xref: /netbsd-src/sys/arch/mac68k/dev/adb_direct.c (revision a30f264f2a5f410ffefcc55600a9238b3a0c935c)
1 /*	$NetBSD: adb_direct.c,v 1.53 2005/12/24 20:07:15 perry Exp $	*/
2 
3 /* From: adb_direct.c 2.02 4/18/97 jpw */
4 
5 /*
6  * Copyright (C) 1996, 1997 John P. Wittkoski
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *  This product includes software developed by John P. Wittkoski.
20  * 4. The name of the author may not be used to endorse or promote products
21  *    derived from this software without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * This code is rather messy, but I don't have time right now
37  * to clean it up as much as I would like.
38  * But it works, so I'm happy. :-) jpw
39  */
40 
41 /*
42  * TO DO:
43  *  - We could reduce the time spent in the adb_intr_* routines
44  *    by having them save the incoming and outgoing data directly
45  *    in the adbInbound and adbOutbound queues, as it would reduce
46  *    the number of times we need to copy the data around. It
47  *    would also make the code more readable and easier to follow.
48  *  - (Related to above) Use the header part of adbCommand to
49  *    reduce the number of copies we have to do of the data.
50  *  - (Related to above) Actually implement the adbOutbound queue.
51  *    This is fairly easy once you switch all the intr routines
52  *    over to using adbCommand structs directly.
53  *  - There is a bug in the state machine of adb_intr_cuda
54  *    code that causes hangs, especially on 030 machines, probably
55  *    because of some timing issues. Because I have been unable to
56  *    determine the exact cause of this bug, I used the timeout function
57  *    to check for and recover from this condition. If anyone finds
58  *    the actual cause of this bug, the calls to timeout and the
59  *    adb_cuda_tickle routine can be removed.
60  */
61 
62 #ifdef __NetBSD__
63 
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: adb_direct.c,v 1.53 2005/12/24 20:07:15 perry Exp $");
66 
67 #include "opt_adb.h"
68 
69 #include <sys/param.h>
70 #include <sys/cdefs.h>
71 #include <sys/pool.h>
72 #include <sys/queue.h>
73 #include <sys/systm.h>
74 #include <sys/callout.h>
75 
76 #include <machine/viareg.h>
77 #include <machine/param.h>
78 #include <machine/cpu.h>
79 #include <machine/adbsys.h>			/* required for adbvar.h */
80 #include <machine/iopreg.h>			/* required for IOP support */
81 
82 #include <mac68k/mac68k/macrom.h>
83 #include <mac68k/dev/adbvar.h>
84 #define printf_intr printf
85 #else /* !__NetBSD__, i.e. Mac OS */
86 #include "via.h"				/* for macos based testing */
87 /* #define ADB_DEBUG */				/* more verbose for testing */
88 
89 /* Types of ADB hardware that we support */
90 #define ADB_HW_UNKNOWN		0x0	/* don't know */
91 #define ADB_HW_II		0x1	/* Mac II series */
92 #define ADB_HW_IISI		0x2	/* Mac IIsi series */
93 #define ADB_HW_PB		0x3	/* PowerBook series */
94 #define ADB_HW_CUDA		0x4	/* Machines with a Cuda chip */
95 #endif /* __NetBSD__ */
96 
97 /* some misc. leftovers */
98 #define vPB		0x0000
99 #define vPB3		0x08
100 #define vPB4		0x10
101 #define vPB5		0x20
102 #define vSR_INT		0x04
103 #define vSR_OUT		0x10
104 
105 /* the type of ADB action that we are currently preforming */
106 #define ADB_ACTION_NOTREADY	0x1	/* has not been initialized yet */
107 #define ADB_ACTION_IDLE		0x2	/* the bus is currently idle */
108 #define ADB_ACTION_OUT		0x3	/* sending out a command */
109 #define ADB_ACTION_IN		0x4	/* receiving data */
110 #define ADB_ACTION_POLLING	0x5	/* polling - II only */
111 #define ADB_ACTION_RUNNING	0x6	/* running - IOP only */
112 
113 /*
114  * These describe the state of the ADB bus itself, although they
115  * don't necessarily correspond directly to ADB states.
116  * Note: these are not really used in the IIsi code.
117  */
118 #define ADB_BUS_UNKNOWN		0x1	/* we don't know yet - all models */
119 #define ADB_BUS_IDLE		0x2	/* bus is idle - all models */
120 #define ADB_BUS_CMD		0x3	/* starting a command - II models */
121 #define ADB_BUS_ODD		0x4	/* the "odd" state - II models */
122 #define ADB_BUS_EVEN		0x5	/* the "even" state - II models */
123 #define ADB_BUS_ACTIVE		0x6	/* active state - IIsi models */
124 #define ADB_BUS_ACK		0x7	/* currently ACKing - IIsi models */
125 
126 /*
127  * Shortcuts for setting or testing the VIA bit states.
128  * Not all shortcuts are used for every type of ADB hardware.
129  */
130 #define ADB_SET_STATE_IDLE_II()		via_reg(VIA1, vBufB) |= (vPB4 | vPB5)
131 #define ADB_SET_STATE_IDLE_IISI()	via_reg(VIA1, vBufB) &= ~(vPB4 | vPB5)
132 #define ADB_SET_STATE_IDLE_CUDA()	via_reg(VIA1, vBufB) |= (vPB4 | vPB5)
133 #define ADB_SET_STATE_CMD()		via_reg(VIA1, vBufB) &= ~(vPB4 | vPB5)
134 #define ADB_SET_STATE_EVEN()		via_reg(VIA1, vBufB) = ((via_reg(VIA1, \
135 						vBufB) | vPB4) & ~vPB5)
136 #define ADB_SET_STATE_ODD()		via_reg(VIA1, vBufB) = ((via_reg(VIA1, \
137 						vBufB) | vPB5) & ~vPB4)
138 #define ADB_SET_STATE_ACTIVE() 		via_reg(VIA1, vBufB) |= vPB5
139 #define ADB_SET_STATE_INACTIVE()	via_reg(VIA1, vBufB) &= ~vPB5
140 #define ADB_SET_STATE_TIP()		via_reg(VIA1, vBufB) &= ~vPB5
141 #define ADB_CLR_STATE_TIP() 		via_reg(VIA1, vBufB) |= vPB5
142 #define ADB_SET_STATE_ACKON()		via_reg(VIA1, vBufB) |= vPB4
143 #define ADB_SET_STATE_ACKOFF()		via_reg(VIA1, vBufB) &= ~vPB4
144 #define ADB_TOGGLE_STATE_ACK_CUDA()	via_reg(VIA1, vBufB) ^= vPB4
145 #define ADB_SET_STATE_ACKON_CUDA()	via_reg(VIA1, vBufB) &= ~vPB4
146 #define ADB_SET_STATE_ACKOFF_CUDA()	via_reg(VIA1, vBufB) |= vPB4
147 #define ADB_SET_SR_INPUT()		via_reg(VIA1, vACR) &= ~vSR_OUT
148 #define ADB_SET_SR_OUTPUT()		via_reg(VIA1, vACR) |= vSR_OUT
149 #define ADB_SR()			via_reg(VIA1, vSR)
150 #define ADB_VIA_INTR_ENABLE()		via_reg(VIA1, vIER) = 0x84
151 #define ADB_VIA_INTR_DISABLE()		via_reg(VIA1, vIER) = 0x04
152 #define ADB_VIA_CLR_INTR()		via_reg(VIA1, vIFR) = 0x04
153 #define ADB_INTR_IS_OFF			(vPB3 == (via_reg(VIA1, vBufB) & vPB3))
154 #define ADB_INTR_IS_ON			(0 == (via_reg(VIA1, vBufB) & vPB3))
155 #define ADB_SR_INTR_IS_OFF		(0 == (via_reg(VIA1, vIFR) & vSR_INT))
156 #define ADB_SR_INTR_IS_ON		(vSR_INT == (via_reg(VIA1, \
157 						vIFR) & vSR_INT))
158 
159 /*
160  * This is the delay that is required (in uS) between certain
161  * ADB transactions. The actual timing delay for for each uS is
162  * calculated at boot time to account for differences in machine speed.
163  */
164 #define ADB_DELAY	150
165 
166 /*
167  * Maximum ADB message length; includes space for data, result, and
168  * device code - plus a little for safety.
169  */
170 #define ADB_MAX_MSG_LENGTH	16
171 #define ADB_MAX_HDR_LENGTH	8
172 
173 #define ADB_QUEUE		32
174 #define ADB_TICKLE_TICKS	4
175 
176 /*
177  * A structure for storing information about each ADB device.
178  */
179 struct ADBDevEntry {
180 	void	(*ServiceRtPtr)(void);
181 	void	*DataAreaAddr;
182 	int	devType;
183 	int	origAddr;
184 	int	currentAddr;
185 };
186 
187 /*
188  * Used to hold ADB commands that are waiting to be sent out.
189  */
190 struct adbCmdHoldEntry {
191 	u_char	outBuf[ADB_MAX_MSG_LENGTH];	/* our message */
192 	u_char	*saveBuf;	/* buffer to know where to save result */
193 	u_char	*compRout;	/* completion routine pointer */
194 	u_char	*data;		/* completion routine data pointer */
195 };
196 
197 /*
198  * Eventually used for two separate queues, the queue between
199  * the upper and lower halves, and the outgoing packet queue.
200  * TO DO: adbCommand can replace all of adbCmdHoldEntry eventually
201  */
202 struct adbCommand {
203 	u_char	header[ADB_MAX_HDR_LENGTH];	/* not used yet */
204 	u_char	data[ADB_MAX_MSG_LENGTH];	/* packet data only */
205 	u_char	*saveBuf;	/* where to save result */
206 	u_char	*compRout;	/* completion routine pointer */
207 	u_char	*compData;	/* completion routine data pointer */
208 	u_int	cmd;		/* the original command for this data */
209 	u_int	unsol;		/* 1 if packet was unsolicited */
210 	u_int	ack_only;	/* 1 for no special processing */
211 };
212 
213 /*
214  * Text representations of each hardware class
215  */
216 const char	*adbHardwareDescr[MAX_ADB_HW + 1] = {
217 	"unknown",
218 	"II series",
219 	"IIsi series",
220 	"PowerBook",
221 	"Cuda",
222 	"IOP",
223 };
224 
225 /*
226  * A few variables that we need and their initial values.
227  */
228 int	adbHardware = ADB_HW_UNKNOWN;
229 int	adbActionState = ADB_ACTION_NOTREADY;
230 int	adbBusState = ADB_BUS_UNKNOWN;
231 int	adbWaiting = 0;		/* waiting for return data from the device */
232 int	adbWriteDelay = 0;	/* working on (or waiting to do) a write */
233 int	adbOutQueueHasData = 0;	/* something in the queue waiting to go out */
234 int	adbNextEnd = 0;		/* the next incoming bute is the last (II) */
235 int	adbSoftPower = 0;	/* machine supports soft power */
236 
237 int	adbWaitingCmd = 0;	/* ADB command we are waiting for */
238 u_char	*adbBuffer = (long)0;	/* pointer to user data area */
239 void	*adbCompRout = (long)0;	/* pointer to the completion routine */
240 void	*adbCompData = (long)0;	/* pointer to the completion routine data */
241 long	adbFakeInts = 0;	/* keeps track of fake ADB interrupts for
242 				 * timeouts (II) */
243 int	adbStarting = 1;	/* doing ADBReInit so do polling differently */
244 int	adbSendTalk = 0;	/* the intr routine is sending the talk, not
245 				 * the user (II) */
246 int	adbPolling = 0;		/* we are polling for service request */
247 int	adbPollCmd = 0;		/* the last poll command we sent */
248 
249 u_char	adbInputBuffer[ADB_MAX_MSG_LENGTH];	/* data input buffer */
250 u_char	adbOutputBuffer[ADB_MAX_MSG_LENGTH];	/* data output buffer */
251 struct	adbCmdHoldEntry adbOutQueue;		/* our 1 entry output queue */
252 
253 int	adbSentChars = 0;	/* how many characters we have sent */
254 int	adbLastDevice = 0;	/* last ADB dev we heard from (II ONLY) */
255 int	adbLastDevIndex = 0;	/* last ADB dev loc in dev table (II ONLY) */
256 int	adbLastCommand = 0;	/* the last ADB command we sent (II) */
257 
258 struct	ADBDevEntry ADBDevTable[16];	/* our ADB device table */
259 int	ADBNumDevices;		/* num. of ADB devices found with ADBReInit */
260 
261 struct	adbCommand adbInbound[ADB_QUEUE];	/* incoming queue */
262 volatile int	adbInCount = 0;		/* how many packets in in queue */
263 int	adbInHead = 0;			/* head of in queue */
264 int	adbInTail = 0;			/* tail of in queue */
265 struct	adbCommand adbOutbound[ADB_QUEUE]; /* outgoing queue - not used yet */
266 int	adbOutCount = 0;		/* how many packets in out queue */
267 int	adbOutHead = 0;			/* head of out queue */
268 int	adbOutTail = 0;			/* tail of out queue */
269 
270 int	tickle_count = 0;		/* how many tickles seen for this packet? */
271 int	tickle_serial = 0;		/* the last packet tickled */
272 int	adb_cuda_serial = 0;		/* the current packet */
273 
274 struct callout adb_cuda_tickle_ch = CALLOUT_INITIALIZER;
275 
276 extern struct mac68k_machine_S mac68k_machine;
277 
278 void	pm_setup_adb(void);
279 void	pm_hw_setup(void);
280 void	pm_check_adb_devices(int);
281 void	pm_intr(void *);
282 int	pm_adb_op(u_char *, void *, void *, int);
283 void	pm_init_adb_device(void);
284 
285 /*
286  * The following are private routines.
287  */
288 #ifdef ADB_DEBUG
289 void	print_single(u_char *);
290 #endif
291 void	adb_intr(void *);
292 void	adb_intr_II(void *);
293 void	adb_intr_IIsi(void *);
294 void	adb_intr_cuda(void *);
295 void	adb_soft_intr(void);
296 int	send_adb_II(u_char *, u_char *, void *, void *, int);
297 int	send_adb_IIsi(u_char *, u_char *, void *, void *, int);
298 int	send_adb_cuda(u_char *, u_char *, void *, void *, int);
299 void	adb_intr_cuda_test(void);
300 void	adb_cuda_tickle(void);
301 void	adb_pass_up(struct adbCommand *);
302 void	adb_op_comprout(void);
303 void	adb_reinit(void);
304 int	count_adbs(void);
305 int	get_ind_adb_info(ADBDataBlock *, int);
306 int	get_adb_info(ADBDataBlock *, int);
307 int	set_adb_info(ADBSetInfoBlock *, int);
308 void	adb_setup_hw_type(void);
309 int	adb_op(Ptr, Ptr, Ptr, short);
310 void	adb_read_II(u_char *);
311 void	adb_hw_setup(void);
312 void	adb_hw_setup_IIsi(u_char *);
313 void	adb_comp_exec(void);
314 int	adb_cmd_result(u_char *);
315 int	adb_cmd_extra(u_char *);
316 int	adb_guess_next_device(void);
317 int	adb_prog_switch_enable(void);
318 int	adb_prog_switch_disable(void);
319 /* we should create this and it will be the public version */
320 int	send_adb(u_char *, void *, void *);
321 void	adb_iop_recv(IOP *, struct iop_msg *);
322 int	send_adb_iop(int, u_char *, void *, void *);
323 
324 #ifdef ADB_DEBUG
325 /*
326  * print_single
327  * Diagnostic display routine. Displays the hex values of the
328  * specified elements of the u_char. The length of the "string"
329  * is in [0].
330  */
331 void
332 print_single(u_char *str)
333 {
334 	int x;
335 
336 	if (str == 0) {
337 		printf_intr("no data - null pointer\n");
338 		return;
339 	}
340 	if (*str == 0) {
341 		printf_intr("nothing returned\n");
342 		return;
343 	}
344 	if (*str > 20) {
345 		printf_intr("ADB: ACK > 20 no way!\n");
346 		*str = (u_char)20;
347 	}
348 	printf_intr("(length=0x%x):", (u_int)*str);
349 	for (x = 1; x <= *str; x++)
350 		printf_intr("  0x%02x", (u_int)*(str + x));
351 	printf_intr("\n");
352 }
353 #endif
354 
355 void
356 adb_cuda_tickle(void)
357 {
358 	volatile int s;
359 
360 	if (adbActionState == ADB_ACTION_IN) {
361 		if (tickle_serial == adb_cuda_serial) {
362 			if (++tickle_count > 0) {
363 				s = splhigh();
364 				adbActionState = ADB_ACTION_IDLE;
365 				adbInputBuffer[0] = 0;
366 				ADB_SET_STATE_IDLE_CUDA();
367 				splx(s);
368 			}
369 		} else {
370 			tickle_serial = adb_cuda_serial;
371 			tickle_count = 0;
372 		}
373 	} else {
374 		tickle_serial = adb_cuda_serial;
375 		tickle_count = 0;
376 	}
377 
378 	callout_reset(&adb_cuda_tickle_ch, ADB_TICKLE_TICKS,
379 	    (void *)adb_cuda_tickle, NULL);
380 }
381 
382 /*
383  * called when when an adb interrupt happens
384  *
385  * Cuda version of adb_intr
386  * TO DO: do we want to add some calls to intr_dispatch() here to
387  * grab serial interrupts?
388  */
389 void
390 adb_intr_cuda(void *arg)
391 {
392 	volatile int i, ending;
393 	volatile unsigned int s;
394 	struct adbCommand packet;
395 
396 	s = splhigh();		/* can't be too careful - might be called */
397 	/* from a routine, NOT an interrupt */
398 
399 	ADB_VIA_CLR_INTR();	/* clear interrupt */
400 	ADB_VIA_INTR_DISABLE();	/* disable ADB interrupt on IIs. */
401 
402 switch_start:
403 	switch (adbActionState) {
404 	case ADB_ACTION_IDLE:
405 		/*
406 		 * This is an unexpected packet, so grab the first (dummy)
407 		 * byte, set up the proper vars, and tell the chip we are
408 		 * starting to receive the packet by setting the TIP bit.
409 		 */
410 		adbInputBuffer[1] = ADB_SR();
411 		adb_cuda_serial++;
412 		if (ADB_INTR_IS_OFF)	/* must have been a fake start */
413 			break;
414 
415 		ADB_SET_SR_INPUT();
416 		ADB_SET_STATE_TIP();
417 
418 		adbInputBuffer[0] = 1;
419 		adbActionState = ADB_ACTION_IN;
420 #ifdef ADB_DEBUG
421 		if (adb_debug)
422 			printf_intr("idle 0x%02x ", adbInputBuffer[1]);
423 #endif
424 		break;
425 
426 	case ADB_ACTION_IN:
427 		adbInputBuffer[++adbInputBuffer[0]] = ADB_SR();
428 		/* intr off means this is the last byte (end of frame) */
429 		if (ADB_INTR_IS_OFF)
430 			ending = 1;
431 		else
432 			ending = 0;
433 
434 		if (1 == ending) {	/* end of message? */
435 #ifdef ADB_DEBUG
436 			if (adb_debug) {
437 				printf_intr("in end 0x%02x ",
438 				    adbInputBuffer[adbInputBuffer[0]]);
439 				print_single(adbInputBuffer);
440 			}
441 #endif
442 
443 			/*
444 			 * Are we waiting AND does this packet match what we
445 			 * are waiting for AND is it coming from either the
446 			 * ADB or RTC/PRAM sub-device? This section _should_
447 			 * recognize all ADB and RTC/PRAM type commands, but
448 			 * there may be more... NOTE: commands are always at
449 			 * [4], even for RTC/PRAM commands.
450 			 */
451 			/* set up data for adb_pass_up */
452 			memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
453 
454 			if ((adbWaiting == 1) &&
455 			    (adbInputBuffer[4] == adbWaitingCmd) &&
456 			    ((adbInputBuffer[2] == 0x00) ||
457 			    (adbInputBuffer[2] == 0x01))) {
458 				packet.saveBuf = adbBuffer;
459 				packet.compRout = adbCompRout;
460 				packet.compData = adbCompData;
461 				packet.unsol = 0;
462 				packet.ack_only = 0;
463 				adb_pass_up(&packet);
464 
465 				adbWaitingCmd = 0;	/* reset "waiting" vars */
466 				adbWaiting = 0;
467 				adbBuffer = (long)0;
468 				adbCompRout = (long)0;
469 				adbCompData = (long)0;
470 			} else {
471 				packet.unsol = 1;
472 				packet.ack_only = 0;
473 				adb_pass_up(&packet);
474 			}
475 
476 
477 			/* reset vars and signal the end of this frame */
478 			adbActionState = ADB_ACTION_IDLE;
479 			adbInputBuffer[0] = 0;
480 			ADB_SET_STATE_IDLE_CUDA();
481 			/*ADB_SET_SR_INPUT();*/
482 
483 			/*
484 			 * If there is something waiting to be sent out,
485 			 * the set everything up and send the first byte.
486 			 */
487 			if (adbWriteDelay == 1) {
488 				delay(ADB_DELAY);	/* required */
489 				adbSentChars = 0;
490 				adbActionState = ADB_ACTION_OUT;
491 				/*
492 				 * If the interrupt is on, we were too slow
493 				 * and the chip has already started to send
494 				 * something to us, so back out of the write
495 				 * and start a read cycle.
496 				 */
497 				if (ADB_INTR_IS_ON) {
498 					ADB_SET_SR_INPUT();
499 					ADB_SET_STATE_IDLE_CUDA();
500 					adbSentChars = 0;
501 					adbActionState = ADB_ACTION_IDLE;
502 					adbInputBuffer[0] = 0;
503 					break;
504 				}
505 				/*
506 				 * If we got here, it's ok to start sending
507 				 * so load the first byte and tell the chip
508 				 * we want to send.
509 				 */
510 				ADB_SET_STATE_TIP();
511 				ADB_SET_SR_OUTPUT();
512 				ADB_SR() = adbOutputBuffer[adbSentChars + 1];
513 			}
514 		} else {
515 			ADB_TOGGLE_STATE_ACK_CUDA();
516 #ifdef ADB_DEBUG
517 			if (adb_debug)
518 				printf_intr("in 0x%02x ",
519 				    adbInputBuffer[adbInputBuffer[0]]);
520 #endif
521 		}
522 		break;
523 
524 	case ADB_ACTION_OUT:
525 		i = ADB_SR();	/* reset SR-intr in IFR */
526 #ifdef ADB_DEBUG
527 		if (adb_debug)
528 			printf_intr("intr out 0x%02x ", i);
529 #endif
530 
531 		adbSentChars++;
532 		if (ADB_INTR_IS_ON) {	/* ADB intr low during write */
533 #ifdef ADB_DEBUG
534 			if (adb_debug)
535 				printf_intr("intr was on ");
536 #endif
537 			ADB_SET_SR_INPUT();	/* make sure SR is set to IN */
538 			ADB_SET_STATE_IDLE_CUDA();
539 			adbSentChars = 0;	/* must start all over */
540 			adbActionState = ADB_ACTION_IDLE;	/* new state */
541 			adbInputBuffer[0] = 0;
542 			adbWriteDelay = 1;	/* must retry when done with
543 						 * read */
544 			delay(ADB_DELAY);
545 			goto switch_start;	/* process next state right
546 						 * now */
547 			break;
548 		}
549 		if (adbOutputBuffer[0] == adbSentChars) {	/* check for done */
550 			if (0 == adb_cmd_result(adbOutputBuffer)) {	/* do we expect data
551 									 * back? */
552 				adbWaiting = 1;	/* signal waiting for return */
553 				adbWaitingCmd = adbOutputBuffer[2];	/* save waiting command */
554 			} else {	/* no talk, so done */
555 				/* set up stuff for adb_pass_up */
556 				memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
557 				packet.saveBuf = adbBuffer;
558 				packet.compRout = adbCompRout;
559 				packet.compData = adbCompData;
560 				packet.cmd = adbWaitingCmd;
561 				packet.unsol = 0;
562 				packet.ack_only = 1;
563 				adb_pass_up(&packet);
564 
565 				/* reset "waiting" vars, just in case */
566 				adbWaitingCmd = 0;
567 				adbBuffer = (long)0;
568 				adbCompRout = (long)0;
569 				adbCompData = (long)0;
570 			}
571 
572 			adbWriteDelay = 0;	/* done writing */
573 			adbActionState = ADB_ACTION_IDLE;	/* signal bus is idle */
574 			ADB_SET_SR_INPUT();
575 			ADB_SET_STATE_IDLE_CUDA();
576 #ifdef ADB_DEBUG
577 			if (adb_debug)
578 				printf_intr("write done ");
579 #endif
580 		} else {
581 			ADB_SR() = adbOutputBuffer[adbSentChars + 1];	/* send next byte */
582 			ADB_TOGGLE_STATE_ACK_CUDA();	/* signal byte ready to
583 							 * shift */
584 #ifdef ADB_DEBUG
585 			if (adb_debug)
586 				printf_intr("toggle ");
587 #endif
588 		}
589 		break;
590 
591 	case ADB_ACTION_NOTREADY:
592 #ifdef ADB_DEBUG
593 		if (adb_debug)
594 			printf_intr("adb: not yet initialized\n");
595 #endif
596 		break;
597 
598 	default:
599 #ifdef ADB_DEBUG
600 		if (adb_debug)
601 			printf_intr("intr: unknown ADB state\n");
602 #endif
603 		break;
604 	}
605 
606 	ADB_VIA_INTR_ENABLE();	/* enable ADB interrupt on IIs. */
607 
608 	splx(s);		/* restore */
609 
610 	return;
611 }				/* end adb_intr_cuda */
612 
613 
614 int
615 send_adb_cuda(u_char *in, u_char *buffer, void *compRout, void *data, int
616 	command)
617 {
618 	int s, len;
619 
620 #ifdef ADB_DEBUG
621 	if (adb_debug)
622 		printf_intr("SEND\n");
623 #endif
624 
625 	if (adbActionState == ADB_ACTION_NOTREADY)
626 		return 1;
627 
628 	/* Don't interrupt while we are messing with the ADB */
629 	s = splhigh();
630 
631 	if ((adbActionState == ADB_ACTION_IDLE) &&	/* ADB available? */
632 	    (ADB_INTR_IS_OFF)) {	/* and no incoming interrupt? */
633 	} else
634 		if (adbWriteDelay == 0)	/* it's busy, but is anything waiting? */
635 			adbWriteDelay = 1;	/* if no, then we'll "queue"
636 						 * it up */
637 		else {
638 			splx(s);
639 			return 1;	/* really busy! */
640 		}
641 
642 #ifdef ADB_DEBUG
643 	if (adb_debug)
644 		printf_intr("QUEUE\n");
645 #endif
646 	if ((long)in == (long)0) {	/* need to convert? */
647 		/*
648 		 * Don't need to use adb_cmd_extra here because this section
649 		 * will be called ONLY when it is an ADB command (no RTC or
650 		 * PRAM)
651 		 */
652 		if ((command & 0x0c) == 0x08)	/* copy addl data ONLY if
653 						 * doing a listen! */
654 			len = buffer[0];	/* length of additional data */
655 		else
656 			len = 0;/* no additional data */
657 
658 		adbOutputBuffer[0] = 2 + len;	/* dev. type + command + addl.
659 						 * data */
660 		adbOutputBuffer[1] = 0x00;	/* mark as an ADB command */
661 		adbOutputBuffer[2] = (u_char)command;	/* load command */
662 
663 		/* copy additional output data, if any */
664 		memcpy(adbOutputBuffer + 3, buffer + 1, len);
665 	} else
666 		/* if data ready, just copy over */
667 		memcpy(adbOutputBuffer, in, in[0] + 2);
668 
669 	adbSentChars = 0;	/* nothing sent yet */
670 	adbBuffer = buffer;	/* save buffer to know where to save result */
671 	adbCompRout = compRout;	/* save completion routine pointer */
672 	adbCompData = data;	/* save completion routine data pointer */
673 	adbWaitingCmd = adbOutputBuffer[2];	/* save wait command */
674 
675 	if (adbWriteDelay != 1) {	/* start command now? */
676 #ifdef ADB_DEBUG
677 		if (adb_debug)
678 			printf_intr("out start NOW");
679 #endif
680 		delay(ADB_DELAY);
681 		adbActionState = ADB_ACTION_OUT;	/* set next state */
682 		ADB_SET_SR_OUTPUT();	/* set shift register for OUT */
683 		ADB_SR() = adbOutputBuffer[adbSentChars + 1];	/* load byte for output */
684 		ADB_SET_STATE_ACKOFF_CUDA();
685 		ADB_SET_STATE_TIP();	/* tell ADB that we want to send */
686 	}
687 	adbWriteDelay = 1;	/* something in the write "queue" */
688 
689 	splx(s);
690 
691 	if (0x0100 <= (s & 0x0700))	/* were VIA1 interrupts blocked? */
692 		/* poll until byte done */
693 		while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
694 		    || (adbWaiting == 1))
695 			if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
696 				adb_intr_cuda(NULL); /* go process it */
697 				if (adb_polling)
698 					adb_soft_intr();
699 			}
700 
701 	return 0;
702 }				/* send_adb_cuda */
703 
704 
705 void
706 adb_intr_II(void *arg)
707 {
708 	struct adbCommand packet;
709 	int i, intr_on = 0;
710 	int send = 0;
711 	unsigned int s;
712 
713 	s = splhigh();		/* can't be too careful - might be called */
714 	/* from a routine, NOT an interrupt */
715 
716 	ADB_VIA_CLR_INTR();	/* clear interrupt */
717 
718 	ADB_VIA_INTR_DISABLE();	/* disable ADB interrupt on IIs. */
719 
720 	delay(ADB_DELAY);	/* yuck (don't remove) */
721 
722 	(void)intr_dispatch(0x70); /* grab any serial interrupts */
723 
724 	if (ADB_INTR_IS_ON)
725 		intr_on = 1;	/* save for later */
726 
727 switch_start:
728 	switch (adbActionState) {
729 	case ADB_ACTION_POLLING:
730 		if (!intr_on) {
731 			if (adbOutQueueHasData) {
732 #ifdef ADB_DEBUG
733 				if (adb_debug & 0x80)
734 					printf_intr("POLL-doing-out-queue. ");
735 #endif
736 				ADB_SET_STATE_IDLE_II();
737 				delay(ADB_DELAY);
738 
739 				/* copy over data */
740 				memcpy(adbOutputBuffer, adbOutQueue.outBuf,
741 				    adbOutQueue.outBuf[0] + 2);
742 
743 				adbBuffer = adbOutQueue.saveBuf;	/* user data area */
744 				adbCompRout = adbOutQueue.compRout;	/* completion routine */
745 				adbCompData = adbOutQueue.data;	/* comp. rout. data */
746 				adbOutQueueHasData = 0;	/* currently processing
747 							 * "queue" entry */
748 				adbSentChars = 0;	/* nothing sent yet */
749 				adbActionState = ADB_ACTION_OUT;	/* set next state */
750 				ADB_SET_SR_OUTPUT();	/* set shift register for OUT */
751 				ADB_SR() = adbOutputBuffer[1];	/* load byte for output */
752 				adbBusState = ADB_BUS_CMD;	/* set bus to cmd state */
753 				ADB_SET_STATE_CMD();	/* tell ADB that we want to send */
754 				break;
755 			} else {
756 #ifdef ADB_DEBUG
757 				if (adb_debug)
758 					printf_intr("pIDLE ");
759 #endif
760 				adbActionState = ADB_ACTION_IDLE;
761 			}
762 		} else {
763 #ifdef ADB_DEBUG
764 			if (adb_debug & 0x80)
765 				printf_intr("pIN ");
766 #endif
767 			adbActionState = ADB_ACTION_IN;
768 		}
769 		delay(ADB_DELAY);
770 		(void)intr_dispatch(0x70); /* grab any serial interrupts */
771 		goto switch_start;
772 		break;
773 	case ADB_ACTION_IDLE:
774 		if (!intr_on) {
775 			i = ADB_SR();
776 			adbBusState = ADB_BUS_IDLE;
777 			adbActionState = ADB_ACTION_IDLE;
778 			ADB_SET_STATE_IDLE_II();
779 			break;
780 		}
781 		adbInputBuffer[0] = 1;
782 		adbInputBuffer[1] = ADB_SR();	/* get first byte */
783 #ifdef ADB_DEBUG
784 		if (adb_debug & 0x80)
785 			printf_intr("idle 0x%02x ", adbInputBuffer[1]);
786 #endif
787 		ADB_SET_SR_INPUT();	/* make sure SR is set to IN */
788 		adbActionState = ADB_ACTION_IN;	/* set next state */
789 		ADB_SET_STATE_EVEN();	/* set bus state to even */
790 		adbBusState = ADB_BUS_EVEN;
791 		break;
792 
793 	case ADB_ACTION_IN:
794 		adbInputBuffer[++adbInputBuffer[0]] = ADB_SR();	/* get byte */
795 #ifdef ADB_DEBUG
796 		if (adb_debug & 0x80)
797 			printf_intr("in 0x%02x ",
798 			    adbInputBuffer[adbInputBuffer[0]]);
799 #endif
800 		ADB_SET_SR_INPUT();	/* make sure SR is set to IN */
801 
802 		if (intr_on) {	/* process last byte of packet */
803 			adbInputBuffer[0]--;	/* minus one */
804 			/*
805 			 * If intr_on was true, and it's the second byte, then
806 			 * the byte we just discarded is really valid, so
807 			 * adjust the count
808 			 */
809 			if (adbInputBuffer[0] == 2) {
810 				adbInputBuffer[0]++;
811 			}
812 
813 #ifdef ADB_DEBUG
814 			if (adb_debug & 0x80) {
815 				printf_intr("done: ");
816 				print_single(adbInputBuffer);
817 			}
818 #endif
819 
820 			adbLastDevice = ADB_CMDADDR(adbInputBuffer[1]);
821 
822 			if (adbInputBuffer[0] == 1 && !adbWaiting) {	/* SRQ!!!*/
823 #ifdef ADB_DEBUG
824 				if (adb_debug & 0x80)
825 					printf_intr(" xSRQ! ");
826 #endif
827 				adb_guess_next_device();
828 #ifdef ADB_DEBUG
829 				if (adb_debug & 0x80)
830 					printf_intr("try 0x%0x ",
831 					    adbLastDevice);
832 #endif
833 				adbOutputBuffer[0] = 1;
834 				adbOutputBuffer[1] = ADBTALK(adbLastDevice, 0);
835 
836 				adbSentChars = 0;	/* nothing sent yet */
837 				adbActionState = ADB_ACTION_POLLING;	/* set next state */
838 				ADB_SET_SR_OUTPUT();	/* set shift register for OUT */
839 				ADB_SR() = adbOutputBuffer[1];	/* load byte for output */
840 				adbBusState = ADB_BUS_CMD;	/* set bus to cmd state */
841 				ADB_SET_STATE_CMD();	/* tell ADB that we want to */
842 				break;
843 			}
844 
845 			/* set up data for adb_pass_up */
846 			memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
847 
848 			if (!adbWaiting && (adbInputBuffer[0] != 0)) {
849 				packet.unsol = 1;
850 				packet.ack_only = 0;
851 				adb_pass_up(&packet);
852 			} else {
853 				packet.saveBuf = adbBuffer;
854 				packet.compRout = adbCompRout;
855 				packet.compData = adbCompData;
856 				packet.unsol = 0;
857 				packet.ack_only = 0;
858 				adb_pass_up(&packet);
859 			}
860 
861 			adbWaiting = 0;
862 			adbInputBuffer[0] = 0;
863 			adbBuffer = (long)0;
864 			adbCompRout = (long)0;
865 			adbCompData = (long)0;
866 			/*
867 			 * Since we are done, check whether there is any data
868 			 * waiting to do out. If so, start the sending the data.
869 			 */
870 			if (adbOutQueueHasData == 1) {
871 #ifdef ADB_DEBUG
872 				if (adb_debug & 0x80)
873 					printf_intr("XXX: DOING OUT QUEUE\n");
874 #endif
875 				/* copy over data */
876 				memcpy(adbOutputBuffer, adbOutQueue.outBuf,
877 				    adbOutQueue.outBuf[0] + 2);
878 				adbBuffer = adbOutQueue.saveBuf;	/* user data area */
879 				adbCompRout = adbOutQueue.compRout;	/* completion routine */
880 				adbCompData = adbOutQueue.data;	/* comp. rout. data */
881 				adbOutQueueHasData = 0;	/* currently processing
882 							 * "queue" entry */
883 				send = 1;
884 			} else {
885 #ifdef ADB_DEBUG
886 				if (adb_debug & 0x80)
887 					printf_intr("XXending ");
888 #endif
889 				adb_guess_next_device();
890 				adbOutputBuffer[0] = 1;
891 				adbOutputBuffer[1] = ((adbLastDevice & 0x0f) << 4) | 0x0c;
892 				adbSentChars = 0;	/* nothing sent yet */
893 				adbActionState = ADB_ACTION_POLLING;	/* set next state */
894 				ADB_SET_SR_OUTPUT();	/* set shift register for OUT */
895 				ADB_SR() = adbOutputBuffer[1];	/* load byte for output */
896 				adbBusState = ADB_BUS_CMD;	/* set bus to cmd state */
897 				ADB_SET_STATE_CMD();	/* tell ADB that we want to */
898 				break;
899 			}
900 		}
901 
902 		/*
903 		 * If send is true then something above determined that
904 		 * the message has ended and we need to start sending out
905 		 * a new message immediately. This could be because there
906 		 * is data waiting to go out or because an SRQ was seen.
907 		 */
908 		if (send) {
909 			adbSentChars = 0;	/* nothing sent yet */
910 			adbActionState = ADB_ACTION_OUT;	/* set next state */
911 			ADB_SET_SR_OUTPUT();	/* set shift register for OUT */
912 			ADB_SR() = adbOutputBuffer[1];	/* load byte for output */
913 			adbBusState = ADB_BUS_CMD;	/* set bus to cmd state */
914 			ADB_SET_STATE_CMD();	/* tell ADB that we want to
915 						 * send */
916 			break;
917 		}
918 		/* We only get this far if the message hasn't ended yet. */
919 		switch (adbBusState) {	/* set to next state */
920 		case ADB_BUS_EVEN:
921 			ADB_SET_STATE_ODD();	/* set state to odd */
922 			adbBusState = ADB_BUS_ODD;
923 			break;
924 
925 		case ADB_BUS_ODD:
926 			ADB_SET_STATE_EVEN();	/* set state to even */
927 			adbBusState = ADB_BUS_EVEN;
928 			break;
929 		default:
930 			printf_intr("strange state!!!\n");	/* huh? */
931 			break;
932 		}
933 		break;
934 
935 	case ADB_ACTION_OUT:
936 		i = ADB_SR();	/* clear interrupt */
937 		adbSentChars++;
938 		/*
939 		 * If the outgoing data was a TALK, we must
940 		 * switch to input mode to get the result.
941 		 */
942 		if ((adbOutputBuffer[1] & 0x0c) == 0x0c) {
943 			adbInputBuffer[0] = 1;
944 			adbInputBuffer[1] = i;
945 			adbActionState = ADB_ACTION_IN;
946 			ADB_SET_SR_INPUT();
947 			adbBusState = ADB_BUS_EVEN;
948 			ADB_SET_STATE_EVEN();
949 #ifdef ADB_DEBUG
950 			if (adb_debug & 0x80)
951 				printf_intr("talk out 0x%02x ", i);
952 #endif
953 			/* we want something back */
954 			adbWaiting = 1;
955 			break;
956 		}
957 		/*
958 		 * If it's not a TALK, check whether all data has been sent.
959 		 * If so, call the completion routine and clean up. If not,
960 		 * advance to the next state.
961 		 */
962 #ifdef ADB_DEBUG
963 		if (adb_debug & 0x80)
964 			printf_intr("non-talk out 0x%0x ", i);
965 #endif
966 		ADB_SET_SR_OUTPUT();
967 		if (adbOutputBuffer[0] == adbSentChars) {	/* check for done */
968 #ifdef ADB_DEBUG
969 			if (adb_debug & 0x80)
970 				printf_intr("done \n");
971 #endif
972 			/* set up stuff for adb_pass_up */
973 			memcpy(packet.data, adbOutputBuffer, adbOutputBuffer[0] + 1);
974 			packet.saveBuf = adbBuffer;
975 			packet.compRout = adbCompRout;
976 			packet.compData = adbCompData;
977 			packet.cmd = adbWaitingCmd;
978 			packet.unsol = 0;
979 			packet.ack_only = 1;
980 			adb_pass_up(&packet);
981 
982 			/* reset "waiting" vars, just in case */
983 			adbBuffer = (long)0;
984 			adbCompRout = (long)0;
985 			adbCompData = (long)0;
986 			if (adbOutQueueHasData == 1) {
987 				/* copy over data */
988 				memcpy(adbOutputBuffer, adbOutQueue.outBuf,
989 				    adbOutQueue.outBuf[0] + 2);
990 				adbBuffer = adbOutQueue.saveBuf;	/* user data area */
991 				adbCompRout = adbOutQueue.compRout;	/* completion routine */
992 				adbCompData = adbOutQueue.data;	/* comp. rout. data */
993 				adbOutQueueHasData = 0;	/* currently processing
994 							 * "queue" entry */
995 				adbSentChars = 0;	/* nothing sent yet */
996 				adbActionState = ADB_ACTION_OUT;	/* set next state */
997 				ADB_SET_SR_OUTPUT();	/* set shift register for OUT */
998 				ADB_SR() = adbOutputBuffer[1];	/* load byte for output */
999 				adbBusState = ADB_BUS_CMD;	/* set bus to cmd state */
1000 				ADB_SET_STATE_CMD();	/* tell ADB that we want to
1001 							 * send */
1002 				break;
1003 			} else {
1004 				/* send talk to last device instead */
1005 				adbOutputBuffer[0] = 1;
1006 				adbOutputBuffer[1] =
1007 				    ADBTALK(ADB_CMDADDR(adbOutputBuffer[1]), 0);
1008 
1009 				adbSentChars = 0;	/* nothing sent yet */
1010 				adbActionState = ADB_ACTION_IDLE;	/* set next state */
1011 				ADB_SET_SR_OUTPUT();	/* set shift register for OUT */
1012 				ADB_SR() = adbOutputBuffer[1];	/* load byte for output */
1013 				adbBusState = ADB_BUS_CMD;	/* set bus to cmd state */
1014 				ADB_SET_STATE_CMD();	/* tell ADB that we want to */
1015 				break;
1016 			}
1017 		}
1018 		ADB_SR() = adbOutputBuffer[adbSentChars + 1];
1019 		switch (adbBusState) {	/* advance to next state */
1020 		case ADB_BUS_EVEN:
1021 			ADB_SET_STATE_ODD();	/* set state to odd */
1022 			adbBusState = ADB_BUS_ODD;
1023 			break;
1024 
1025 		case ADB_BUS_CMD:
1026 		case ADB_BUS_ODD:
1027 			ADB_SET_STATE_EVEN();	/* set state to even */
1028 			adbBusState = ADB_BUS_EVEN;
1029 			break;
1030 
1031 		default:
1032 #ifdef ADB_DEBUG
1033 			if (adb_debug) {
1034 				printf_intr("strange state!!! (0x%x)\n",
1035 				    adbBusState);
1036 			}
1037 #endif
1038 			break;
1039 		}
1040 		break;
1041 
1042 	default:
1043 #ifdef ADB_DEBUG
1044 		if (adb_debug)
1045 			printf_intr("adb: unknown ADB state (during intr)\n");
1046 #endif
1047 		break;
1048 	}
1049 
1050 	ADB_VIA_INTR_ENABLE();	/* enable ADB interrupt on IIs. */
1051 
1052 	splx(s);		/* restore */
1053 
1054 	return;
1055 
1056 }
1057 
1058 
1059 /*
1060  * send_adb version for II series machines
1061  */
1062 int
1063 send_adb_II(u_char *in, u_char *buffer, void *compRout, void *data, int command)
1064 {
1065 	int s, len;
1066 
1067 	if (adbActionState == ADB_ACTION_NOTREADY)	/* return if ADB not
1068 							 * available */
1069 		return 1;
1070 
1071 	/* Don't interrupt while we are messing with the ADB */
1072 	s = splhigh();
1073 
1074 	if (0 != adbOutQueueHasData) {	/* right now, "has data" means "full" */
1075 		splx(s);	/* sorry, try again later */
1076 		return 1;
1077 	}
1078 	if ((long)in == (long)0) {	/* need to convert? */
1079 		/*
1080 		 * Don't need to use adb_cmd_extra here because this section
1081 		 * will be called ONLY when it is an ADB command (no RTC or
1082 		 * PRAM), especially on II series!
1083 		 */
1084 		if ((command & 0x0c) == 0x08)	/* copy addl data ONLY if
1085 						 * doing a listen! */
1086 			len = buffer[0];	/* length of additional data */
1087 		else
1088 			len = 0;/* no additional data */
1089 
1090 		adbOutQueue.outBuf[0] = 1 + len;	/* command + addl. data */
1091 		adbOutQueue.outBuf[1] = (u_char)command;	/* load command */
1092 
1093 		/* copy additional output data, if any */
1094 		memcpy(adbOutQueue.outBuf + 2, buffer + 1, len);
1095 	} else
1096 		/* if data ready, just copy over */
1097 		memcpy(adbOutQueue.outBuf, in, in[0] + 2);
1098 
1099 	adbOutQueue.saveBuf = buffer;	/* save buffer to know where to save
1100 					 * result */
1101 	adbOutQueue.compRout = compRout;	/* save completion routine
1102 						 * pointer */
1103 	adbOutQueue.data = data;/* save completion routine data pointer */
1104 
1105 	if ((adbActionState == ADB_ACTION_IDLE) &&	/* is ADB available? */
1106 	    (ADB_INTR_IS_OFF)) {	/* and no incoming interrupts? */
1107 		/* then start command now */
1108 		memcpy(adbOutputBuffer, adbOutQueue.outBuf,
1109 		    adbOutQueue.outBuf[0] + 2);		/* copy over data */
1110 
1111 		adbBuffer = adbOutQueue.saveBuf;	/* pointer to user data
1112 							 * area */
1113 		adbCompRout = adbOutQueue.compRout;	/* pointer to the
1114 							 * completion routine */
1115 		adbCompData = adbOutQueue.data;	/* pointer to the completion
1116 						 * routine data */
1117 
1118 		adbSentChars = 0;	/* nothing sent yet */
1119 		adbActionState = ADB_ACTION_OUT;	/* set next state */
1120 		adbBusState = ADB_BUS_CMD;	/* set bus to cmd state */
1121 
1122 		ADB_SET_SR_OUTPUT();	/* set shift register for OUT */
1123 
1124 		ADB_SR() = adbOutputBuffer[adbSentChars + 1];	/* load byte for output */
1125 		ADB_SET_STATE_CMD();	/* tell ADB that we want to send */
1126 		adbOutQueueHasData = 0;	/* currently processing "queue" entry */
1127 	} else
1128 		adbOutQueueHasData = 1;	/* something in the write "queue" */
1129 
1130 	splx(s);
1131 
1132 	if (0x0100 <= (s & 0x0700))	/* were VIA1 interrupts blocked? */
1133 		/* poll until message done */
1134 		while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
1135 		    || (adbWaiting == 1))
1136 			if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
1137 				adb_intr_II(NULL); /* go process it */
1138 				if (adb_polling)
1139 					adb_soft_intr();
1140 			}
1141 
1142 	return 0;
1143 }
1144 
1145 
1146 /*
1147  * This routine is called from the II series interrupt routine
1148  * to determine what the "next" device is that should be polled.
1149  */
1150 int
1151 adb_guess_next_device(void)
1152 {
1153 	int last, i, dummy;
1154 
1155 	if (adbStarting) {
1156 		/*
1157 		 * Start polling EVERY device, since we can't be sure there is
1158 		 * anything in the device table yet
1159 		 */
1160 		if (adbLastDevice < 1 || adbLastDevice > 15)
1161 			adbLastDevice = 1;
1162 		if (++adbLastDevice > 15)	/* point to next one */
1163 			adbLastDevice = 1;
1164 	} else {
1165 		/* find the next device using the device table */
1166 		if (adbLastDevice < 1 || adbLastDevice > 15)	/* let's be parinoid */
1167 			adbLastDevice = 2;
1168 		last = 1;	/* default index location */
1169 
1170 		for (i = 1; i < 16; i++)	/* find index entry */
1171 			if (ADBDevTable[i].currentAddr == adbLastDevice) {	/* look for device */
1172 				last = i;	/* found it */
1173 				break;
1174 			}
1175 		dummy = last;	/* index to start at */
1176 		for (;;) {	/* find next device in index */
1177 			if (++dummy > 15)	/* wrap around if needed */
1178 				dummy = 1;
1179 			if (dummy == last) {	/* didn't find any other
1180 						 * device! This can happen if
1181 						 * there are no devices on the
1182 						 * bus */
1183 				dummy = 1;
1184 				break;
1185 			}
1186 			/* found the next device */
1187 			if (ADBDevTable[dummy].devType != 0)
1188 				break;
1189 		}
1190 		adbLastDevice = ADBDevTable[dummy].currentAddr;
1191 	}
1192 	return adbLastDevice;
1193 }
1194 
1195 
1196 /*
1197  * Called when when an adb interrupt happens.
1198  * This routine simply transfers control over to the appropriate
1199  * code for the machine we are running on.
1200  */
1201 void
1202 adb_intr(void *arg)
1203 {
1204 	switch (adbHardware) {
1205 	case ADB_HW_II:
1206 		adb_intr_II(arg);
1207 		break;
1208 
1209 	case ADB_HW_IISI:
1210 		adb_intr_IIsi(arg);
1211 		break;
1212 
1213 	case ADB_HW_PB:		/* Should not come through here. */
1214 		break;
1215 
1216 	case ADB_HW_CUDA:
1217 		adb_intr_cuda(arg);
1218 		break;
1219 
1220 	case ADB_HW_IOP:	/* Should not come through here. */
1221 		break;
1222 
1223 	case ADB_HW_UNKNOWN:
1224 		break;
1225 	}
1226 }
1227 
1228 
1229 /*
1230  * called when when an adb interrupt happens
1231  *
1232  * IIsi version of adb_intr
1233  *
1234  */
1235 void
1236 adb_intr_IIsi(void *arg)
1237 {
1238 	struct adbCommand packet;
1239 	int i, ending;
1240 	unsigned int s;
1241 
1242 	s = splhigh();		/* can't be too careful - might be called */
1243 	/* from a routine, NOT an interrupt */
1244 
1245 	ADB_VIA_CLR_INTR();	/* clear interrupt */
1246 
1247 	ADB_VIA_INTR_DISABLE();	/* disable ADB interrupt on IIs. */
1248 
1249 switch_start:
1250 	switch (adbActionState) {
1251 	case ADB_ACTION_IDLE:
1252 		delay(ADB_DELAY);	/* short delay is required before the
1253 					 * first byte */
1254 
1255 		ADB_SET_SR_INPUT();	/* make sure SR is set to IN */
1256 		ADB_SET_STATE_ACTIVE();	/* signal start of data frame */
1257 		adbInputBuffer[1] = ADB_SR();	/* get byte */
1258 		adbInputBuffer[0] = 1;
1259 		adbActionState = ADB_ACTION_IN;	/* set next state */
1260 
1261 		ADB_SET_STATE_ACKON();	/* start ACK to ADB chip */
1262 		delay(ADB_DELAY);	/* delay */
1263 		ADB_SET_STATE_ACKOFF();	/* end ACK to ADB chip */
1264 		(void)intr_dispatch(0x70); /* grab any serial interrupts */
1265 		break;
1266 
1267 	case ADB_ACTION_IN:
1268 		ADB_SET_SR_INPUT();	/* make sure SR is set to IN */
1269 		adbInputBuffer[++adbInputBuffer[0]] = ADB_SR();	/* get byte */
1270 		if (ADB_INTR_IS_OFF)	/* check for end of frame */
1271 			ending = 1;
1272 		else
1273 			ending = 0;
1274 
1275 		ADB_SET_STATE_ACKON();	/* start ACK to ADB chip */
1276 		delay(ADB_DELAY);	/* delay */
1277 		ADB_SET_STATE_ACKOFF();	/* end ACK to ADB chip */
1278 		(void)intr_dispatch(0x70); /* grab any serial interrupts */
1279 
1280 		if (1 == ending) {	/* end of message? */
1281 			ADB_SET_STATE_INACTIVE();	/* signal end of frame */
1282 			/*
1283 			 * This section _should_ handle all ADB and RTC/PRAM
1284 			 * type commands, but there may be more...  Note:
1285 			 * commands are always at [4], even for rtc/pram
1286 			 * commands
1287 			 */
1288 			/* set up data for adb_pass_up */
1289 			memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1);
1290 
1291 			if ((adbWaiting == 1) &&	/* are we waiting AND */
1292 			    (adbInputBuffer[4] == adbWaitingCmd) &&	/* the cmd we sent AND */
1293 			    ((adbInputBuffer[2] == 0x00) ||	/* it's from the ADB
1294 								 * device OR */
1295 				(adbInputBuffer[2] == 0x01))) {	/* it's from the
1296 								 * PRAM/RTC device */
1297 
1298 				packet.saveBuf = adbBuffer;
1299 				packet.compRout = adbCompRout;
1300 				packet.compData = adbCompData;
1301 				packet.unsol = 0;
1302 				packet.ack_only = 0;
1303 				adb_pass_up(&packet);
1304 
1305 				adbWaitingCmd = 0;	/* reset "waiting" vars */
1306 				adbWaiting = 0;
1307 				adbBuffer = (long)0;
1308 				adbCompRout = (long)0;
1309 				adbCompData = (long)0;
1310 			} else {
1311 				packet.unsol = 1;
1312 				packet.ack_only = 0;
1313 				adb_pass_up(&packet);
1314 			}
1315 
1316 			adbActionState = ADB_ACTION_IDLE;
1317 			adbInputBuffer[0] = 0;	/* reset length */
1318 
1319 			if (adbWriteDelay == 1) {	/* were we waiting to
1320 							 * write? */
1321 				adbSentChars = 0;	/* nothing sent yet */
1322 				adbActionState = ADB_ACTION_OUT;	/* set next state */
1323 
1324 				delay(ADB_DELAY);	/* delay */
1325 				(void)intr_dispatch(0x70); /* grab any serial interrupts */
1326 
1327 				if (ADB_INTR_IS_ON) {	/* ADB intr low during
1328 							 * write */
1329 					ADB_SET_STATE_IDLE_IISI();	/* reset */
1330 					ADB_SET_SR_INPUT();	/* make sure SR is set
1331 								 * to IN */
1332 					adbSentChars = 0;	/* must start all over */
1333 					adbActionState = ADB_ACTION_IDLE;	/* new state */
1334 					adbInputBuffer[0] = 0;
1335 					/* may be able to take this out later */
1336 					delay(ADB_DELAY);	/* delay */
1337 					break;
1338 				}
1339 				ADB_SET_STATE_ACTIVE();	/* tell ADB that we want
1340 							 * to send */
1341 				ADB_SET_STATE_ACKOFF();	/* make sure */
1342 				ADB_SET_SR_OUTPUT();	/* set shift register
1343 							 * for OUT */
1344 				ADB_SR() = adbOutputBuffer[adbSentChars + 1];
1345 				ADB_SET_STATE_ACKON();	/* tell ADB byte ready
1346 							 * to shift */
1347 			}
1348 		}
1349 		break;
1350 
1351 	case ADB_ACTION_OUT:
1352 		i = ADB_SR();	/* reset SR-intr in IFR */
1353 		ADB_SET_SR_OUTPUT();	/* set shift register for OUT */
1354 
1355 		ADB_SET_STATE_ACKOFF();	/* finish ACK */
1356 		adbSentChars++;
1357 		if (ADB_INTR_IS_ON) {	/* ADB intr low during write */
1358 			ADB_SET_STATE_IDLE_IISI();	/* reset */
1359 			ADB_SET_SR_INPUT();	/* make sure SR is set to IN */
1360 			adbSentChars = 0;	/* must start all over */
1361 			adbActionState = ADB_ACTION_IDLE;	/* new state */
1362 			adbInputBuffer[0] = 0;
1363 			adbWriteDelay = 1;	/* must retry when done with
1364 						 * read */
1365 			delay(ADB_DELAY);	/* delay */
1366 			(void)intr_dispatch(0x70); /* grab any serial interrupts */
1367 			goto switch_start;	/* process next state right
1368 						 * now */
1369 			break;
1370 		}
1371 		delay(ADB_DELAY);	/* required delay */
1372 		(void)intr_dispatch(0x70); /* grab any serial interrupts */
1373 
1374 		if (adbOutputBuffer[0] == adbSentChars) {	/* check for done */
1375 			if (0 == adb_cmd_result(adbOutputBuffer)) {	/* do we expect data
1376 									 * back? */
1377 				adbWaiting = 1;	/* signal waiting for return */
1378 				adbWaitingCmd = adbOutputBuffer[2];	/* save waiting command */
1379 			} else {/* no talk, so done */
1380 				/* set up stuff for adb_pass_up */
1381 				memcpy(packet.data, adbInputBuffer,
1382 				    adbInputBuffer[0] + 1);
1383 				packet.saveBuf = adbBuffer;
1384 				packet.compRout = adbCompRout;
1385 				packet.compData = adbCompData;
1386 				packet.cmd = adbWaitingCmd;
1387 				packet.unsol = 0;
1388 				packet.ack_only = 1;
1389 				adb_pass_up(&packet);
1390 
1391 				/* reset "waiting" vars, just in case */
1392 				adbWaitingCmd = 0;
1393 				adbBuffer = (long)0;
1394 				adbCompRout = (long)0;
1395 				adbCompData = (long)0;
1396 			}
1397 
1398 			adbWriteDelay = 0;	/* done writing */
1399 			adbActionState = ADB_ACTION_IDLE;	/* signal bus is idle */
1400 			ADB_SET_SR_INPUT();	/* make sure SR is set to IN */
1401 			ADB_SET_STATE_INACTIVE();	/* end of frame */
1402 		} else {
1403 			ADB_SR() = adbOutputBuffer[adbSentChars + 1];	/* send next byte */
1404 			ADB_SET_STATE_ACKON();	/* signal byte ready to shift */
1405 		}
1406 		break;
1407 
1408 	case ADB_ACTION_NOTREADY:
1409 #ifdef ADB_DEBUG
1410 		if (adb_debug)
1411 			printf_intr("adb: not yet initialized\n");
1412 #endif
1413 		break;
1414 
1415 	default:
1416 #ifdef ADB_DEBUG
1417 		if (adb_debug)
1418 			printf_intr("intr: unknown ADB state\n");
1419 #endif
1420 		break;
1421 	}
1422 
1423 	ADB_VIA_INTR_ENABLE();	/* enable ADB interrupt on IIs. */
1424 
1425 	splx(s);		/* restore */
1426 
1427 	return;
1428 }				/* end adb_intr_IIsi */
1429 
1430 
1431 /*****************************************************************************
1432  * if the device is currently busy, and there is no data waiting to go out, then
1433  * the data is "queued" in the outgoing buffer. If we are already waiting, then
1434  * we return.
1435  * in: if (in == 0) then the command string is built from command and buffer
1436  *     if (in != 0) then in is used as the command string
1437  * buffer: additional data to be sent (used only if in == 0)
1438  *         this is also where return data is stored
1439  * compRout: the completion routine that is called when then return value
1440  *	     is received (if a return value is expected)
1441  * data: a data pointer that can be used by the completion routine
1442  * command: an ADB command to be sent (used only if in == 0)
1443  *
1444  */
1445 int
1446 send_adb_IIsi(u_char *in, u_char *buffer, void *compRout, void *data, int
1447 	command)
1448 {
1449 	int s, len;
1450 
1451 	if (adbActionState == ADB_ACTION_NOTREADY)
1452 		return 1;
1453 
1454 	/* Don't interrupt while we are messing with the ADB */
1455 	s = splhigh();
1456 
1457 	if ((adbActionState == ADB_ACTION_IDLE) &&	/* ADB available? */
1458 	    (ADB_INTR_IS_OFF)) {/* and no incoming interrupt? */
1459 
1460 	} else
1461 		if (adbWriteDelay == 0)	/* it's busy, but is anything waiting? */
1462 			adbWriteDelay = 1;	/* if no, then we'll "queue"
1463 						 * it up */
1464 		else {
1465 			splx(s);
1466 			return 1;	/* really busy! */
1467 		}
1468 
1469 	if ((long)in == (long)0) {	/* need to convert? */
1470 		/*
1471 		 * Don't need to use adb_cmd_extra here because this section
1472 		 * will be called ONLY when it is an ADB command (no RTC or
1473 		 * PRAM)
1474 		 */
1475 		if ((command & 0x0c) == 0x08)	/* copy addl data ONLY if
1476 						 * doing a listen! */
1477 			len = buffer[0];	/* length of additional data */
1478 		else
1479 			len = 0;/* no additional data */
1480 
1481 		adbOutputBuffer[0] = 2 + len;	/* dev. type + command + addl.
1482 						 * data */
1483 		adbOutputBuffer[1] = 0x00;	/* mark as an ADB command */
1484 		adbOutputBuffer[2] = (u_char)command;	/* load command */
1485 
1486 		/* copy additional output data, if any */
1487 		memcpy(adbOutputBuffer + 3, buffer + 1, len);
1488 	} else
1489 		/* if data ready, just copy over */
1490 		memcpy(adbOutputBuffer, in, in[0] + 2);
1491 
1492 	adbSentChars = 0;	/* nothing sent yet */
1493 	adbBuffer = buffer;	/* save buffer to know where to save result */
1494 	adbCompRout = compRout;	/* save completion routine pointer */
1495 	adbCompData = data;	/* save completion routine data pointer */
1496 	adbWaitingCmd = adbOutputBuffer[2];	/* save wait command */
1497 
1498 	if (adbWriteDelay != 1) {	/* start command now? */
1499 		adbActionState = ADB_ACTION_OUT;	/* set next state */
1500 
1501 		ADB_SET_STATE_ACTIVE();	/* tell ADB that we want to send */
1502 		ADB_SET_STATE_ACKOFF();	/* make sure */
1503 
1504 		ADB_SET_SR_OUTPUT();	/* set shift register for OUT */
1505 
1506 		ADB_SR() = adbOutputBuffer[adbSentChars + 1];	/* load byte for output */
1507 
1508 		ADB_SET_STATE_ACKON();	/* tell ADB byte ready to shift */
1509 	}
1510 	adbWriteDelay = 1;	/* something in the write "queue" */
1511 
1512 	splx(s);
1513 
1514 	if (0x0100 <= (s & 0x0700))	/* were VIA1 interrupts blocked? */
1515 		/* poll until byte done */
1516 		while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
1517 		    || (adbWaiting == 1))
1518 			if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */
1519 				adb_intr_IIsi(NULL); /* go process it */
1520 				if (adb_polling)
1521 					adb_soft_intr();
1522 			}
1523 
1524 	 return 0;
1525 }				/* send_adb_IIsi */
1526 
1527 void
1528 adb_iop_recv(IOP *iop, struct iop_msg *msg)
1529 {
1530 	struct adbCommand	pkt;
1531 	unsigned		flags;
1532 
1533 	if (adbActionState != ADB_ACTION_RUNNING)
1534 		return;
1535 
1536 	switch (msg->status) {
1537 	case IOP_MSGSTAT_SENT:
1538 		if (0 == adb_cmd_result(msg->msg + 1)) {
1539 			adbWaiting = 1;
1540 			adbWaitingCmd = msg->msg[2];
1541 		}
1542 		break;
1543 	case IOP_MSGSTAT_RECEIVED:
1544 	case IOP_MSGSTAT_UNEXPECTED:
1545 		flags = msg->msg[0];
1546 		if (flags != 0) {
1547 			printf("ADB FLAGS 0x%x", flags);
1548 			break;
1549 		}
1550 		if (adbWaiting &&
1551 		    (msg->msg[2] == adbWaitingCmd)) {
1552 			pkt.saveBuf = msg->msg + 1;
1553 			pkt.compRout = adbCompRout;
1554 			pkt.compData = adbCompData;
1555 			pkt.unsol = 0;
1556 			pkt.ack_only = 0;
1557 			adb_pass_up(&pkt);
1558 
1559 			adbWaitingCmd = 0;
1560 			adbWaiting = 0;
1561 		} else {
1562 			pkt.unsol = 1;
1563 			pkt.ack_only = 0;
1564 			adb_pass_up(&pkt);
1565 		}
1566 		break;
1567 	default:
1568 		return;
1569 	}
1570 }
1571 
1572 int
1573 send_adb_iop(int cmd, u_char * buffer, void *compRout, void *data)
1574 {
1575 	u_char	buff[32];
1576 	int	cnt;
1577 
1578 	if (adbActionState != ADB_ACTION_RUNNING)
1579 		return -1;
1580 
1581 	buff[0] = IOP_ADB_FL_EXPLICIT;
1582 	buff[1] = buffer[0];
1583 	buff[2] = cmd;
1584 	cnt = (int) buff[1];
1585 	memcpy(buff + 3, buffer + 1, cnt);
1586 	return iop_send_msg(ISM_IOP, IOP_CHAN_ADB, buff, cnt+3,
1587 			    adb_iop_recv, NULL);
1588 }
1589 
1590 /*
1591  * adb_pass_up is called by the interrupt-time routines.
1592  * It takes the raw packet data that was received from the
1593  * device and puts it into the queue that the upper half
1594  * processes. It then signals for a soft ADB interrupt which
1595  * will eventually call the upper half routine (adb_soft_intr).
1596  *
1597  * If in->unsol is 0, then this is either the notification
1598  * that the packet was sent (on a LISTEN, for example), or the
1599  * response from the device (on a TALK). The completion routine
1600  * is called only if the user specified one.
1601  *
1602  * If in->unsol is 1, then this packet was unsolicited and
1603  * so we look up the device in the ADB device table to determine
1604  * what it's default service routine is.
1605  *
1606  * If in->ack_only is 1, then we really only need to call
1607  * the completion routine, so don't do any other stuff.
1608  *
1609  * Note that in->data contains the packet header AND data,
1610  * while adbInbound[]->data contains ONLY data.
1611  *
1612  * Note: Called only at interrupt time. Assumes this.
1613  */
1614 void
1615 adb_pass_up(struct adbCommand *in)
1616 {
1617 	int start = 0, len = 0, cmd = 0;
1618 	ADBDataBlock block;
1619 
1620 	/* temp for testing */
1621 	/*u_char *buffer = 0;*/
1622 	/*u_char *compdata = 0;*/
1623 	/*u_char *comprout = 0;*/
1624 
1625 	if (adbInCount >= ADB_QUEUE) {
1626 #ifdef ADB_DEBUG
1627 		if (adb_debug)
1628 			printf_intr("adb: ring buffer overflow\n");
1629 #endif
1630 		return;
1631 	}
1632 
1633 	if (in->ack_only) {
1634 		len = in->data[0];
1635 		cmd = in->cmd;
1636 		start = 0;
1637 	} else {
1638 		switch (adbHardware) {
1639 		case ADB_HW_IOP:
1640 		case ADB_HW_II:
1641 			cmd = in->data[1];
1642 			if (in->data[0] < 2)
1643 				len = 0;
1644 			else
1645 				len = in->data[0]-1;
1646 			start = 1;
1647 			break;
1648 
1649 		case ADB_HW_IISI:
1650 		case ADB_HW_CUDA:
1651 			/* If it's unsolicited, accept only ADB data for now */
1652 			if (in->unsol)
1653 				if (0 != in->data[2])
1654 					return;
1655 			cmd = in->data[4];
1656 			if (in->data[0] < 5)
1657 				len = 0;
1658 			else
1659 				len = in->data[0]-4;
1660 			start = 4;
1661 			break;
1662 
1663 		case ADB_HW_PB:
1664 			cmd = in->data[1];
1665 			if (in->data[0] < 2)
1666 				len = 0;
1667 			else
1668 				len = in->data[0]-1;
1669 			start = 1;
1670 			break;
1671 
1672 		case ADB_HW_UNKNOWN:
1673 			return;
1674 		}
1675 
1676 		/* Make sure there is a valid device entry for this device */
1677 		if (in->unsol) {
1678 			/* ignore unsolicited data during adbreinit */
1679 			if (adbStarting)
1680 				return;
1681 			/* get device's comp. routine and data area */
1682 			if (-1 == get_adb_info(&block, ADB_CMDADDR(cmd)))
1683 				return;
1684 		}
1685 	}
1686 
1687 	/*
1688  	 * If this is an unsolicited packet, we need to fill in
1689  	 * some info so adb_soft_intr can process this packet
1690  	 * properly. If it's not unsolicited, then use what
1691  	 * the caller sent us.
1692  	 */
1693 	if (in->unsol) {
1694 		adbInbound[adbInTail].compRout = (void *)block.dbServiceRtPtr;
1695 		adbInbound[adbInTail].compData = (void *)block.dbDataAreaAddr;
1696 		adbInbound[adbInTail].saveBuf = (void *)adbInbound[adbInTail].data;
1697 	} else {
1698 		adbInbound[adbInTail].compRout = (void *)in->compRout;
1699 		adbInbound[adbInTail].compData = (void *)in->compData;
1700 		adbInbound[adbInTail].saveBuf = (void *)in->saveBuf;
1701 	}
1702 
1703 #ifdef ADB_DEBUG
1704 	if (adb_debug && in->data[1] == 2)
1705 		printf_intr("adb: caught error\n");
1706 #endif
1707 
1708 	/* copy the packet data over */
1709 	/*
1710 	 * TO DO: If the *_intr routines fed their incoming data
1711 	 * directly into an adbCommand struct, which is passed to
1712 	 * this routine, then we could eliminate this copy.
1713 	 */
1714 	memcpy(adbInbound[adbInTail].data + 1, in->data + start + 1, len);
1715 	adbInbound[adbInTail].data[0] = len;
1716 	adbInbound[adbInTail].cmd = cmd;
1717 
1718 	adbInCount++;
1719 	if (++adbInTail >= ADB_QUEUE)
1720 		adbInTail = 0;
1721 
1722 	/*
1723 	 * If the debugger is running, call upper half manually.
1724 	 * Otherwise, trigger a soft interrupt to handle the rest later.
1725 	 */
1726 	if (adb_polling)
1727 		adb_soft_intr();
1728 	else
1729 		setsoftadb();
1730 
1731 	return;
1732 }
1733 
1734 
1735 /*
1736  * Called to process the packets after they have been
1737  * placed in the incoming queue.
1738  *
1739  */
1740 void
1741 adb_soft_intr(void)
1742 {
1743 	int s;
1744 	int cmd = 0;
1745 	u_char *buffer = 0;
1746 	u_char *comprout = 0;
1747 	u_char *compdata = 0;
1748 
1749 #if 0
1750 	s = splhigh();
1751 	printf_intr("sr: %x\n", (s & 0x0700));
1752 	splx(s);
1753 #endif
1754 
1755 /*delay(2*ADB_DELAY);*/
1756 
1757 	while (adbInCount) {
1758 #ifdef ADB_DEBUG
1759 		if (adb_debug & 0x80)
1760 			printf_intr("%x %x %x ",
1761 			    adbInCount, adbInHead, adbInTail);
1762 #endif
1763 		/* get the data we need from the queue */
1764 		buffer = adbInbound[adbInHead].saveBuf;
1765 		comprout = adbInbound[adbInHead].compRout;
1766 		compdata = adbInbound[adbInHead].compData;
1767 		cmd = adbInbound[adbInHead].cmd;
1768 
1769 		/* copy over data to data area if it's valid */
1770 		/*
1771 		 * Note that for unsol packets we don't want to copy the
1772 	 	 * data anywhere, so buffer was already set to 0.
1773 	 	 * For ack_only buffer was set to 0, so don't copy.
1774 		 */
1775 		if (buffer)
1776 			memcpy(buffer, adbInbound[adbInHead].data,
1777 			    adbInbound[adbInHead].data[0] + 1);
1778 
1779 #ifdef ADB_DEBUG
1780 			if (adb_debug & 0x80) {
1781 				printf_intr("%p %p %p %x ",
1782 				    buffer, comprout, compdata, (short)cmd);
1783 				printf_intr("buf: ");
1784 				print_single(adbInbound[adbInHead].data);
1785 			}
1786 #endif
1787 
1788 		/* call default completion routine if it's valid */
1789 		if (comprout) {
1790 #ifdef __NetBSD__
1791 			__asm volatile (
1792 			"	movml #0xffff,%%sp@- \n" /* save all regs */
1793 			"	movl %0,%%a2	\n" 	/* compdata */
1794 			"	movl %1,%%a1	\n" 	/* comprout */
1795 			"	movl %2,%%a0 	\n"	/* buffer */
1796 			"	movl %3,%%d0 	\n"	/* cmd */
1797 			"	jbsr %%a1@ 	\n"	/* go call routine */
1798 			"	movml %%sp@+,#0xffff"	/* restore all regs */
1799 			    :
1800 			    : "g"(compdata), "g"(comprout),
1801 				"g"(buffer), "g"(cmd)
1802 			    : "d0", "a0", "a1", "a2");
1803 #else					/* for macos based testing */
1804 			asm
1805 			{
1806 				movem.l a0/a1/a2/d0, -(a7)
1807 				move.l compdata, a2
1808 				move.l comprout, a1
1809 				move.l buffer, a0
1810 				move.w cmd, d0
1811 				jsr(a1)
1812 				movem.l(a7)+, d0/a2/a1/a0
1813 			}
1814 #endif
1815 		}
1816 
1817 		s = splhigh();
1818 		adbInCount--;
1819 		if (++adbInHead >= ADB_QUEUE)
1820 			adbInHead = 0;
1821 		splx(s);
1822 
1823 	}
1824 	return;
1825 }
1826 
1827 
1828 /*
1829  * This is my version of the ADBOp routine. It mainly just calls the
1830  * hardware-specific routine.
1831  *
1832  *   data 	: pointer to data area to be used by compRout
1833  *   compRout	: completion routine
1834  *   buffer	: for LISTEN: points to data to send - MAX 8 data bytes,
1835  *		  byte 0 = # of bytes
1836  *		: for TALK: points to place to save return data
1837  *   command	: the adb command to send
1838  *   result	: 0 = success
1839  *		: -1 = could not complete
1840  */
1841 int
1842 adb_op(Ptr buffer, Ptr compRout, Ptr data, short command)
1843 {
1844 	int result;
1845 
1846 	switch (adbHardware) {
1847 	case ADB_HW_II:
1848 		result = send_adb_II((u_char *)0, (u_char *)buffer,
1849 		    (void *)compRout, (void *)data, (int)command);
1850 		if (result == 0)
1851 			return 0;
1852 		else
1853 			return -1;
1854 		break;
1855 
1856 	case ADB_HW_IOP:
1857 #ifdef __notyet__
1858 		result = send_adb_iop((int)command, (u_char *)buffer,
1859 		    (void *)compRout, (void *)data);
1860 		if (result == 0)
1861 			return 0;
1862 		else
1863 #endif
1864 			return -1;
1865 		break;
1866 
1867 	case ADB_HW_IISI:
1868 		result = send_adb_IIsi((u_char *)0, (u_char *)buffer,
1869 		    (void *)compRout, (void *)data, (int)command);
1870 		/*
1871 		 * I wish I knew why this delay is needed. It usually needs to
1872 		 * be here when several commands are sent in close succession,
1873 		 * especially early in device probes when doing collision
1874 		 * detection. It must be some race condition. Sigh. - jpw
1875 		 */
1876 		delay(100);
1877 		if (result == 0)
1878 			return 0;
1879 		else
1880 			return -1;
1881 		break;
1882 
1883 	case ADB_HW_PB:
1884 		result = pm_adb_op((u_char *)buffer, (void *)compRout,
1885 		    (void *)data, (int)command);
1886 
1887 		if (result == 0)
1888 			return 0;
1889 		else
1890 			return -1;
1891 		break;
1892 
1893 	case ADB_HW_CUDA:
1894 		result = send_adb_cuda((u_char *)0, (u_char *)buffer,
1895 		    (void *)compRout, (void *)data, (int)command);
1896 		if (result == 0)
1897 			return 0;
1898 		else
1899 			return -1;
1900 		break;
1901 
1902 	case ADB_HW_UNKNOWN:
1903 	default:
1904 		return -1;
1905 	}
1906 }
1907 
1908 
1909 /*
1910  * adb_hw_setup
1911  * This routine sets up the possible machine specific hardware
1912  * config (mainly VIA settings) for the various models.
1913  */
1914 void
1915 adb_hw_setup(void)
1916 {
1917 	volatile int i;
1918 	u_char send_string[ADB_MAX_MSG_LENGTH];
1919 
1920 	switch (adbHardware) {
1921 	case ADB_HW_II:
1922 		via1_register_irq(2, adb_intr_II, NULL);
1923 
1924 		via_reg(VIA1, vDirB) |= 0x30;	/* register B bits 4 and 5:
1925 						 * outputs */
1926 		via_reg(VIA1, vDirB) &= 0xf7;	/* register B bit 3: input */
1927 		via_reg(VIA1, vACR) &= ~vSR_OUT;	/* make sure SR is set
1928 							 * to IN (II, IIsi) */
1929 		adbActionState = ADB_ACTION_IDLE;	/* used by all types of
1930 							 * hardware (II, IIsi) */
1931 		adbBusState = ADB_BUS_IDLE;	/* this var. used in II-series
1932 						 * code only */
1933 		via_reg(VIA1, vIER) = 0x84;	/* make sure VIA interrupts
1934 						 * are on (II, IIsi) */
1935 		ADB_SET_STATE_IDLE_II();	/* set ADB bus state to idle */
1936 
1937 		ADB_VIA_CLR_INTR();	/* clear interrupt */
1938 		break;
1939 
1940 	case ADB_HW_IOP:
1941 		via_reg(VIA1, vIER) = 0x84;
1942 		via_reg(VIA1, vIFR) = 0x04;
1943 #ifdef __notyet__
1944 		adbActionState = ADB_ACTION_RUNNING;
1945 #endif
1946 		break;
1947 
1948 	case ADB_HW_IISI:
1949 		via1_register_irq(2, adb_intr_IIsi, NULL);
1950 		via_reg(VIA1, vDirB) |= 0x30;	/* register B bits 4 and 5:
1951 						 * outputs */
1952 		via_reg(VIA1, vDirB) &= 0xf7;	/* register B bit 3: input */
1953 		via_reg(VIA1, vACR) &= ~vSR_OUT;	/* make sure SR is set
1954 							 * to IN (II, IIsi) */
1955 		adbActionState = ADB_ACTION_IDLE;	/* used by all types of
1956 							 * hardware (II, IIsi) */
1957 		adbBusState = ADB_BUS_IDLE;	/* this var. used in II-series
1958 						 * code only */
1959 		via_reg(VIA1, vIER) = 0x84;	/* make sure VIA interrupts
1960 						 * are on (II, IIsi) */
1961 		ADB_SET_STATE_IDLE_IISI();	/* set ADB bus state to idle */
1962 
1963 		/* get those pesky clock ticks we missed while booting */
1964 		for (i = 0; i < 30; i++) {
1965 			delay(ADB_DELAY);
1966 			adb_hw_setup_IIsi(send_string);
1967 #ifdef ADB_DEBUG
1968 			if (adb_debug) {
1969 				printf_intr("adb: cleanup: ");
1970 				print_single(send_string);
1971 			}
1972 #endif
1973 			delay(ADB_DELAY);
1974 			if (ADB_INTR_IS_OFF)
1975 				break;
1976 		}
1977 		break;
1978 
1979 	case ADB_HW_PB:
1980 		/*
1981 		 * XXX - really PM_VIA_CLR_INTR - should we put it in
1982 		 * pm_direct.h?
1983 		 */
1984 		pm_hw_setup();
1985 		break;
1986 
1987 	case ADB_HW_CUDA:
1988 		via1_register_irq(2, adb_intr_cuda, NULL);
1989 		via_reg(VIA1, vDirB) |= 0x30;	/* register B bits 4 and 5:
1990 						 * outputs */
1991 		via_reg(VIA1, vDirB) &= 0xf7;	/* register B bit 3: input */
1992 		via_reg(VIA1, vACR) &= ~vSR_OUT;	/* make sure SR is set
1993 							 * to IN */
1994 		via_reg(VIA1, vACR) = (via_reg(VIA1, vACR) | 0x0c) & ~0x10;
1995 		adbActionState = ADB_ACTION_IDLE;	/* used by all types of
1996 							 * hardware */
1997 		adbBusState = ADB_BUS_IDLE;	/* this var. used in II-series
1998 						 * code only */
1999 		via_reg(VIA1, vIER) = 0x84;	/* make sure VIA interrupts
2000 						 * are on */
2001 		ADB_SET_STATE_IDLE_CUDA();	/* set ADB bus state to idle */
2002 
2003 		/* sort of a device reset */
2004 		i = ADB_SR();	/* clear interrupt */
2005 		ADB_VIA_INTR_DISABLE();	/* no interrupts while clearing */
2006 		ADB_SET_STATE_IDLE_CUDA();	/* reset state to idle */
2007 		delay(ADB_DELAY);
2008 		ADB_SET_STATE_TIP();	/* signal start of frame */
2009 		delay(ADB_DELAY);
2010 		ADB_TOGGLE_STATE_ACK_CUDA();
2011 		delay(ADB_DELAY);
2012 		ADB_CLR_STATE_TIP();
2013 		delay(ADB_DELAY);
2014 		ADB_SET_STATE_IDLE_CUDA();	/* back to idle state */
2015 		i = ADB_SR();	/* clear interrupt */
2016 		ADB_VIA_INTR_ENABLE();	/* ints ok now */
2017 		break;
2018 
2019 	case ADB_HW_UNKNOWN:
2020 	default:
2021 		via_reg(VIA1, vIER) = 0x04;	/* turn interrupts off - TO
2022 						 * DO: turn PB ints off? */
2023 		return;
2024 		break;
2025 	}
2026 }
2027 
2028 
2029 /*
2030  * adb_hw_setup_IIsi
2031  * This is sort of a "read" routine that forces the adb hardware through a read cycle
2032  * if there is something waiting. This helps "clean up" any commands that may have gotten
2033  * stuck or stopped during the boot process.
2034  *
2035  */
2036 void
2037 adb_hw_setup_IIsi(u_char *buffer)
2038 {
2039 	int i;
2040 	int dummy;
2041 	int s;
2042 	long my_time;
2043 	int endofframe;
2044 
2045 	delay(ADB_DELAY);
2046 
2047 	i = 1;			/* skip over [0] */
2048 	s = splhigh();		/* block ALL interrupts while we are working */
2049 	ADB_SET_SR_INPUT();	/* make sure SR is set to IN */
2050 	ADB_VIA_INTR_DISABLE();	/* disable ADB interrupt on IIs. */
2051 	/* this is required, especially on faster machines */
2052 	delay(ADB_DELAY);
2053 
2054 	if (ADB_INTR_IS_ON) {
2055 		ADB_SET_STATE_ACTIVE();	/* signal start of data frame */
2056 
2057 		endofframe = 0;
2058 		while (0 == endofframe) {
2059 			/*
2060 			 * Poll for ADB interrupt and watch for timeout.
2061 			 * If time out, keep going in hopes of not hanging
2062 			 * the ADB chip - I think
2063 			 */
2064 			my_time = ADB_DELAY * 5;
2065 			while ((ADB_SR_INTR_IS_OFF) && (my_time-- > 0))
2066 				dummy = via_reg(VIA1, vBufB);
2067 
2068 			buffer[i++] = ADB_SR();	/* reset interrupt flag by
2069 						 * reading vSR */
2070 			/*
2071 			 * Perhaps put in a check here that ignores all data
2072 			 * after the first ADB_MAX_MSG_LENGTH bytes ???
2073 			 */
2074 			if (ADB_INTR_IS_OFF)	/* check for end of frame */
2075 				endofframe = 1;
2076 
2077 			ADB_SET_STATE_ACKON();	/* send ACK to ADB chip */
2078 			delay(ADB_DELAY);	/* delay */
2079 			ADB_SET_STATE_ACKOFF();	/* send ACK to ADB chip */
2080 		}
2081 		ADB_SET_STATE_INACTIVE();	/* signal end of frame and
2082 						 * delay */
2083 
2084 		/* probably don't need to delay this long */
2085 		delay(ADB_DELAY);
2086 	}
2087 	buffer[0] = --i;	/* [0] is length of message */
2088 	ADB_VIA_INTR_ENABLE();	/* enable ADB interrupt on IIs. */
2089 	splx(s);		/* restore interrupts */
2090 
2091 	return;
2092 }				/* adb_hw_setup_IIsi */
2093 
2094 
2095 
2096 /*
2097  * adb_reinit sets up the adb stuff
2098  *
2099  */
2100 void
2101 adb_reinit(void)
2102 {
2103 	u_char send_string[ADB_MAX_MSG_LENGTH];
2104 	ADBDataBlock data;	/* temp. holder for getting device info */
2105 	volatile int i, x;
2106 	int s;
2107 	int command;
2108 	int result;
2109 	int saveptr;		/* point to next free relocation address */
2110 	int device;
2111 	int nonewtimes;		/* times thru loop w/o any new devices */
2112 
2113 	adb_setup_hw_type();	/* setup hardware type */
2114 
2115 	/* Make sure we are not interrupted while building the table. */
2116 	/* ints must be on for PB & IOP (at least, for now) */
2117 	if (adbHardware != ADB_HW_PB && adbHardware != ADB_HW_IOP)
2118 		s = splhigh();
2119 	else
2120 		s = 0;		/* XXX shut the compiler up*/
2121 
2122 	ADBNumDevices = 0;	/* no devices yet */
2123 
2124 	/* Let intr routines know we are running reinit */
2125 	adbStarting = 1;
2126 
2127 	/*
2128 	 * Initialize the ADB table.  For now, we'll always use the same table
2129 	 * that is defined at the beginning of this file - no mallocs.
2130 	 */
2131 	for (i = 0; i < 16; i++) {
2132 		ADBDevTable[i].devType = 0;
2133 		ADBDevTable[i].origAddr = ADBDevTable[i].currentAddr = 0;
2134 	}
2135 
2136 	adb_hw_setup();		/* init the VIA bits and hard reset ADB */
2137 
2138 	delay(1000);
2139 
2140 	/* send an ADB reset first */
2141 	(void)adb_op_sync((Ptr)0, (Ptr)0, (Ptr)0, (short)0x00);
2142 	delay(3000);
2143 
2144 	/*
2145 	 * Probe for ADB devices. Probe devices 1-15 quickly to determine
2146 	 * which device addresses are in use and which are free. For each
2147 	 * address that is in use, move the device at that address to a higher
2148 	 * free address. Continue doing this at that address until no device
2149 	 * responds at that address. Then move the last device that was moved
2150 	 * back to the original address. Do this for the remaining addresses
2151 	 * that we determined were in use.
2152 	 *
2153 	 * When finished, do this entire process over again with the updated
2154 	 * list of in use addresses. Do this until no new devices have been
2155 	 * found in 20 passes though the in use address list. (This probably
2156 	 * seems long and complicated, but it's the best way to detect multiple
2157 	 * devices at the same address - sometimes it takes a couple of tries
2158 	 * before the collision is detected.)
2159 	 */
2160 
2161 	/* initial scan through the devices */
2162 	for (i = 1; i < 16; i++) {
2163 		command = ADBTALK(i, 3);
2164 		result = adb_op_sync((Ptr)send_string, (Ptr)0,
2165 		    (Ptr)0, (short)command);
2166 
2167 		if (result == 0 && send_string[0] != 0) {
2168 			/* found a device */
2169 			++ADBNumDevices;
2170 			KASSERT(ADBNumDevices < 16);
2171 			ADBDevTable[ADBNumDevices].devType =
2172 				(int)(send_string[2]);
2173 			ADBDevTable[ADBNumDevices].origAddr = i;
2174 			ADBDevTable[ADBNumDevices].currentAddr = i;
2175 			ADBDevTable[ADBNumDevices].DataAreaAddr =
2176 			    (long)0;
2177 			ADBDevTable[ADBNumDevices].ServiceRtPtr = (void *)0;
2178 			pm_check_adb_devices(i);	/* tell pm driver device
2179 							 * is here */
2180 		}
2181 	}
2182 
2183 	/* find highest unused address */
2184 	for (saveptr = 15; saveptr > 0; saveptr--)
2185 		if (-1 == get_adb_info(&data, saveptr))
2186 			break;
2187 
2188 #ifdef ADB_DEBUG
2189 	if (adb_debug & 0x80) {
2190 		printf_intr("first free is: 0x%02x\n", saveptr);
2191 		printf_intr("devices: %i\n", ADBNumDevices);
2192 	}
2193 #endif
2194 
2195 	nonewtimes = 0;		/* no loops w/o new devices */
2196 	while (saveptr > 0 && nonewtimes++ < 11) {
2197 		for (i = 1;saveptr > 0 && i <= ADBNumDevices; i++) {
2198 			device = ADBDevTable[i].currentAddr;
2199 #ifdef ADB_DEBUG
2200 			if (adb_debug & 0x80)
2201 				printf_intr("moving device 0x%02x to 0x%02x "
2202 				    "(index 0x%02x)  ", device, saveptr, i);
2203 #endif
2204 
2205 			/* send TALK R3 to address */
2206 			command = ADBTALK(device, 3);
2207 			(void)adb_op_sync((Ptr)send_string, (Ptr)0,
2208 			    (Ptr)0, (short)command);
2209 
2210 			/* move device to higher address */
2211 			command = ADBLISTEN(device, 3);
2212 			send_string[0] = 2;
2213 			send_string[1] = (u_char)(saveptr | 0x60);
2214 			send_string[2] = 0xfe;
2215 			(void)adb_op_sync((Ptr)send_string, (Ptr)0,
2216 			    (Ptr)0, (short)command);
2217 			delay(1000);
2218 
2219 			/* send TALK R3 - anthing at new address? */
2220 			command = ADBTALK(saveptr, 3);
2221 			send_string[0] = 0;
2222 			result = adb_op_sync((Ptr)send_string, (Ptr)0,
2223 			    (Ptr)0, (short)command);
2224 			delay(1000);
2225 
2226 			if (result != 0 || send_string[0] == 0) {
2227 				/*
2228 				 * maybe there's a communication breakdown;
2229 				 * just in case, move it back from whence it
2230 				 * came, and we'll try again later
2231 				 */
2232 				command = ADBLISTEN(saveptr, 3);
2233 				send_string[0] = 2;
2234 				send_string[1] = (u_char)(device | 0x60);
2235 				send_string[2] = 0x00;
2236 				(void)adb_op_sync((Ptr)send_string, (Ptr)0,
2237 				    (Ptr)0, (short)command);
2238 #ifdef ADB_DEBUG
2239 				if (adb_debug & 0x80)
2240 					printf_intr("failed, continuing\n");
2241 #endif
2242 				delay(1000);
2243 				continue;
2244 			}
2245 
2246 			/* send TALK R3 - anything at old address? */
2247 			command = ADBTALK(device, 3);
2248 			send_string[0] = 0;
2249 			result = adb_op_sync((Ptr)send_string, (Ptr)0,
2250 			    (Ptr)0, (short)command);
2251 			if (result == 0 && send_string[0] != 0) {
2252 				/* new device found */
2253 				/* update data for previously moved device */
2254 				ADBDevTable[i].currentAddr = saveptr;
2255 #ifdef ADB_DEBUG
2256 				if (adb_debug & 0x80)
2257 					printf_intr("old device at index %i\n",i);
2258 #endif
2259 				/* add new device in table */
2260 #ifdef ADB_DEBUG
2261 				if (adb_debug & 0x80)
2262 					printf_intr("new device found\n");
2263 #endif
2264 				if (saveptr > ADBNumDevices) {
2265 					++ADBNumDevices;
2266 					KASSERT(ADBNumDevices < 16);
2267 				}
2268 				ADBDevTable[ADBNumDevices].devType =
2269 					(int)(send_string[2]);
2270 				ADBDevTable[ADBNumDevices].origAddr = device;
2271 				ADBDevTable[ADBNumDevices].currentAddr = device;
2272 				/* These will be set correctly in adbsys.c */
2273 				/* Until then, unsol. data will be ignored. */
2274 				ADBDevTable[ADBNumDevices].DataAreaAddr =
2275 				    (long)0;
2276 				ADBDevTable[ADBNumDevices].ServiceRtPtr =
2277 				    (void *)0;
2278 				/* find next unused address */
2279 				for (x = saveptr; x > 0; x--) {
2280 					if (-1 == get_adb_info(&data, x)) {
2281 						saveptr = x;
2282 						break;
2283 					}
2284 				}
2285 				if (x == 0)
2286 					saveptr = 0;
2287 #ifdef ADB_DEBUG
2288 				if (adb_debug & 0x80)
2289 					printf_intr("new free is 0x%02x\n",
2290 					    saveptr);
2291 #endif
2292 				nonewtimes = 0;
2293 				/* tell pm driver device is here */
2294 				pm_check_adb_devices(device);
2295 			} else {
2296 #ifdef ADB_DEBUG
2297 				if (adb_debug & 0x80)
2298 					printf_intr("moving back...\n");
2299 #endif
2300 				/* move old device back */
2301 				command = ADBLISTEN(saveptr, 3);
2302 				send_string[0] = 2;
2303 				send_string[1] = (u_char)(device | 0x60);
2304 				send_string[2] = 0xfe;
2305 				(void)adb_op_sync((Ptr)send_string, (Ptr)0,
2306 				    (Ptr)0, (short)command);
2307 				delay(1000);
2308 			}
2309 		}
2310 	}
2311 
2312 #ifdef ADB_DEBUG
2313 	if (adb_debug) {
2314 		for (i = 1; i <= ADBNumDevices; i++) {
2315 			x = get_ind_adb_info(&data, i);
2316 			if (x != -1)
2317 				printf_intr("index 0x%x, addr 0x%x, type 0x%hx\n",
2318 				    i, x, data.devType);
2319 		}
2320 	}
2321 #endif
2322 
2323 #ifndef MRG_ADB
2324 	/* enable the programmer's switch, if we have one */
2325 	adb_prog_switch_enable();
2326 #endif
2327 
2328 #ifdef ADB_DEBUG
2329 	if (adb_debug) {
2330 		if (0 == ADBNumDevices)	/* tell user if no devices found */
2331 			printf_intr("adb: no devices found\n");
2332 	}
2333 #endif
2334 
2335 	adbStarting = 0;	/* not starting anymore */
2336 #ifdef ADB_DEBUG
2337 	if (adb_debug)
2338 		printf_intr("adb: ADBReInit complete\n");
2339 #endif
2340 
2341 	if (adbHardware == ADB_HW_CUDA)
2342 		callout_reset(&adb_cuda_tickle_ch, ADB_TICKLE_TICKS,
2343 		    (void *)adb_cuda_tickle, NULL);
2344 
2345 	/* ints must be on for PB & IOP (at least, for now) */
2346 	if (adbHardware != ADB_HW_PB && adbHardware != ADB_HW_IOP)
2347 		splx(s);
2348 
2349 	return;
2350 }
2351 
2352 
2353 /*
2354  * adb_comp_exec
2355  * This is a general routine that calls the completion routine if there is one.
2356  * NOTE: This routine is now only used by pm_direct.c
2357  *       All the code in this file (adb_direct.c) uses
2358  *       the adb_pass_up routine now.
2359  */
2360 void
2361 adb_comp_exec(void)
2362 {
2363 	if ((long)0 != adbCompRout) /* don't call if empty return location */
2364 #ifdef __NetBSD__
2365 		__asm volatile(
2366 		"	movml #0xffff,%%sp@- \n" /* save all registers */
2367 		"	movl %0,%%a2 \n"	/* adbCompData */
2368 		"	movl %1,%%a1 \n"	/* adbCompRout */
2369 		"	movl %2,%%a0 \n"	/* adbBuffer */
2370 		"	movl %3,%%d0 \n"	/* adbWaitingCmd */
2371 		"	jbsr %%a1@ \n"		/* go call the routine */
2372 		"	movml %%sp@+,#0xffff"	/* restore all registers */
2373 		    :
2374 		    : "g"(adbCompData), "g"(adbCompRout),
2375 			"g"(adbBuffer), "g"(adbWaitingCmd)
2376 		    : "d0", "a0", "a1", "a2");
2377 #else /* for Mac OS-based testing */
2378 		asm {
2379 			movem.l a0/a1/a2/d0, -(a7)
2380 			move.l adbCompData, a2
2381 			move.l adbCompRout, a1
2382 			move.l adbBuffer, a0
2383 			move.w adbWaitingCmd, d0
2384 			jsr(a1)
2385 			movem.l(a7) +, d0/a2/a1/a0
2386 		}
2387 #endif
2388 }
2389 
2390 
2391 /*
2392  * adb_cmd_result
2393  *
2394  * This routine lets the caller know whether the specified adb command string
2395  * should expect a returned result, such as a TALK command.
2396  *
2397  * returns: 0 if a result should be expected
2398  *          1 if a result should NOT be expected
2399  */
2400 int
2401 adb_cmd_result(u_char *in)
2402 {
2403 	switch (adbHardware) {
2404 	case ADB_HW_IOP:
2405 	case ADB_HW_II:
2406 		/* was it an ADB talk command? */
2407 		if ((in[1] & 0x0c) == 0x0c)
2408 			return 0;
2409 		return 1;
2410 
2411 	case ADB_HW_IISI:
2412 	case ADB_HW_CUDA:
2413 		/* was it an ADB talk command? */
2414 		if ((in[1] == 0x00) && ((in[2] & 0x0c) == 0x0c))
2415 			return 0;
2416 		/* was it an RTC/PRAM read date/time? */
2417 		if ((in[1] == 0x01) && (in[2] == 0x03))
2418 			return 0;
2419 		return 1;
2420 
2421 	case ADB_HW_PB:
2422 		return 1;
2423 
2424 	case ADB_HW_UNKNOWN:
2425 	default:
2426 		return 1;
2427 	}
2428 }
2429 
2430 
2431 /*
2432  * adb_cmd_extra
2433  *
2434  * This routine lets the caller know whether the specified adb command string
2435  * may have extra data appended to the end of it, such as a LISTEN command.
2436  *
2437  * returns: 0 if extra data is allowed
2438  *          1 if extra data is NOT allowed
2439  */
2440 int
2441 adb_cmd_extra(u_char *in)
2442 {
2443 	switch (adbHardware) {
2444 	case ADB_HW_II:
2445 	case ADB_HW_IOP:
2446 		if ((in[1] & 0x0c) == 0x08)	/* was it a listen command? */
2447 			return 0;
2448 		return 1;
2449 
2450 	case ADB_HW_IISI:
2451 	case ADB_HW_CUDA:
2452 		/*
2453 		 * TO DO: support needs to be added to recognize RTC and PRAM
2454 		 * commands
2455 		 */
2456 		if ((in[2] & 0x0c) == 0x08)	/* was it a listen command? */
2457 			return 0;
2458 		/* add others later */
2459 		return 1;
2460 
2461 	case ADB_HW_PB:
2462 		return 1;
2463 
2464 	case ADB_HW_UNKNOWN:
2465 	default:
2466 		return 1;
2467 	}
2468 }
2469 
2470 
2471 void
2472 adb_setup_hw_type(void)
2473 {
2474 	long response;
2475 
2476 	response = mac68k_machine.machineid;
2477 
2478 	/*
2479 	 * Determine what type of ADB hardware we are running on.
2480 	 */
2481 	switch (response) {
2482 	case MACH_MACC610:		/* Centris 610 */
2483 	case MACH_MACC650:		/* Centris 650 */
2484 	case MACH_MACII:		/* II */
2485 	case MACH_MACIICI:		/* IIci */
2486 	case MACH_MACIICX:		/* IIcx */
2487 	case MACH_MACIIX:		/* IIx */
2488 	case MACH_MACQ610:		/* Quadra 610 */
2489 	case MACH_MACQ650:		/* Quadra 650 */
2490 	case MACH_MACQ700:		/* Quadra 700 */
2491 	case MACH_MACQ800:		/* Quadra 800 */
2492 	case MACH_MACSE30:		/* SE/30 */
2493 		adbHardware = ADB_HW_II;
2494 #ifdef ADB_DEBUG
2495 		if (adb_debug)
2496 			printf_intr("adb: using II series hardware support\n");
2497 #endif
2498 		break;
2499 
2500 	case MACH_MACCLASSICII:		/* Classic II */
2501 	case MACH_MACLCII:		/* LC II, Performa 400/405/430 */
2502 	case MACH_MACLCIII:		/* LC III, Performa 450 */
2503 	case MACH_MACIISI:		/* IIsi */
2504 	case MACH_MACIIVI:		/* IIvi */
2505 	case MACH_MACIIVX:		/* IIvx */
2506 	case MACH_MACP460:		/* Performa 460/465/467 */
2507 	case MACH_MACP600:		/* Performa 600 */
2508 		adbHardware = ADB_HW_IISI;
2509 #ifdef ADB_DEBUG
2510 		if (adb_debug)
2511 			printf_intr("adb: using IIsi series hardware support\n");
2512 #endif
2513 		break;
2514 
2515 	case MACH_MACPB140:		/* PowerBook 140 */
2516 	case MACH_MACPB145:		/* PowerBook 145 */
2517 	case MACH_MACPB160:		/* PowerBook 160 */
2518 	case MACH_MACPB165:		/* PowerBook 165 */
2519 	case MACH_MACPB165C:		/* PowerBook 165c */
2520 	case MACH_MACPB170:		/* PowerBook 170 */
2521 	case MACH_MACPB180:		/* PowerBook 180 */
2522 	case MACH_MACPB180C:		/* PowerBook 180c */
2523 		adbHardware = ADB_HW_PB;
2524 		pm_setup_adb();
2525 #ifdef ADB_DEBUG
2526 		if (adb_debug)
2527 			printf_intr("adb: using PowerBook 100-series hardware support\n");
2528 #endif
2529 		break;
2530 
2531 	case MACH_MACPB150:		/* PowerBook 150 */
2532 	case MACH_MACPB210:		/* PowerBook Duo 210 */
2533 	case MACH_MACPB230:		/* PowerBook Duo 230 */
2534 	case MACH_MACPB250:		/* PowerBook Duo 250 */
2535 	case MACH_MACPB270:		/* PowerBook Duo 270 */
2536 	case MACH_MACPB280:		/* PowerBook Duo 280 */
2537 	case MACH_MACPB280C:		/* PowerBook Duo 280c */
2538 	case MACH_MACPB500:		/* PowerBook 500 series */
2539 	case MACH_MACPB190:		/* PowerBook 190 */
2540 	case MACH_MACPB190CS:		/* PowerBook 190cs */
2541 		adbHardware = ADB_HW_PB;
2542 		pm_setup_adb();
2543 #ifdef ADB_DEBUG
2544 		if (adb_debug)
2545 			printf_intr("adb: using PowerBook Duo-series and PowerBook 500-series hardware support\n");
2546 #endif
2547 		break;
2548 
2549 	case MACH_MACC660AV:		/* Centris 660AV */
2550 	case MACH_MACCCLASSIC:		/* Color Classic */
2551 	case MACH_MACCCLASSICII:	/* Color Classic II */
2552 	case MACH_MACLC475:		/* LC 475, Performa 475/476 */
2553 	case MACH_MACLC475_33:		/* Clock-chipped 47x */
2554 	case MACH_MACLC520:		/* LC 520 */
2555 	case MACH_MACLC575:		/* LC 575, Performa 575/577/578 */
2556 	case MACH_MACP550:		/* LC 550, Performa 550 */
2557 	case MACH_MACTV:		/* Macintosh TV */
2558 	case MACH_MACP580:		/* Performa 580/588 */
2559 	case MACH_MACQ605:		/* Quadra 605 */
2560 	case MACH_MACQ605_33:		/* Clock-chipped Quadra 605 */
2561 	case MACH_MACQ630:		/* LC 630, Performa 630, Quadra 630 */
2562 	case MACH_MACQ840AV:		/* Quadra 840AV */
2563 		adbHardware = ADB_HW_CUDA;
2564 #ifdef ADB_DEBUG
2565 		if (adb_debug)
2566 			printf_intr("adb: using Cuda series hardware support\n");
2567 #endif
2568 		break;
2569 
2570 	case MACH_MACQ900:		/* Quadra 900 */
2571 	case MACH_MACQ950:		/* Quadra 950 */
2572 	case MACH_MACIIFX:		/* Mac IIfx   */
2573 		adbHardware = ADB_HW_IOP;
2574 		iop_register_listener(ISM_IOP, IOP_CHAN_ADB, adb_iop_recv, NULL);
2575 #ifdef ADB_DEBUG
2576 		if (adb_debug)
2577 			printf_intr("adb: using IOP-based ADB\n");
2578 #endif
2579 		break;
2580 
2581 	default:
2582 		adbHardware = ADB_HW_UNKNOWN;
2583 #ifdef ADB_DEBUG
2584 		if (adb_debug) {
2585 			printf_intr("adb: hardware type unknown for this machine\n");
2586 			printf_intr("adb: ADB support is disabled\n");
2587 		}
2588 #endif
2589 		break;
2590 	}
2591 
2592 	/*
2593 	 * Determine whether this machine has ADB based soft power.
2594 	 */
2595 	switch (response) {
2596 	case MACH_MACCCLASSIC:		/* Color Classic */
2597 	case MACH_MACCCLASSICII:	/* Color Classic II */
2598 	case MACH_MACIISI:		/* IIsi */
2599 	case MACH_MACIIVI:		/* IIvi */
2600 	case MACH_MACIIVX:		/* IIvx */
2601 	case MACH_MACLC520:		/* LC 520 */
2602 	case MACH_MACLC575:		/* LC 575, Performa 575/577/578 */
2603 	case MACH_MACP550:		/* LC 550, Performa 550 */
2604 	case MACH_MACTV:		/* Macintosh TV */
2605 	case MACH_MACP580:		/* Performa 580/588 */
2606 	case MACH_MACP600:		/* Performa 600 */
2607 	case MACH_MACQ630:		/* LC 630, Performa 630, Quadra 630 */
2608 	case MACH_MACQ840AV:		/* Quadra 840AV */
2609 		adbSoftPower = 1;
2610 		break;
2611 	}
2612 }
2613 
2614 int
2615 count_adbs(void)
2616 {
2617 	int i;
2618 	int found;
2619 
2620 	found = 0;
2621 
2622 	for (i = 1; i < 16; i++)
2623 		if (0 != ADBDevTable[i].currentAddr)
2624 			found++;
2625 
2626 	return found;
2627 }
2628 
2629 int
2630 get_ind_adb_info(ADBDataBlock *info, int index)
2631 {
2632 	if ((index < 1) || (index > 15))	/* check range 1-15 */
2633 		return (-1);
2634 
2635 #ifdef ADB_DEBUG
2636 	if (adb_debug & 0x80)
2637 		printf_intr("index 0x%x devType is: 0x%x\n", index,
2638 		    ADBDevTable[index].devType);
2639 #endif
2640 	if (0 == ADBDevTable[index].devType)	/* make sure it's a valid entry */
2641 		return (-1);
2642 
2643 	info->devType = (unsigned char)(ADBDevTable[index].devType);
2644 	info->origADBAddr = (unsigned char)(ADBDevTable[index].origAddr);
2645 	info->dbServiceRtPtr = (Ptr)ADBDevTable[index].ServiceRtPtr;
2646 	info->dbDataAreaAddr = (Ptr)ADBDevTable[index].DataAreaAddr;
2647 
2648 	return (ADBDevTable[index].currentAddr);
2649 }
2650 
2651 int
2652 get_adb_info(ADBDataBlock *info, int adbAddr)
2653 {
2654 	int i;
2655 
2656 	if ((adbAddr < 1) || (adbAddr > 15))	/* check range 1-15 */
2657 		return (-1);
2658 
2659 	for (i = 1; i < 15; i++)
2660 		if (ADBDevTable[i].currentAddr == adbAddr) {
2661 			info->devType = (unsigned char)(ADBDevTable[i].devType);
2662 			info->origADBAddr = (unsigned char)(ADBDevTable[i].origAddr);
2663 			info->dbServiceRtPtr = (Ptr)ADBDevTable[i].ServiceRtPtr;
2664 			info->dbDataAreaAddr = ADBDevTable[i].DataAreaAddr;
2665 			return 0;	/* found */
2666 		}
2667 
2668 	return (-1);		/* not found */
2669 }
2670 
2671 int
2672 set_adb_info(ADBSetInfoBlock *info, int adbAddr)
2673 {
2674 	int i;
2675 
2676 	if ((adbAddr < 1) || (adbAddr > 15))	/* check range 1-15 */
2677 		return (-1);
2678 
2679 	for (i = 1; i < 15; i++)
2680 		if (ADBDevTable[i].currentAddr == adbAddr) {
2681 			ADBDevTable[i].ServiceRtPtr =
2682 			    (void *)(info->siServiceRtPtr);
2683 			ADBDevTable[i].DataAreaAddr = info->siDataAreaAddr;
2684 			return 0;	/* found */
2685 		}
2686 
2687 	return (-1);		/* not found */
2688 
2689 }
2690 
2691 #ifndef MRG_ADB
2692 long
2693 mrg_adbintr(void)
2694 {
2695 	adb_intr(NULL);
2696 	return 1;	/* mimic mrg_adbintr in macrom.h just in case */
2697 }
2698 
2699 long
2700 mrg_pmintr(void)
2701 {
2702 	pm_intr(NULL);
2703 	return 1;	/* mimic mrg_pmintr in macrom.h just in case */
2704 }
2705 
2706 /* caller should really use machine-independant version: getPramTime */
2707 /* this version does pseudo-adb access only */
2708 int
2709 adb_read_date_time(unsigned long *time)
2710 {
2711 	u_char output[ADB_MAX_MSG_LENGTH];
2712 	int result;
2713 	volatile int flag = 0;
2714 
2715 	switch (adbHardware) {
2716 	case ADB_HW_II:
2717 		return -1;
2718 
2719 	case ADB_HW_IOP:
2720 		return -1;
2721 
2722 	case ADB_HW_IISI:
2723 		output[0] = 0x02;	/* 2 byte message */
2724 		output[1] = 0x01;	/* to pram/rtc device */
2725 		output[2] = 0x03;	/* read date/time */
2726 		result = send_adb_IIsi((u_char *)output, (u_char *)output,
2727 		    (void *)adb_op_comprout, __UNVOLATILE(&flag), (int)0);
2728 		if (result != 0)	/* exit if not sent */
2729 			return -1;
2730 
2731 		while (0 == flag)	/* wait for result */
2732 			;
2733 
2734 		*time = (long)(*(long *)(output + 1));
2735 		return 0;
2736 
2737 	case ADB_HW_PB:
2738 		return -1;
2739 
2740 	case ADB_HW_CUDA:
2741 		output[0] = 0x02;	/* 2 byte message */
2742 		output[1] = 0x01;	/* to pram/rtc device */
2743 		output[2] = 0x03;	/* read date/time */
2744 		result = send_adb_cuda((u_char *)output, (u_char *)output,
2745 		    (void *)adb_op_comprout, __UNVOLATILE(&flag), (int)0);
2746 		if (result != 0)	/* exit if not sent */
2747 			return -1;
2748 
2749 		while (0 == flag)	/* wait for result */
2750 			;
2751 
2752 		*time = (long)(*(long *)(output + 1));
2753 		return 0;
2754 
2755 	case ADB_HW_UNKNOWN:
2756 	default:
2757 		return -1;
2758 	}
2759 }
2760 
2761 /* caller should really use machine-independant version: setPramTime */
2762 /* this version does pseudo-adb access only */
2763 int
2764 adb_set_date_time(unsigned long time)
2765 {
2766 	u_char output[ADB_MAX_MSG_LENGTH];
2767 	int result;
2768 	volatile int flag = 0;
2769 
2770 	switch (adbHardware) {
2771 	case ADB_HW_II:
2772 		return -1;
2773 
2774 	case ADB_HW_IOP:
2775 		return -1;
2776 
2777 	case ADB_HW_IISI:
2778 		output[0] = 0x06;	/* 6 byte message */
2779 		output[1] = 0x01;	/* to pram/rtc device */
2780 		output[2] = 0x09;	/* set date/time */
2781 		output[3] = (u_char)(time >> 24);
2782 		output[4] = (u_char)(time >> 16);
2783 		output[5] = (u_char)(time >> 8);
2784 		output[6] = (u_char)(time);
2785 		result = send_adb_IIsi((u_char *)output, (u_char *)0,
2786 		    (void *)adb_op_comprout, __UNVOLATILE(&flag), (int)0);
2787 		if (result != 0)	/* exit if not sent */
2788 			return -1;
2789 
2790 		while (0 == flag)	/* wait for send to finish */
2791 			;
2792 
2793 		return 0;
2794 
2795 	case ADB_HW_PB:
2796 		return -1;
2797 
2798 	case ADB_HW_CUDA:
2799 		output[0] = 0x06;	/* 6 byte message */
2800 		output[1] = 0x01;	/* to pram/rtc device */
2801 		output[2] = 0x09;	/* set date/time */
2802 		output[3] = (u_char)(time >> 24);
2803 		output[4] = (u_char)(time >> 16);
2804 		output[5] = (u_char)(time >> 8);
2805 		output[6] = (u_char)(time);
2806 		result = send_adb_cuda((u_char *)output, (u_char *)0,
2807 		    (void *)adb_op_comprout, __UNVOLATILE(&flag), (int)0);
2808 		if (result != 0)	/* exit if not sent */
2809 			return -1;
2810 
2811 		while (0 == flag)	/* wait for send to finish */
2812 			;
2813 
2814 		return 0;
2815 
2816 	case ADB_HW_UNKNOWN:
2817 	default:
2818 		return -1;
2819 	}
2820 }
2821 
2822 
2823 int
2824 adb_poweroff(void)
2825 {
2826 	u_char output[ADB_MAX_MSG_LENGTH];
2827 	int result;
2828 
2829 	if (!adbSoftPower)
2830 		return -1;
2831 
2832 	adb_polling = 1;
2833 
2834 	switch (adbHardware) {
2835 	case ADB_HW_IISI:
2836 		output[0] = 0x02;	/* 2 byte message */
2837 		output[1] = 0x01;	/* to pram/rtc/soft-power device */
2838 		output[2] = 0x0a;	/* set date/time */
2839 		result = send_adb_IIsi((u_char *)output, (u_char *)0,
2840 		    (void *)0, (void *)0, (int)0);
2841 		if (result != 0)	/* exit if not sent */
2842 			return -1;
2843 
2844 		for (;;);		/* wait for power off */
2845 
2846 		return 0;
2847 
2848 	case ADB_HW_PB:
2849 		return -1;
2850 
2851 	case ADB_HW_CUDA:
2852 		output[0] = 0x02;	/* 2 byte message */
2853 		output[1] = 0x01;	/* to pram/rtc/soft-power device */
2854 		output[2] = 0x0a;	/* set date/time */
2855 		result = send_adb_cuda((u_char *)output, (u_char *)0,
2856 		    (void *)0, (void *)0, (int)0);
2857 		if (result != 0)	/* exit if not sent */
2858 			return -1;
2859 
2860 		for (;;);		/* wait for power off */
2861 
2862 		return 0;
2863 
2864 	case ADB_HW_II:			/* II models don't do ADB soft power */
2865 	case ADB_HW_IOP:		/* IOP models don't do ADB soft power */
2866 	case ADB_HW_UNKNOWN:
2867 	default:
2868 		return -1;
2869 	}
2870 }
2871 
2872 int
2873 adb_prog_switch_enable(void)
2874 {
2875 	u_char output[ADB_MAX_MSG_LENGTH];
2876 	int result;
2877 	volatile int flag = 0;
2878 
2879 	switch (adbHardware) {
2880 	case ADB_HW_IISI:
2881 		output[0] = 0x03;	/* 3 byte message */
2882 		output[1] = 0x01;	/* to pram/rtc/soft-power device */
2883 		output[2] = 0x1c;	/* prog. switch control */
2884 		output[3] = 0x01;	/* enable */
2885 		result = send_adb_IIsi((u_char *)output, (u_char *)0,
2886 		    (void *)adb_op_comprout, __UNVOLATILE(&flag), (int)0);
2887 		if (result != 0)	/* exit if not sent */
2888 			return -1;
2889 
2890 		while (0 == flag)	/* wait for send to finish */
2891 			;
2892 
2893 		return 0;
2894 
2895 	case ADB_HW_PB:
2896 		return -1;
2897 
2898 	case ADB_HW_II:		/* II models don't do prog. switch */
2899 	case ADB_HW_IOP:	/* IOP models don't do prog. switch */
2900 	case ADB_HW_CUDA:	/* cuda doesn't do prog. switch TO DO: verify this */
2901 	case ADB_HW_UNKNOWN:
2902 	default:
2903 		return -1;
2904 	}
2905 }
2906 
2907 int
2908 adb_prog_switch_disable(void)
2909 {
2910 	u_char output[ADB_MAX_MSG_LENGTH];
2911 	int result;
2912 	volatile int flag = 0;
2913 
2914 	switch (adbHardware) {
2915 	case ADB_HW_IISI:
2916 		output[0] = 0x03;	/* 3 byte message */
2917 		output[1] = 0x01;	/* to pram/rtc/soft-power device */
2918 		output[2] = 0x1c;	/* prog. switch control */
2919 		output[3] = 0x01;	/* disable */
2920 		result = send_adb_IIsi((u_char *)output, (u_char *)0,
2921 			(void *)adb_op_comprout, __UNVOLATILE(&flag), (int)0);
2922 		if (result != 0)	/* exit if not sent */
2923 			return -1;
2924 
2925 		while (0 == flag)	/* wait for send to finish */
2926 			;
2927 
2928 		return 0;
2929 
2930 	case ADB_HW_PB:
2931 		return -1;
2932 
2933 	case ADB_HW_II:		/* II models don't do prog. switch */
2934 	case ADB_HW_IOP:	/* IOP models don't do prog. switch */
2935 	case ADB_HW_CUDA:	/* cuda doesn't do prog. switch */
2936 	case ADB_HW_UNKNOWN:
2937 	default:
2938 		return -1;
2939 	}
2940 }
2941 
2942 int
2943 CountADBs(void)
2944 {
2945 	return (count_adbs());
2946 }
2947 
2948 void
2949 ADBReInit(void)
2950 {
2951 	adb_reinit();
2952 }
2953 
2954 int
2955 GetIndADB(ADBDataBlock *info, int index)
2956 {
2957 	return (get_ind_adb_info(info, index));
2958 }
2959 
2960 int
2961 GetADBInfo(ADBDataBlock *info, int adbAddr)
2962 {
2963 	return (get_adb_info(info, adbAddr));
2964 }
2965 
2966 int
2967 SetADBInfo(ADBSetInfoBlock *info, int adbAddr)
2968 {
2969 	return (set_adb_info(info, adbAddr));
2970 }
2971 
2972 int
2973 ADBOp(Ptr buffer, Ptr compRout, Ptr data, short commandNum)
2974 {
2975 	return (adb_op(buffer, compRout, data, commandNum));
2976 }
2977 
2978 #endif
2979