 	case MACH_MACPB150:		/* PowerBook 150 */
2541 	case MACH_MACPB210:		/* PowerBook Duo 210 */
2542 	case MACH_MACPB230:		/* PowerBook Duo 230 */
2543 	case MACH_MACPB250:		/* PowerBook Duo 250 */
2544 	case MACH_MACPB270:		/* PowerBook Duo 270 */
2545 	case MACH_MACPB280:		/* PowerBook Duo 280 */
2546 	case MACH_MACPB280C:		/* PowerBook Duo 280c */
2547 	case MACH_MACPB500:		/* PowerBook 500 series */
2548 	case MACH_MACPB190:		/* PowerBook 190 */
2549 	case MACH_MACPB190CS:		/* PowerBook 190cs */
2550 		adbHardware = ADB_HW_PB;
2551 		pm_setup_adb();
2552 #ifdef ADB_DEBUG
2553 		if (adb_debug)
2554 			printf_intr("adb: using PowerBook Duo-series and PowerBook 500-series hardware support\n");
2555 #endif
2556 		break;
2557 
2558 	case MACH_MACC660AV:		/* Centris 660AV */
2559 	case MACH_MACCCLASSIC:		/* Color Classic */
2560 	case MACH_MACCCLASSICII:	/* Color Classic II */
2561 	case MACH_MACLC475:		/* LC 475, Performa 475/476 */
2562 	case MACH_MACLC475_33:		/* Clock-chipped 47x */
2563 	case MACH_MACLC520:		/* LC 520 */
2564 	case MACH_MACLC575:		/* LC 575, Performa 575/577/578 */
2565 	case MACH_MACP550:		/* LC 550, Performa 550 */
2566 	case MACH_MACTV:		/* Macintosh TV */
2567 	case MACH_MACP580:		/* Performa 580/588 */
2568 	case MACH_MACQ605:		/* Quadra 605 */
2569 	case MACH_MACQ605_33:		/* Clock-chipped Quadra 605 */
2570 	case MACH_MACQ630:		/* LC 630, Performa 630, Quadra 630 */
2571 	case MACH_MACQ840AV:		/* Quadra 840AV */
2572 		adbHardware = ADB_HW_CUDA;
2573 #ifdef ADB_DEBUG
2574 		if (adb_debug)
2575 			printf_intr("adb: using Cuda series hardware support\n");
2576 #endif
2577 		break;
2578 
2579 	case MACH_MACQ900:		/* Quadra 900 */
2580 	case MACH_MACQ950:		/* Quadra 950 */
2581 	case MACH_MACIIFX:		/* Mac IIfx   */
2582 		adbHardware = ADB_HW_IOP;
2583 		iop_register_listener(ISM_IOP, IOP_CHAN_ADB, adb_iop_recv, NULL);
2584 #ifdef ADB_DEBUG
2585 		if (adb_debug)
2586 			printf_intr("adb: using IOP-based ADB\n");
2587 #endif
2588 		break;
2589 
2590 	default:
2591 		adbHardware = ADB_HW_UNKNOWN;
2592 #ifdef ADB_DEBUG
2593 		if (adb_debug) {
2594 			printf_intr("adb: hardware type unknown for this machine\n");
2595 			printf_intr("adb: ADB support is disabled\n");
2596 		}
2597 #endif
2598 		break;
2599 	}
2600 
2601 	/*
2602 	 * Determine whether this machine has ADB based soft power.
2603 	 */
2604 	switch (response) {
2605 	case MACH_MACCCLASSIC:		/* Color Classic */
2606 	case MACH_MACCCLASSICII:	/* Color Classic II */
2607 	case MACH_MACIISI:		/* IIsi */
2608 	case MACH_MACIIVI:		/* IIvi */
2609 	case MACH_MACIIVX:		/* IIvx */
2610 	case MACH_MACLC520:		/* LC 520 */
2611 	case MACH_MACLC575:		/* LC 575, Performa 575/577/578 */
2612 	case MACH_MACP550:		/* LC 550, Performa 550 */
2613 	case MACH_MACTV:		/* Macintosh TV */
2614 	case MACH_MACP580:		/* Performa 580/588 */
2615 	case MACH_MACP600:		/* Performa 600 */
2616 	case MACH_MACQ630:		/* LC 630, Performa 630, Quadra 630 */
2617 	case MACH_MACQ840AV:		/* Quadra 840AV */
2618 		adbSoftPower = 1;
2619 		break;
2620 	}
2621 }
2622 
2623 int
2624 count_adbs(void)
2625 {
2626 	int i;
2627 	int found;
2628 
2629 	found = 0;
2630 
2631 	for (i = 1; i < 16; i++)
2632 		if (0 != ADBDevTable[i].currentAddr)
2633 			found++;
2634 
2635 	return found;
2636 }
2637 
2638 int
2639 get_ind_adb_info(ADBDataBlock *info, int index)
2640 {
2641 	if ((index < 1) || (index > 15))	/* check range 1-15 */
2642 		return (-1);
2643 
2644 #ifdef ADB_DEBUG
2645 	if (adb_debug & 0x80)
2646 		printf_intr("index 0x%x devType is: 0x%x\n", index,
2647 		    ADBDevTable[index].devType);
2648 #endif
2649 	if (0 == ADBDevTable[index].devType)	/* make sure it's a valid entry */
2650 		return (-1);
2651 
2652 	info->devType = (unsigned char)(ADBDevTable[index].devType);
2653 	info->origADBAddr = (unsigned char)(ADBDevTable[index].origAddr);
2654 	info->dbServiceRtPtr = (Ptr)ADBDevTable[index].ServiceRtPtr;
2655 	info->dbDataAreaAddr = (Ptr)ADBDevTable[index].DataAreaAddr;
2656 
2657 	return (ADBDevTable[index].currentAddr);
2658 }
2659 
2660 int
2661 get_adb_info(ADBDataBlock *info, int adbAddr)
2662 {
2663 	int i;
2664 
2665 	if ((adbAddr < 1) || (adbAddr > 15))	/* check range 1-15 */
2666 		return (-1);
2667 
2668 	for (i = 1; i < 15; i++)
2669 		if (ADBDevTable[i].currentAddr == adbAddr) {
2670 			info->devType = (unsigned char)(ADBDevTable[i].devType);
2671 			info->origADBAddr = (unsigned char)(ADBDevTable[i].origAddr);
2672 			info->dbServiceRtPtr = (Ptr)ADBDevTable[i].ServiceRtPtr;
2673 			info->dbDataAreaAddr = ADBDevTable[i].DataAreaAddr;
2674 			return 0;	/* found */
2675 		}
2676 
2677 	return (-1);		/* not found */
2678 }
2679 
2680 int
2681 set_adb_info(ADBSetInfoBlock *info, int adbAddr)
2682 {
2683 	int i;
2684 
2685 	if ((adbAddr < 1) || (adbAddr > 15))	/* check range 1-15 */
2686 		return (-1);
2687 
2688 	for (i = 1; i < 15; i++)
2689 		if (ADBDevTable[i].currentAddr == adbAddr) {
2690 			ADBDevTable[i].ServiceRtPtr =
2691 			    (void *)(info->siServiceRtPtr);
2692 			ADBDevTable[i].DataAreaAddr = info->siDataAreaAddr;
2693 			return 0;	/* found */
2694 		}
2695 
2696 	return (-1);		/* not found */
2697 
2698 }
2699 
2700 #ifndef MRG_ADB
2701 long
2702 mrg_adbintr(void)
2703 {
2704 	adb_intr(NULL);
2705 	return 1;	/* mimic mrg_adbintr in macrom.h just in case */
2706 }
2707 
2708 long
2709 mrg_pmintr(void)
2710 {
2711 	pm_intr(NULL);
2712 	return 1;	/* mimic mrg_pmintr in macrom.h just in case */
2713 }
2714 
2715 /* caller should really use machine-independent version: getPramTime */
2716 /* this version does pseudo-adb access only */
2717 int
2718 adb_read_date_time(unsigned long *curtime)
2719 {
2720 	u_char output[ADB_MAX_MSG_LENGTH];
2721 	int result;
2722 	volatile int flag = 0;
2723 
2724 	switch (adbHardware) {
2725 	case ADB_HW_II:
2726 		return -1;
2727 
2728 	case ADB_HW_IOP:
2729 		return -1;
2730 
2731 	case ADB_HW_IISI:
2732 		output[0] = 0x02;	/* 2 byte message */
2733 		output[1] = 0x01;	/* to pram/rtc device */
2734 		output[2] = 0x03;	/* read date/time */
2735 		result = send_adb_IIsi((u_char *)output, (u_char *)output,
2736 		    (void *)adb_op_comprout, __UNVOLATILE(&flag), (int)0);
2737 		if (result != 0)	/* exit if not sent */
2738 			return -1;
2739 
2740 		adb_spin(&flag);	/* wait for result */
2741 		if (flag == 0)		/* exit it timeout */
2742 			return -1;
2743 
2744 		*curtime = (long)(*(long *)(output + 1));
2745 		return 0;
2746 
2747 	case ADB_HW_PB:
2748 		return -1;
2749 
2750 	case ADB_HW_CUDA:
2751 		output[0] = 0x02;	/* 2 byte message */
2752 		output[1] = 0x01;	/* to pram/rtc device */
2753 		output[2] = 0x03;	/* read date/time */
2754 		result = send_adb_cuda((u_char *)output, (u_char *)output,
2755 		    (void *)adb_op_comprout, __UNVOLATILE(&flag), (int)0);
2756 		if (result != 0)	/* exit if not sent */
2757 			return -1;
2758 
2759 		adb_spin(&flag);	/* wait for result */
2760 		if (flag == 0)		/* exit it timeout */
2761 			return -1;
2762 
2763 		*curtime = (long)(*(long *)(output + 1));
2764 		return 0;
2765 
2766 	case ADB_HW_UNKNOWN:
2767 	default:
2768 		return -1;
2769 	}
2770 }
2771 
2772 /* caller should really use machine-independent version: setPramTime */
2773 /* this version does pseudo-adb access only */
2774 int
2775 adb_set_date_time(unsigned long curtime)
2776 {
2777 	u_char output[ADB_MAX_MSG_LENGTH];
2778 	int result;
2779 	volatile int flag = 0;
2780 
2781 	switch (adbHardware) {
2782 	case ADB_HW_II:
2783 		return -1;
2784 
2785 	case ADB_HW_IOP:
2786 		return -1;
2787 
2788 	case ADB_HW_IISI:
2789 		output[0] = 0x06;	/* 6 byte message */
2790 		output[1] = 0x01;	/* to pram/rtc device */
2791 		output[2] = 0x09;	/* set date/time */
2792 		output[3] = (u_char)(curtime >> 24);
2793 		output[4] = (u_char)(curtime >> 16);
2794 		output[5] = (u_char)(curtime >> 8);
2795 		output[6] = (u_char)(curtime);
2796 		result = send_adb_IIsi((u_char *)output, (u_char *)0,
2797 		    (void *)adb_op_comprout, __UNVOLATILE(&flag), (int)0);
2798 		if (result != 0)	/* exit if not sent */
2799 			return -1;
2800 
2801 		adb_spin(&flag);	/* wait for result */
2802 		if (flag == 0)		/* exit it timeout */
2803 			return -1;
2804 
2805 		return 0;
2806 
2807 	case ADB_HW_PB:
2808 		return -1;
2809 
2810 	case ADB_HW_CUDA:
2811 		output[0] = 0x06;	/* 6 byte message */
2812 		output[1] = 0x01;	/* to pram/rtc device */
2813 		output[2] = 0x09;	/* set date/time */
2814 		output[3] = (u_char)(curtime >> 24);
2815 		output[4] = (u_char)(curtime >> 16);
2816 		output[5] = (u_char)(curtime >> 8);
2817 		output[6] = (u_char)(curtime);
2818 		result = send_adb_cuda((u_char *)output, (u_char *)0,
2819 		    (void *)adb_op_comprout, __UNVOLATILE(&flag), (int)0);
2820 		if (result != 0)	/* exit if not sent */
2821 			return -1;
2822 
2823 		adb_spin(&flag);	/* wait for result */
2824 		if (flag == 0)		/* exit it timeout */
2825 			return -1;
2826 
2827 		return 0;
2828 
2829 	case ADB_HW_UNKNOWN:
2830 	default:
2831 		return -1;
2832 	}
2833 }
2834 
2835 
2836 int
2837 adb_poweroff(void)
2838 {
2839 	u_char output[ADB_MAX_MSG_LENGTH];
2840 	int result;
2841 
2842 	if (!adbSoftPower)
2843 		return -1;
2844 
2845 	adb_polling = 1;
2846 
2847 	switch (adbHardware) {
2848 	case ADB_HW_IISI:
2849 		output[0] = 0x02;	/* 2 byte message */
2850 		output[1] = 0x01;	/* to pram/rtc/soft-power device */
2851 		output[2] = 0x0a;	/* set date/time */
2852 		result = send_adb_IIsi((u_char *)output, (u_char *)0,
2853 		    (void *)0, (void *)0, (int)0);
2854 		if (result != 0)	/* exit if not sent */
2855 			return -1;
2856 
2857 		for (;;);		/* wait for power off */
2858 
2859 		return 0;
2860 
2861 	case ADB_HW_PB:
2862 		return -1;
2863 
2864 	case ADB_HW_CUDA:
2865 		output[0] = 0x02;	/* 2 byte message */
2866 		output[1] = 0x01;	/* to pram/rtc/soft-power device */
2867 		output[2] = 0x0a;	/* set date/time */
2868 		result = send_adb_cuda((u_char *)output, (u_char *)0,
2869 		    (void *)0, (void *)0, (int)0);
2870 		if (result != 0)	/* exit if not sent */
2871 			return -1;
2872 
2873 		for (;;);		/* wait for power off */
2874 
2875 		return 0;
2876 
2877 	case ADB_HW_II:			/* II models don't do ADB soft power */
2878 	case ADB_HW_IOP:		/* IOP models don't do ADB soft power */
2879 	case ADB_HW_UNKNOWN:
2880 	default:
2881 		return -1;
2882 	}
2883 }
2884 
2885 int
2886 adb_prog_switch_enable(void)
2887 {
2888 	u_char output[ADB_MAX_MSG_LENGTH];
2889 	int result;
2890 	volatile int flag = 0;
2891 
2892 	switch (adbHardware) {
2893 	case ADB_HW_IISI:
2894 		output[0] = 0x03;	/* 3 byte message */
2895 		output[1] = 0x01;	/* to pram/rtc/soft-power device */
2896 		output[2] = 0x1c;	/* prog. switch control */
2897 		output[3] = 0x01;	/* enable */
2898 		result = send_adb_IIsi((u_char *)output, (u_char *)0,
2899 		    (void *)adb_op_comprout, __UNVOLATILE(&flag), (int)0);
2900 		if (result != 0)	/* exit if not sent */
2901 			return -1;
2902 
2903 		adb_spin(&flag);	/* wait for result */
2904 		if (flag == 0)		/* exit it timeout */
2905 			return -1;
2906 
2907 		return 0;
2908 
2909 	case ADB_HW_PB:
2910 		return -1;
2911 
2912 	case ADB_HW_II:		/* II models don't do prog. switch */
2913 	case ADB_HW_IOP:	/* IOP models don't do prog. switch */
2914 	case ADB_HW_CUDA:	/* cuda doesn't do prog. switch TO DO: verify this */
2915 	case ADB_HW_UNKNOWN:
2916 	default:
2917 		return -1;
2918 	}
2919 }
2920 
2921 int
2922 adb_prog_switch_disable(void)
2923 {
2924 	u_char output[ADB_MAX_MSG_LENGTH];
2925 	int result;
2926 	volatile int flag = 0;
2927 
2928 	switch (adbHardware) {
2929 	case ADB_HW_IISI:
2930 		output[0] = 0x03;	/* 3 byte message */
2931 		output[1] = 0x01;	/* to pram/rtc/soft-power device */
2932 		output[2] = 0x1c;	/* prog. switch control */
2933 		output[3] = 0x01;	/* disable */
2934 		result = send_adb_IIsi((u_char *)output, (u_char *)0,
2935 			(void *)adb_op_comprout, __UNVOLATILE(&flag), (int)0);
2936 		if (result != 0)	/* exit if not sent */
2937 			return -1;
2938 
2939 		adb_spin(&flag);	/* wait for result */
2940 		if (flag == 0)		/* exit it timeout */
2941 			return -1;
2942 
2943 		return 0;
2944 
2945 	case ADB_HW_PB:
2946 		return -1;
2947 
2948 	case ADB_HW_II:		/* II models don't do prog. switch */
2949 	case ADB_HW_IOP:	/* IOP models don't do prog. switch */
2950 	case ADB_HW_CUDA:	/* cuda doesn't do prog. switch */
2951 	case ADB_HW_UNKNOWN:
2952 	default:
2953 		return -1;
2954 	}
2955 }
2956 
2957 int
2958 CountADBs(void)
2959 {
2960 	return (count_adbs());
2961 }
2962 
2963 void
2964 ADBReInit(void)
2965 {
2966 	adb_reinit();
2967 }
2968 
2969 int
2970 GetIndADB(ADBDataBlock *info, int index)
2971 {
2972 	return (get_ind_adb_info(info, index));
2973 }
2974 
2975 int
2976 GetADBInfo(ADBDataBlock *info, int adbAddr)
2977 {
2978 	return (get_adb_info(info, adbAddr));
2979 }
2980 
2981 int
2982 SetADBInfo(ADBSetInfoBlock *info, int adbAddr)
2983 {
2984 	return (set_adb_info(info, adbAddr));
2985 }
2986 
2987 int
2988 ADBOp(Ptr buffer, Ptr compRout, Ptr data, short commandNum)
2989 {
2990 	return (adb_op(buffer, compRout, data, commandNum));
2991 }
2992 
2993 #endif
2994