1 /* $NetBSD: adb_direct.c,v 1.49 2003/07/15 02:43:15 lukem Exp $ */ 2 3 /* From: adb_direct.c 2.02 4/18/97 jpw */ 4 5 /* 6 * Copyright (C) 1996, 1997 John P. Wittkoski 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed by John P. Wittkoski. 20 * 4. The name of the author may not be used to endorse or promote products 21 * derived from this software without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 /* 36 * This code is rather messy, but I don't have time right now 37 * to clean it up as much as I would like. 38 * But it works, so I'm happy. :-) jpw 39 */ 40 41 /* 42 * TO DO: 43 * - We could reduce the time spent in the adb_intr_* routines 44 * by having them save the incoming and outgoing data directly 45 * in the adbInbound and adbOutbound queues, as it would reduce 46 * the number of times we need to copy the data around. It 47 * would also make the code more readable and easier to follow. 48 * - (Related to above) Use the header part of adbCommand to 49 * reduce the number of copies we have to do of the data. 50 * - (Related to above) Actually implement the adbOutbound queue. 51 * This is fairly easy once you switch all the intr routines 52 * over to using adbCommand structs directly. 53 * - There is a bug in the state machine of adb_intr_cuda 54 * code that causes hangs, especially on 030 machines, probably 55 * because of some timing issues. Because I have been unable to 56 * determine the exact cause of this bug, I used the timeout function 57 * to check for and recover from this condition. If anyone finds 58 * the actual cause of this bug, the calls to timeout and the 59 * adb_cuda_tickle routine can be removed. 60 */ 61 62 #ifdef __NetBSD__ 63 64 #include <sys/cdefs.h> 65 __KERNEL_RCSID(0, "$NetBSD: adb_direct.c,v 1.49 2003/07/15 02:43:15 lukem Exp $"); 66 67 #include "opt_adb.h" 68 69 #include <sys/param.h> 70 #include <sys/cdefs.h> 71 #include <sys/pool.h> 72 #include <sys/queue.h> 73 #include <sys/systm.h> 74 #include <sys/callout.h> 75 76 #include <machine/viareg.h> 77 #include <machine/param.h> 78 #include <machine/cpu.h> 79 #include <machine/adbsys.h> /* required for adbvar.h */ 80 #include <machine/iopreg.h> /* required for IOP support */ 81 82 #include <mac68k/mac68k/macrom.h> 83 #include <mac68k/dev/adbvar.h> 84 #define printf_intr printf 85 #else /* !__NetBSD__, i.e. Mac OS */ 86 #include "via.h" /* for macos based testing */ 87 /* #define ADB_DEBUG */ /* more verbose for testing */ 88 89 /* Types of ADB hardware that we support */ 90 #define ADB_HW_UNKNOWN 0x0 /* don't know */ 91 #define ADB_HW_II 0x1 /* Mac II series */ 92 #define ADB_HW_IISI 0x2 /* Mac IIsi series */ 93 #define ADB_HW_PB 0x3 /* PowerBook series */ 94 #define ADB_HW_CUDA 0x4 /* Machines with a Cuda chip */ 95 #endif /* __NetBSD__ */ 96 97 /* some misc. leftovers */ 98 #define vPB 0x0000 99 #define vPB3 0x08 100 #define vPB4 0x10 101 #define vPB5 0x20 102 #define vSR_INT 0x04 103 #define vSR_OUT 0x10 104 105 /* the type of ADB action that we are currently preforming */ 106 #define ADB_ACTION_NOTREADY 0x1 /* has not been initialized yet */ 107 #define ADB_ACTION_IDLE 0x2 /* the bus is currently idle */ 108 #define ADB_ACTION_OUT 0x3 /* sending out a command */ 109 #define ADB_ACTION_IN 0x4 /* receiving data */ 110 #define ADB_ACTION_POLLING 0x5 /* polling - II only */ 111 #define ADB_ACTION_RUNNING 0x6 /* running - IOP only */ 112 113 /* 114 * These describe the state of the ADB bus itself, although they 115 * don't necessarily correspond directly to ADB states. 116 * Note: these are not really used in the IIsi code. 117 */ 118 #define ADB_BUS_UNKNOWN 0x1 /* we don't know yet - all models */ 119 #define ADB_BUS_IDLE 0x2 /* bus is idle - all models */ 120 #define ADB_BUS_CMD 0x3 /* starting a command - II models */ 121 #define ADB_BUS_ODD 0x4 /* the "odd" state - II models */ 122 #define ADB_BUS_EVEN 0x5 /* the "even" state - II models */ 123 #define ADB_BUS_ACTIVE 0x6 /* active state - IIsi models */ 124 #define ADB_BUS_ACK 0x7 /* currently ACKing - IIsi models */ 125 126 /* 127 * Shortcuts for setting or testing the VIA bit states. 128 * Not all shortcuts are used for every type of ADB hardware. 129 */ 130 #define ADB_SET_STATE_IDLE_II() via_reg(VIA1, vBufB) |= (vPB4 | vPB5) 131 #define ADB_SET_STATE_IDLE_IISI() via_reg(VIA1, vBufB) &= ~(vPB4 | vPB5) 132 #define ADB_SET_STATE_IDLE_CUDA() via_reg(VIA1, vBufB) |= (vPB4 | vPB5) 133 #define ADB_SET_STATE_CMD() via_reg(VIA1, vBufB) &= ~(vPB4 | vPB5) 134 #define ADB_SET_STATE_EVEN() via_reg(VIA1, vBufB) = ((via_reg(VIA1, \ 135 vBufB) | vPB4) & ~vPB5) 136 #define ADB_SET_STATE_ODD() via_reg(VIA1, vBufB) = ((via_reg(VIA1, \ 137 vBufB) | vPB5) & ~vPB4) 138 #define ADB_SET_STATE_ACTIVE() via_reg(VIA1, vBufB) |= vPB5 139 #define ADB_SET_STATE_INACTIVE() via_reg(VIA1, vBufB) &= ~vPB5 140 #define ADB_SET_STATE_TIP() via_reg(VIA1, vBufB) &= ~vPB5 141 #define ADB_CLR_STATE_TIP() via_reg(VIA1, vBufB) |= vPB5 142 #define ADB_SET_STATE_ACKON() via_reg(VIA1, vBufB) |= vPB4 143 #define ADB_SET_STATE_ACKOFF() via_reg(VIA1, vBufB) &= ~vPB4 144 #define ADB_TOGGLE_STATE_ACK_CUDA() via_reg(VIA1, vBufB) ^= vPB4 145 #define ADB_SET_STATE_ACKON_CUDA() via_reg(VIA1, vBufB) &= ~vPB4 146 #define ADB_SET_STATE_ACKOFF_CUDA() via_reg(VIA1, vBufB) |= vPB4 147 #define ADB_SET_SR_INPUT() via_reg(VIA1, vACR) &= ~vSR_OUT 148 #define ADB_SET_SR_OUTPUT() via_reg(VIA1, vACR) |= vSR_OUT 149 #define ADB_SR() via_reg(VIA1, vSR) 150 #define ADB_VIA_INTR_ENABLE() via_reg(VIA1, vIER) = 0x84 151 #define ADB_VIA_INTR_DISABLE() via_reg(VIA1, vIER) = 0x04 152 #define ADB_VIA_CLR_INTR() via_reg(VIA1, vIFR) = 0x04 153 #define ADB_INTR_IS_OFF (vPB3 == (via_reg(VIA1, vBufB) & vPB3)) 154 #define ADB_INTR_IS_ON (0 == (via_reg(VIA1, vBufB) & vPB3)) 155 #define ADB_SR_INTR_IS_OFF (0 == (via_reg(VIA1, vIFR) & vSR_INT)) 156 #define ADB_SR_INTR_IS_ON (vSR_INT == (via_reg(VIA1, \ 157 vIFR) & vSR_INT)) 158 159 /* 160 * This is the delay that is required (in uS) between certain 161 * ADB transactions. The actual timing delay for for each uS is 162 * calculated at boot time to account for differences in machine speed. 163 */ 164 #define ADB_DELAY 150 165 166 /* 167 * Maximum ADB message length; includes space for data, result, and 168 * device code - plus a little for safety. 169 */ 170 #define ADB_MAX_MSG_LENGTH 16 171 #define ADB_MAX_HDR_LENGTH 8 172 173 #define ADB_QUEUE 32 174 #define ADB_TICKLE_TICKS 4 175 176 /* 177 * A structure for storing information about each ADB device. 178 */ 179 struct ADBDevEntry { 180 void (*ServiceRtPtr) __P((void)); 181 void *DataAreaAddr; 182 int devType; 183 int origAddr; 184 int currentAddr; 185 }; 186 187 /* 188 * Used to hold ADB commands that are waiting to be sent out. 189 */ 190 struct adbCmdHoldEntry { 191 u_char outBuf[ADB_MAX_MSG_LENGTH]; /* our message */ 192 u_char *saveBuf; /* buffer to know where to save result */ 193 u_char *compRout; /* completion routine pointer */ 194 u_char *data; /* completion routine data pointer */ 195 }; 196 197 /* 198 * Eventually used for two separate queues, the queue between 199 * the upper and lower halves, and the outgoing packet queue. 200 * TO DO: adbCommand can replace all of adbCmdHoldEntry eventually 201 */ 202 struct adbCommand { 203 u_char header[ADB_MAX_HDR_LENGTH]; /* not used yet */ 204 u_char data[ADB_MAX_MSG_LENGTH]; /* packet data only */ 205 u_char *saveBuf; /* where to save result */ 206 u_char *compRout; /* completion routine pointer */ 207 u_char *compData; /* completion routine data pointer */ 208 u_int cmd; /* the original command for this data */ 209 u_int unsol; /* 1 if packet was unsolicited */ 210 u_int ack_only; /* 1 for no special processing */ 211 }; 212 213 /* 214 * Text representations of each hardware class 215 */ 216 char *adbHardwareDescr[MAX_ADB_HW + 1] = { 217 "unknown", 218 "II series", 219 "IIsi series", 220 "PowerBook", 221 "Cuda", 222 "IOP", 223 }; 224 225 /* 226 * A few variables that we need and their initial values. 227 */ 228 int adbHardware = ADB_HW_UNKNOWN; 229 int adbActionState = ADB_ACTION_NOTREADY; 230 int adbBusState = ADB_BUS_UNKNOWN; 231 int adbWaiting = 0; /* waiting for return data from the device */ 232 int adbWriteDelay = 0; /* working on (or waiting to do) a write */ 233 int adbOutQueueHasData = 0; /* something in the queue waiting to go out */ 234 int adbNextEnd = 0; /* the next incoming bute is the last (II) */ 235 int adbSoftPower = 0; /* machine supports soft power */ 236 237 int adbWaitingCmd = 0; /* ADB command we are waiting for */ 238 u_char *adbBuffer = (long)0; /* pointer to user data area */ 239 void *adbCompRout = (long)0; /* pointer to the completion routine */ 240 void *adbCompData = (long)0; /* pointer to the completion routine data */ 241 long adbFakeInts = 0; /* keeps track of fake ADB interrupts for 242 * timeouts (II) */ 243 int adbStarting = 1; /* doing ADBReInit so do polling differently */ 244 int adbSendTalk = 0; /* the intr routine is sending the talk, not 245 * the user (II) */ 246 int adbPolling = 0; /* we are polling for service request */ 247 int adbPollCmd = 0; /* the last poll command we sent */ 248 249 u_char adbInputBuffer[ADB_MAX_MSG_LENGTH]; /* data input buffer */ 250 u_char adbOutputBuffer[ADB_MAX_MSG_LENGTH]; /* data output buffer */ 251 struct adbCmdHoldEntry adbOutQueue; /* our 1 entry output queue */ 252 253 int adbSentChars = 0; /* how many characters we have sent */ 254 int adbLastDevice = 0; /* last ADB dev we heard from (II ONLY) */ 255 int adbLastDevIndex = 0; /* last ADB dev loc in dev table (II ONLY) */ 256 int adbLastCommand = 0; /* the last ADB command we sent (II) */ 257 258 struct ADBDevEntry ADBDevTable[16]; /* our ADB device table */ 259 int ADBNumDevices; /* num. of ADB devices found with ADBReInit */ 260 261 struct adbCommand adbInbound[ADB_QUEUE]; /* incoming queue */ 262 volatile int adbInCount = 0; /* how many packets in in queue */ 263 int adbInHead = 0; /* head of in queue */ 264 int adbInTail = 0; /* tail of in queue */ 265 struct adbCommand adbOutbound[ADB_QUEUE]; /* outgoing queue - not used yet */ 266 int adbOutCount = 0; /* how many packets in out queue */ 267 int adbOutHead = 0; /* head of out queue */ 268 int adbOutTail = 0; /* tail of out queue */ 269 270 int tickle_count = 0; /* how many tickles seen for this packet? */ 271 int tickle_serial = 0; /* the last packet tickled */ 272 int adb_cuda_serial = 0; /* the current packet */ 273 274 struct callout adb_cuda_tickle_ch = CALLOUT_INITIALIZER; 275 276 extern struct mac68k_machine_S mac68k_machine; 277 278 void pm_setup_adb __P((void)); 279 void pm_hw_setup __P((void)); 280 void pm_check_adb_devices __P((int)); 281 void pm_intr __P((void *)); 282 int pm_adb_op __P((u_char *, void *, void *, int)); 283 void pm_init_adb_device __P((void)); 284 285 /* 286 * The following are private routines. 287 */ 288 #ifdef ADB_DEBUG 289 void print_single __P((u_char *)); 290 #endif 291 void adb_intr __P((void *)); 292 void adb_intr_II __P((void *)); 293 void adb_intr_IIsi __P((void *)); 294 void adb_intr_cuda __P((void *)); 295 void adb_soft_intr __P((void)); 296 int send_adb_II __P((u_char *, u_char *, void *, void *, int)); 297 int send_adb_IIsi __P((u_char *, u_char *, void *, void *, int)); 298 int send_adb_cuda __P((u_char *, u_char *, void *, void *, int)); 299 void adb_intr_cuda_test __P((void)); 300 void adb_cuda_tickle __P((void)); 301 void adb_pass_up __P((struct adbCommand *)); 302 void adb_op_comprout __P((void)); 303 void adb_reinit __P((void)); 304 int count_adbs __P((void)); 305 int get_ind_adb_info __P((ADBDataBlock *, int)); 306 int get_adb_info __P((ADBDataBlock *, int)); 307 int set_adb_info __P((ADBSetInfoBlock *, int)); 308 void adb_setup_hw_type __P((void)); 309 int adb_op __P((Ptr, Ptr, Ptr, short)); 310 void adb_read_II __P((u_char *)); 311 void adb_hw_setup __P((void)); 312 void adb_hw_setup_IIsi __P((u_char *)); 313 void adb_comp_exec __P((void)); 314 int adb_cmd_result __P((u_char *)); 315 int adb_cmd_extra __P((u_char *)); 316 int adb_guess_next_device __P((void)); 317 int adb_prog_switch_enable __P((void)); 318 int adb_prog_switch_disable __P((void)); 319 /* we should create this and it will be the public version */ 320 int send_adb __P((u_char *, void *, void *)); 321 void adb_iop_recv __P((IOP *, struct iop_msg *)); 322 int send_adb_iop __P((int, u_char *, void *, void *)); 323 324 #ifdef ADB_DEBUG 325 /* 326 * print_single 327 * Diagnostic display routine. Displays the hex values of the 328 * specified elements of the u_char. The length of the "string" 329 * is in [0]. 330 */ 331 void 332 print_single(str) 333 u_char *str; 334 { 335 int x; 336 337 if (str == 0) { 338 printf_intr("no data - null pointer\n"); 339 return; 340 } 341 if (*str == 0) { 342 printf_intr("nothing returned\n"); 343 return; 344 } 345 if (*str > 20) { 346 printf_intr("ADB: ACK > 20 no way!\n"); 347 *str = (u_char)20; 348 } 349 printf_intr("(length=0x%x):", (u_int)*str); 350 for (x = 1; x <= *str; x++) 351 printf_intr(" 0x%02x", (u_int)*(str + x)); 352 printf_intr("\n"); 353 } 354 #endif 355 356 void 357 adb_cuda_tickle(void) 358 { 359 volatile int s; 360 361 if (adbActionState == ADB_ACTION_IN) { 362 if (tickle_serial == adb_cuda_serial) { 363 if (++tickle_count > 0) { 364 s = splhigh(); 365 adbActionState = ADB_ACTION_IDLE; 366 adbInputBuffer[0] = 0; 367 ADB_SET_STATE_IDLE_CUDA(); 368 splx(s); 369 } 370 } else { 371 tickle_serial = adb_cuda_serial; 372 tickle_count = 0; 373 } 374 } else { 375 tickle_serial = adb_cuda_serial; 376 tickle_count = 0; 377 } 378 379 callout_reset(&adb_cuda_tickle_ch, ADB_TICKLE_TICKS, 380 (void *)adb_cuda_tickle, NULL); 381 } 382 383 /* 384 * called when when an adb interrupt happens 385 * 386 * Cuda version of adb_intr 387 * TO DO: do we want to add some calls to intr_dispatch() here to 388 * grab serial interrupts? 389 */ 390 void 391 adb_intr_cuda(void *arg) 392 { 393 volatile int i, ending; 394 volatile unsigned int s; 395 struct adbCommand packet; 396 397 s = splhigh(); /* can't be too careful - might be called */ 398 /* from a routine, NOT an interrupt */ 399 400 ADB_VIA_CLR_INTR(); /* clear interrupt */ 401 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */ 402 403 switch_start: 404 switch (adbActionState) { 405 case ADB_ACTION_IDLE: 406 /* 407 * This is an unexpected packet, so grab the first (dummy) 408 * byte, set up the proper vars, and tell the chip we are 409 * starting to receive the packet by setting the TIP bit. 410 */ 411 adbInputBuffer[1] = ADB_SR(); 412 adb_cuda_serial++; 413 if (ADB_INTR_IS_OFF) /* must have been a fake start */ 414 break; 415 416 ADB_SET_SR_INPUT(); 417 ADB_SET_STATE_TIP(); 418 419 adbInputBuffer[0] = 1; 420 adbActionState = ADB_ACTION_IN; 421 #ifdef ADB_DEBUG 422 if (adb_debug) 423 printf_intr("idle 0x%02x ", adbInputBuffer[1]); 424 #endif 425 break; 426 427 case ADB_ACTION_IN: 428 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR(); 429 /* intr off means this is the last byte (end of frame) */ 430 if (ADB_INTR_IS_OFF) 431 ending = 1; 432 else 433 ending = 0; 434 435 if (1 == ending) { /* end of message? */ 436 #ifdef ADB_DEBUG 437 if (adb_debug) { 438 printf_intr("in end 0x%02x ", 439 adbInputBuffer[adbInputBuffer[0]]); 440 print_single(adbInputBuffer); 441 } 442 #endif 443 444 /* 445 * Are we waiting AND does this packet match what we 446 * are waiting for AND is it coming from either the 447 * ADB or RTC/PRAM sub-device? This section _should_ 448 * recognize all ADB and RTC/PRAM type commands, but 449 * there may be more... NOTE: commands are always at 450 * [4], even for RTC/PRAM commands. 451 */ 452 /* set up data for adb_pass_up */ 453 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1); 454 455 if ((adbWaiting == 1) && 456 (adbInputBuffer[4] == adbWaitingCmd) && 457 ((adbInputBuffer[2] == 0x00) || 458 (adbInputBuffer[2] == 0x01))) { 459 packet.saveBuf = adbBuffer; 460 packet.compRout = adbCompRout; 461 packet.compData = adbCompData; 462 packet.unsol = 0; 463 packet.ack_only = 0; 464 adb_pass_up(&packet); 465 466 adbWaitingCmd = 0; /* reset "waiting" vars */ 467 adbWaiting = 0; 468 adbBuffer = (long)0; 469 adbCompRout = (long)0; 470 adbCompData = (long)0; 471 } else { 472 packet.unsol = 1; 473 packet.ack_only = 0; 474 adb_pass_up(&packet); 475 } 476 477 478 /* reset vars and signal the end of this frame */ 479 adbActionState = ADB_ACTION_IDLE; 480 adbInputBuffer[0] = 0; 481 ADB_SET_STATE_IDLE_CUDA(); 482 /*ADB_SET_SR_INPUT();*/ 483 484 /* 485 * If there is something waiting to be sent out, 486 * the set everything up and send the first byte. 487 */ 488 if (adbWriteDelay == 1) { 489 delay(ADB_DELAY); /* required */ 490 adbSentChars = 0; 491 adbActionState = ADB_ACTION_OUT; 492 /* 493 * If the interrupt is on, we were too slow 494 * and the chip has already started to send 495 * something to us, so back out of the write 496 * and start a read cycle. 497 */ 498 if (ADB_INTR_IS_ON) { 499 ADB_SET_SR_INPUT(); 500 ADB_SET_STATE_IDLE_CUDA(); 501 adbSentChars = 0; 502 adbActionState = ADB_ACTION_IDLE; 503 adbInputBuffer[0] = 0; 504 break; 505 } 506 /* 507 * If we got here, it's ok to start sending 508 * so load the first byte and tell the chip 509 * we want to send. 510 */ 511 ADB_SET_STATE_TIP(); 512 ADB_SET_SR_OUTPUT(); 513 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; 514 } 515 } else { 516 ADB_TOGGLE_STATE_ACK_CUDA(); 517 #ifdef ADB_DEBUG 518 if (adb_debug) 519 printf_intr("in 0x%02x ", 520 adbInputBuffer[adbInputBuffer[0]]); 521 #endif 522 } 523 break; 524 525 case ADB_ACTION_OUT: 526 i = ADB_SR(); /* reset SR-intr in IFR */ 527 #ifdef ADB_DEBUG 528 if (adb_debug) 529 printf_intr("intr out 0x%02x ", i); 530 #endif 531 532 adbSentChars++; 533 if (ADB_INTR_IS_ON) { /* ADB intr low during write */ 534 #ifdef ADB_DEBUG 535 if (adb_debug) 536 printf_intr("intr was on "); 537 #endif 538 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */ 539 ADB_SET_STATE_IDLE_CUDA(); 540 adbSentChars = 0; /* must start all over */ 541 adbActionState = ADB_ACTION_IDLE; /* new state */ 542 adbInputBuffer[0] = 0; 543 adbWriteDelay = 1; /* must retry when done with 544 * read */ 545 delay(ADB_DELAY); 546 goto switch_start; /* process next state right 547 * now */ 548 break; 549 } 550 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */ 551 if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data 552 * back? */ 553 adbWaiting = 1; /* signal waiting for return */ 554 adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */ 555 } else { /* no talk, so done */ 556 /* set up stuff for adb_pass_up */ 557 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1); 558 packet.saveBuf = adbBuffer; 559 packet.compRout = adbCompRout; 560 packet.compData = adbCompData; 561 packet.cmd = adbWaitingCmd; 562 packet.unsol = 0; 563 packet.ack_only = 1; 564 adb_pass_up(&packet); 565 566 /* reset "waiting" vars, just in case */ 567 adbWaitingCmd = 0; 568 adbBuffer = (long)0; 569 adbCompRout = (long)0; 570 adbCompData = (long)0; 571 } 572 573 adbWriteDelay = 0; /* done writing */ 574 adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */ 575 ADB_SET_SR_INPUT(); 576 ADB_SET_STATE_IDLE_CUDA(); 577 #ifdef ADB_DEBUG 578 if (adb_debug) 579 printf_intr("write done "); 580 #endif 581 } else { 582 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* send next byte */ 583 ADB_TOGGLE_STATE_ACK_CUDA(); /* signal byte ready to 584 * shift */ 585 #ifdef ADB_DEBUG 586 if (adb_debug) 587 printf_intr("toggle "); 588 #endif 589 } 590 break; 591 592 case ADB_ACTION_NOTREADY: 593 #ifdef ADB_DEBUG 594 if (adb_debug) 595 printf_intr("adb: not yet initialized\n"); 596 #endif 597 break; 598 599 default: 600 #ifdef ADB_DEBUG 601 if (adb_debug) 602 printf_intr("intr: unknown ADB state\n"); 603 #endif 604 break; 605 } 606 607 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */ 608 609 splx(s); /* restore */ 610 611 return; 612 } /* end adb_intr_cuda */ 613 614 615 int 616 send_adb_cuda(u_char * in, u_char * buffer, void *compRout, void *data, int 617 command) 618 { 619 int s, len; 620 621 #ifdef ADB_DEBUG 622 if (adb_debug) 623 printf_intr("SEND\n"); 624 #endif 625 626 if (adbActionState == ADB_ACTION_NOTREADY) 627 return 1; 628 629 /* Don't interrupt while we are messing with the ADB */ 630 s = splhigh(); 631 632 if ((adbActionState == ADB_ACTION_IDLE) && /* ADB available? */ 633 (ADB_INTR_IS_OFF)) { /* and no incoming interrupt? */ 634 } else 635 if (adbWriteDelay == 0) /* it's busy, but is anything waiting? */ 636 adbWriteDelay = 1; /* if no, then we'll "queue" 637 * it up */ 638 else { 639 splx(s); 640 return 1; /* really busy! */ 641 } 642 643 #ifdef ADB_DEBUG 644 if (adb_debug) 645 printf_intr("QUEUE\n"); 646 #endif 647 if ((long)in == (long)0) { /* need to convert? */ 648 /* 649 * Don't need to use adb_cmd_extra here because this section 650 * will be called ONLY when it is an ADB command (no RTC or 651 * PRAM) 652 */ 653 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if 654 * doing a listen! */ 655 len = buffer[0]; /* length of additional data */ 656 else 657 len = 0;/* no additional data */ 658 659 adbOutputBuffer[0] = 2 + len; /* dev. type + command + addl. 660 * data */ 661 adbOutputBuffer[1] = 0x00; /* mark as an ADB command */ 662 adbOutputBuffer[2] = (u_char)command; /* load command */ 663 664 /* copy additional output data, if any */ 665 memcpy(adbOutputBuffer + 3, buffer + 1, len); 666 } else 667 /* if data ready, just copy over */ 668 memcpy(adbOutputBuffer, in, in[0] + 2); 669 670 adbSentChars = 0; /* nothing sent yet */ 671 adbBuffer = buffer; /* save buffer to know where to save result */ 672 adbCompRout = compRout; /* save completion routine pointer */ 673 adbCompData = data; /* save completion routine data pointer */ 674 adbWaitingCmd = adbOutputBuffer[2]; /* save wait command */ 675 676 if (adbWriteDelay != 1) { /* start command now? */ 677 #ifdef ADB_DEBUG 678 if (adb_debug) 679 printf_intr("out start NOW"); 680 #endif 681 delay(ADB_DELAY); 682 adbActionState = ADB_ACTION_OUT; /* set next state */ 683 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */ 684 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */ 685 ADB_SET_STATE_ACKOFF_CUDA(); 686 ADB_SET_STATE_TIP(); /* tell ADB that we want to send */ 687 } 688 adbWriteDelay = 1; /* something in the write "queue" */ 689 690 splx(s); 691 692 if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked? */ 693 /* poll until byte done */ 694 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON) 695 || (adbWaiting == 1)) 696 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */ 697 adb_intr_cuda(NULL); /* go process it */ 698 if (adb_polling) 699 adb_soft_intr(); 700 } 701 702 return 0; 703 } /* send_adb_cuda */ 704 705 706 void 707 adb_intr_II(void *arg) 708 { 709 struct adbCommand packet; 710 int i, intr_on = 0; 711 int send = 0; 712 unsigned int s; 713 714 s = splhigh(); /* can't be too careful - might be called */ 715 /* from a routine, NOT an interrupt */ 716 717 ADB_VIA_CLR_INTR(); /* clear interrupt */ 718 719 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */ 720 721 delay(ADB_DELAY); /* yuck (don't remove) */ 722 723 (void)intr_dispatch(0x70); /* grab any serial interrupts */ 724 725 if (ADB_INTR_IS_ON) 726 intr_on = 1; /* save for later */ 727 728 switch_start: 729 switch (adbActionState) { 730 case ADB_ACTION_POLLING: 731 if (!intr_on) { 732 if (adbOutQueueHasData) { 733 #ifdef ADB_DEBUG 734 if (adb_debug & 0x80) 735 printf_intr("POLL-doing-out-queue. "); 736 #endif 737 ADB_SET_STATE_IDLE_II(); 738 delay(ADB_DELAY); 739 740 /* copy over data */ 741 memcpy(adbOutputBuffer, adbOutQueue.outBuf, 742 adbOutQueue.outBuf[0] + 2); 743 744 adbBuffer = adbOutQueue.saveBuf; /* user data area */ 745 adbCompRout = adbOutQueue.compRout; /* completion routine */ 746 adbCompData = adbOutQueue.data; /* comp. rout. data */ 747 adbOutQueueHasData = 0; /* currently processing 748 * "queue" entry */ 749 adbSentChars = 0; /* nothing sent yet */ 750 adbActionState = ADB_ACTION_OUT; /* set next state */ 751 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */ 752 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */ 753 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */ 754 ADB_SET_STATE_CMD(); /* tell ADB that we want to send */ 755 break; 756 } else { 757 #ifdef ADB_DEBUG 758 if (adb_debug) 759 printf_intr("pIDLE "); 760 #endif 761 adbActionState = ADB_ACTION_IDLE; 762 } 763 } else { 764 #ifdef ADB_DEBUG 765 if (adb_debug & 0x80) 766 printf_intr("pIN "); 767 #endif 768 adbActionState = ADB_ACTION_IN; 769 } 770 delay(ADB_DELAY); 771 (void)intr_dispatch(0x70); /* grab any serial interrupts */ 772 goto switch_start; 773 break; 774 case ADB_ACTION_IDLE: 775 if (!intr_on) { 776 i = ADB_SR(); 777 adbBusState = ADB_BUS_IDLE; 778 adbActionState = ADB_ACTION_IDLE; 779 ADB_SET_STATE_IDLE_II(); 780 break; 781 } 782 adbInputBuffer[0] = 1; 783 adbInputBuffer[1] = ADB_SR(); /* get first byte */ 784 #ifdef ADB_DEBUG 785 if (adb_debug & 0x80) 786 printf_intr("idle 0x%02x ", adbInputBuffer[1]); 787 #endif 788 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */ 789 adbActionState = ADB_ACTION_IN; /* set next state */ 790 ADB_SET_STATE_EVEN(); /* set bus state to even */ 791 adbBusState = ADB_BUS_EVEN; 792 break; 793 794 case ADB_ACTION_IN: 795 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR(); /* get byte */ 796 #ifdef ADB_DEBUG 797 if (adb_debug & 0x80) 798 printf_intr("in 0x%02x ", 799 adbInputBuffer[adbInputBuffer[0]]); 800 #endif 801 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */ 802 803 if (intr_on) { /* process last byte of packet */ 804 adbInputBuffer[0]--; /* minus one */ 805 /* 806 * If intr_on was true, and it's the second byte, then 807 * the byte we just discarded is really valid, so 808 * adjust the count 809 */ 810 if (adbInputBuffer[0] == 2) { 811 adbInputBuffer[0]++; 812 } 813 814 #ifdef ADB_DEBUG 815 if (adb_debug & 0x80) { 816 printf_intr("done: "); 817 print_single(adbInputBuffer); 818 } 819 #endif 820 821 adbLastDevice = ADB_CMDADDR(adbInputBuffer[1]); 822 823 if (adbInputBuffer[0] == 1 && !adbWaiting) { /* SRQ!!!*/ 824 #ifdef ADB_DEBUG 825 if (adb_debug & 0x80) 826 printf_intr(" xSRQ! "); 827 #endif 828 adb_guess_next_device(); 829 #ifdef ADB_DEBUG 830 if (adb_debug & 0x80) 831 printf_intr("try 0x%0x ", 832 adbLastDevice); 833 #endif 834 adbOutputBuffer[0] = 1; 835 adbOutputBuffer[1] = ADBTALK(adbLastDevice, 0); 836 837 adbSentChars = 0; /* nothing sent yet */ 838 adbActionState = ADB_ACTION_POLLING; /* set next state */ 839 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */ 840 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */ 841 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */ 842 ADB_SET_STATE_CMD(); /* tell ADB that we want to */ 843 break; 844 } 845 846 /* set up data for adb_pass_up */ 847 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1); 848 849 if (!adbWaiting && (adbInputBuffer[0] != 0)) { 850 packet.unsol = 1; 851 packet.ack_only = 0; 852 adb_pass_up(&packet); 853 } else { 854 packet.saveBuf = adbBuffer; 855 packet.compRout = adbCompRout; 856 packet.compData = adbCompData; 857 packet.unsol = 0; 858 packet.ack_only = 0; 859 adb_pass_up(&packet); 860 } 861 862 adbWaiting = 0; 863 adbInputBuffer[0] = 0; 864 adbBuffer = (long)0; 865 adbCompRout = (long)0; 866 adbCompData = (long)0; 867 /* 868 * Since we are done, check whether there is any data 869 * waiting to do out. If so, start the sending the data. 870 */ 871 if (adbOutQueueHasData == 1) { 872 #ifdef ADB_DEBUG 873 if (adb_debug & 0x80) 874 printf_intr("XXX: DOING OUT QUEUE\n"); 875 #endif 876 /* copy over data */ 877 memcpy(adbOutputBuffer, adbOutQueue.outBuf, 878 adbOutQueue.outBuf[0] + 2); 879 adbBuffer = adbOutQueue.saveBuf; /* user data area */ 880 adbCompRout = adbOutQueue.compRout; /* completion routine */ 881 adbCompData = adbOutQueue.data; /* comp. rout. data */ 882 adbOutQueueHasData = 0; /* currently processing 883 * "queue" entry */ 884 send = 1; 885 } else { 886 #ifdef ADB_DEBUG 887 if (adb_debug & 0x80) 888 printf_intr("XXending "); 889 #endif 890 adb_guess_next_device(); 891 adbOutputBuffer[0] = 1; 892 adbOutputBuffer[1] = ((adbLastDevice & 0x0f) << 4) | 0x0c; 893 adbSentChars = 0; /* nothing sent yet */ 894 adbActionState = ADB_ACTION_POLLING; /* set next state */ 895 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */ 896 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */ 897 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */ 898 ADB_SET_STATE_CMD(); /* tell ADB that we want to */ 899 break; 900 } 901 } 902 903 /* 904 * If send is true then something above determined that 905 * the message has ended and we need to start sending out 906 * a new message immediately. This could be because there 907 * is data waiting to go out or because an SRQ was seen. 908 */ 909 if (send) { 910 adbSentChars = 0; /* nothing sent yet */ 911 adbActionState = ADB_ACTION_OUT; /* set next state */ 912 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */ 913 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */ 914 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */ 915 ADB_SET_STATE_CMD(); /* tell ADB that we want to 916 * send */ 917 break; 918 } 919 /* We only get this far if the message hasn't ended yet. */ 920 switch (adbBusState) { /* set to next state */ 921 case ADB_BUS_EVEN: 922 ADB_SET_STATE_ODD(); /* set state to odd */ 923 adbBusState = ADB_BUS_ODD; 924 break; 925 926 case ADB_BUS_ODD: 927 ADB_SET_STATE_EVEN(); /* set state to even */ 928 adbBusState = ADB_BUS_EVEN; 929 break; 930 default: 931 printf_intr("strange state!!!\n"); /* huh? */ 932 break; 933 } 934 break; 935 936 case ADB_ACTION_OUT: 937 i = ADB_SR(); /* clear interrupt */ 938 adbSentChars++; 939 /* 940 * If the outgoing data was a TALK, we must 941 * switch to input mode to get the result. 942 */ 943 if ((adbOutputBuffer[1] & 0x0c) == 0x0c) { 944 adbInputBuffer[0] = 1; 945 adbInputBuffer[1] = i; 946 adbActionState = ADB_ACTION_IN; 947 ADB_SET_SR_INPUT(); 948 adbBusState = ADB_BUS_EVEN; 949 ADB_SET_STATE_EVEN(); 950 #ifdef ADB_DEBUG 951 if (adb_debug & 0x80) 952 printf_intr("talk out 0x%02x ", i); 953 #endif 954 /* we want something back */ 955 adbWaiting = 1; 956 break; 957 } 958 /* 959 * If it's not a TALK, check whether all data has been sent. 960 * If so, call the completion routine and clean up. If not, 961 * advance to the next state. 962 */ 963 #ifdef ADB_DEBUG 964 if (adb_debug & 0x80) 965 printf_intr("non-talk out 0x%0x ", i); 966 #endif 967 ADB_SET_SR_OUTPUT(); 968 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */ 969 #ifdef ADB_DEBUG 970 if (adb_debug & 0x80) 971 printf_intr("done \n"); 972 #endif 973 /* set up stuff for adb_pass_up */ 974 memcpy(packet.data, adbOutputBuffer, adbOutputBuffer[0] + 1); 975 packet.saveBuf = adbBuffer; 976 packet.compRout = adbCompRout; 977 packet.compData = adbCompData; 978 packet.cmd = adbWaitingCmd; 979 packet.unsol = 0; 980 packet.ack_only = 1; 981 adb_pass_up(&packet); 982 983 /* reset "waiting" vars, just in case */ 984 adbBuffer = (long)0; 985 adbCompRout = (long)0; 986 adbCompData = (long)0; 987 if (adbOutQueueHasData == 1) { 988 /* copy over data */ 989 memcpy(adbOutputBuffer, adbOutQueue.outBuf, 990 adbOutQueue.outBuf[0] + 2); 991 adbBuffer = adbOutQueue.saveBuf; /* user data area */ 992 adbCompRout = adbOutQueue.compRout; /* completion routine */ 993 adbCompData = adbOutQueue.data; /* comp. rout. data */ 994 adbOutQueueHasData = 0; /* currently processing 995 * "queue" entry */ 996 adbSentChars = 0; /* nothing sent yet */ 997 adbActionState = ADB_ACTION_OUT; /* set next state */ 998 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */ 999 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */ 1000 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */ 1001 ADB_SET_STATE_CMD(); /* tell ADB that we want to 1002 * send */ 1003 break; 1004 } else { 1005 /* send talk to last device instead */ 1006 adbOutputBuffer[0] = 1; 1007 adbOutputBuffer[1] = 1008 ADBTALK(ADB_CMDADDR(adbOutputBuffer[1]), 0); 1009 1010 adbSentChars = 0; /* nothing sent yet */ 1011 adbActionState = ADB_ACTION_IDLE; /* set next state */ 1012 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */ 1013 ADB_SR() = adbOutputBuffer[1]; /* load byte for output */ 1014 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */ 1015 ADB_SET_STATE_CMD(); /* tell ADB that we want to */ 1016 break; 1017 } 1018 } 1019 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; 1020 switch (adbBusState) { /* advance to next state */ 1021 case ADB_BUS_EVEN: 1022 ADB_SET_STATE_ODD(); /* set state to odd */ 1023 adbBusState = ADB_BUS_ODD; 1024 break; 1025 1026 case ADB_BUS_CMD: 1027 case ADB_BUS_ODD: 1028 ADB_SET_STATE_EVEN(); /* set state to even */ 1029 adbBusState = ADB_BUS_EVEN; 1030 break; 1031 1032 default: 1033 #ifdef ADB_DEBUG 1034 if (adb_debug) { 1035 printf_intr("strange state!!! (0x%x)\n", 1036 adbBusState); 1037 } 1038 #endif 1039 break; 1040 } 1041 break; 1042 1043 default: 1044 #ifdef ADB_DEBUG 1045 if (adb_debug) 1046 printf_intr("adb: unknown ADB state (during intr)\n"); 1047 #endif 1048 break; 1049 } 1050 1051 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */ 1052 1053 splx(s); /* restore */ 1054 1055 return; 1056 1057 } 1058 1059 1060 /* 1061 * send_adb version for II series machines 1062 */ 1063 int 1064 send_adb_II(u_char * in, u_char * buffer, void *compRout, void *data, int command) 1065 { 1066 int s, len; 1067 1068 if (adbActionState == ADB_ACTION_NOTREADY) /* return if ADB not 1069 * available */ 1070 return 1; 1071 1072 /* Don't interrupt while we are messing with the ADB */ 1073 s = splhigh(); 1074 1075 if (0 != adbOutQueueHasData) { /* right now, "has data" means "full" */ 1076 splx(s); /* sorry, try again later */ 1077 return 1; 1078 } 1079 if ((long)in == (long)0) { /* need to convert? */ 1080 /* 1081 * Don't need to use adb_cmd_extra here because this section 1082 * will be called ONLY when it is an ADB command (no RTC or 1083 * PRAM), especially on II series! 1084 */ 1085 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if 1086 * doing a listen! */ 1087 len = buffer[0]; /* length of additional data */ 1088 else 1089 len = 0;/* no additional data */ 1090 1091 adbOutQueue.outBuf[0] = 1 + len; /* command + addl. data */ 1092 adbOutQueue.outBuf[1] = (u_char)command; /* load command */ 1093 1094 /* copy additional output data, if any */ 1095 memcpy(adbOutQueue.outBuf + 2, buffer + 1, len); 1096 } else 1097 /* if data ready, just copy over */ 1098 memcpy(adbOutQueue.outBuf, in, in[0] + 2); 1099 1100 adbOutQueue.saveBuf = buffer; /* save buffer to know where to save 1101 * result */ 1102 adbOutQueue.compRout = compRout; /* save completion routine 1103 * pointer */ 1104 adbOutQueue.data = data;/* save completion routine data pointer */ 1105 1106 if ((adbActionState == ADB_ACTION_IDLE) && /* is ADB available? */ 1107 (ADB_INTR_IS_OFF)) { /* and no incoming interrupts? */ 1108 /* then start command now */ 1109 memcpy(adbOutputBuffer, adbOutQueue.outBuf, 1110 adbOutQueue.outBuf[0] + 2); /* copy over data */ 1111 1112 adbBuffer = adbOutQueue.saveBuf; /* pointer to user data 1113 * area */ 1114 adbCompRout = adbOutQueue.compRout; /* pointer to the 1115 * completion routine */ 1116 adbCompData = adbOutQueue.data; /* pointer to the completion 1117 * routine data */ 1118 1119 adbSentChars = 0; /* nothing sent yet */ 1120 adbActionState = ADB_ACTION_OUT; /* set next state */ 1121 adbBusState = ADB_BUS_CMD; /* set bus to cmd state */ 1122 1123 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */ 1124 1125 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */ 1126 ADB_SET_STATE_CMD(); /* tell ADB that we want to send */ 1127 adbOutQueueHasData = 0; /* currently processing "queue" entry */ 1128 } else 1129 adbOutQueueHasData = 1; /* something in the write "queue" */ 1130 1131 splx(s); 1132 1133 if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked? */ 1134 /* poll until message done */ 1135 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON) 1136 || (adbWaiting == 1)) 1137 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */ 1138 adb_intr_II(NULL); /* go process it */ 1139 if (adb_polling) 1140 adb_soft_intr(); 1141 } 1142 1143 return 0; 1144 } 1145 1146 1147 /* 1148 * This routine is called from the II series interrupt routine 1149 * to determine what the "next" device is that should be polled. 1150 */ 1151 int 1152 adb_guess_next_device(void) 1153 { 1154 int last, i, dummy; 1155 1156 if (adbStarting) { 1157 /* 1158 * Start polling EVERY device, since we can't be sure there is 1159 * anything in the device table yet 1160 */ 1161 if (adbLastDevice < 1 || adbLastDevice > 15) 1162 adbLastDevice = 1; 1163 if (++adbLastDevice > 15) /* point to next one */ 1164 adbLastDevice = 1; 1165 } else { 1166 /* find the next device using the device table */ 1167 if (adbLastDevice < 1 || adbLastDevice > 15) /* let's be parinoid */ 1168 adbLastDevice = 2; 1169 last = 1; /* default index location */ 1170 1171 for (i = 1; i < 16; i++) /* find index entry */ 1172 if (ADBDevTable[i].currentAddr == adbLastDevice) { /* look for device */ 1173 last = i; /* found it */ 1174 break; 1175 } 1176 dummy = last; /* index to start at */ 1177 for (;;) { /* find next device in index */ 1178 if (++dummy > 15) /* wrap around if needed */ 1179 dummy = 1; 1180 if (dummy == last) { /* didn't find any other 1181 * device! This can happen if 1182 * there are no devices on the 1183 * bus */ 1184 dummy = 1; 1185 break; 1186 } 1187 /* found the next device */ 1188 if (ADBDevTable[dummy].devType != 0) 1189 break; 1190 } 1191 adbLastDevice = ADBDevTable[dummy].currentAddr; 1192 } 1193 return adbLastDevice; 1194 } 1195 1196 1197 /* 1198 * Called when when an adb interrupt happens. 1199 * This routine simply transfers control over to the appropriate 1200 * code for the machine we are running on. 1201 */ 1202 void 1203 adb_intr(void *arg) 1204 { 1205 switch (adbHardware) { 1206 case ADB_HW_II: 1207 adb_intr_II(arg); 1208 break; 1209 1210 case ADB_HW_IISI: 1211 adb_intr_IIsi(arg); 1212 break; 1213 1214 case ADB_HW_PB: /* Should not come through here. */ 1215 break; 1216 1217 case ADB_HW_CUDA: 1218 adb_intr_cuda(arg); 1219 break; 1220 1221 case ADB_HW_IOP: /* Should not come through here. */ 1222 break; 1223 1224 case ADB_HW_UNKNOWN: 1225 break; 1226 } 1227 } 1228 1229 1230 /* 1231 * called when when an adb interrupt happens 1232 * 1233 * IIsi version of adb_intr 1234 * 1235 */ 1236 void 1237 adb_intr_IIsi(void *arg) 1238 { 1239 struct adbCommand packet; 1240 int i, ending; 1241 unsigned int s; 1242 1243 s = splhigh(); /* can't be too careful - might be called */ 1244 /* from a routine, NOT an interrupt */ 1245 1246 ADB_VIA_CLR_INTR(); /* clear interrupt */ 1247 1248 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */ 1249 1250 switch_start: 1251 switch (adbActionState) { 1252 case ADB_ACTION_IDLE: 1253 delay(ADB_DELAY); /* short delay is required before the 1254 * first byte */ 1255 1256 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */ 1257 ADB_SET_STATE_ACTIVE(); /* signal start of data frame */ 1258 adbInputBuffer[1] = ADB_SR(); /* get byte */ 1259 adbInputBuffer[0] = 1; 1260 adbActionState = ADB_ACTION_IN; /* set next state */ 1261 1262 ADB_SET_STATE_ACKON(); /* start ACK to ADB chip */ 1263 delay(ADB_DELAY); /* delay */ 1264 ADB_SET_STATE_ACKOFF(); /* end ACK to ADB chip */ 1265 (void)intr_dispatch(0x70); /* grab any serial interrupts */ 1266 break; 1267 1268 case ADB_ACTION_IN: 1269 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */ 1270 adbInputBuffer[++adbInputBuffer[0]] = ADB_SR(); /* get byte */ 1271 if (ADB_INTR_IS_OFF) /* check for end of frame */ 1272 ending = 1; 1273 else 1274 ending = 0; 1275 1276 ADB_SET_STATE_ACKON(); /* start ACK to ADB chip */ 1277 delay(ADB_DELAY); /* delay */ 1278 ADB_SET_STATE_ACKOFF(); /* end ACK to ADB chip */ 1279 (void)intr_dispatch(0x70); /* grab any serial interrupts */ 1280 1281 if (1 == ending) { /* end of message? */ 1282 ADB_SET_STATE_INACTIVE(); /* signal end of frame */ 1283 /* 1284 * This section _should_ handle all ADB and RTC/PRAM 1285 * type commands, but there may be more... Note: 1286 * commands are always at [4], even for rtc/pram 1287 * commands 1288 */ 1289 /* set up data for adb_pass_up */ 1290 memcpy(packet.data, adbInputBuffer, adbInputBuffer[0] + 1); 1291 1292 if ((adbWaiting == 1) && /* are we waiting AND */ 1293 (adbInputBuffer[4] == adbWaitingCmd) && /* the cmd we sent AND */ 1294 ((adbInputBuffer[2] == 0x00) || /* it's from the ADB 1295 * device OR */ 1296 (adbInputBuffer[2] == 0x01))) { /* it's from the 1297 * PRAM/RTC device */ 1298 1299 packet.saveBuf = adbBuffer; 1300 packet.compRout = adbCompRout; 1301 packet.compData = adbCompData; 1302 packet.unsol = 0; 1303 packet.ack_only = 0; 1304 adb_pass_up(&packet); 1305 1306 adbWaitingCmd = 0; /* reset "waiting" vars */ 1307 adbWaiting = 0; 1308 adbBuffer = (long)0; 1309 adbCompRout = (long)0; 1310 adbCompData = (long)0; 1311 } else { 1312 packet.unsol = 1; 1313 packet.ack_only = 0; 1314 adb_pass_up(&packet); 1315 } 1316 1317 adbActionState = ADB_ACTION_IDLE; 1318 adbInputBuffer[0] = 0; /* reset length */ 1319 1320 if (adbWriteDelay == 1) { /* were we waiting to 1321 * write? */ 1322 adbSentChars = 0; /* nothing sent yet */ 1323 adbActionState = ADB_ACTION_OUT; /* set next state */ 1324 1325 delay(ADB_DELAY); /* delay */ 1326 (void)intr_dispatch(0x70); /* grab any serial interrupts */ 1327 1328 if (ADB_INTR_IS_ON) { /* ADB intr low during 1329 * write */ 1330 ADB_SET_STATE_IDLE_IISI(); /* reset */ 1331 ADB_SET_SR_INPUT(); /* make sure SR is set 1332 * to IN */ 1333 adbSentChars = 0; /* must start all over */ 1334 adbActionState = ADB_ACTION_IDLE; /* new state */ 1335 adbInputBuffer[0] = 0; 1336 /* may be able to take this out later */ 1337 delay(ADB_DELAY); /* delay */ 1338 break; 1339 } 1340 ADB_SET_STATE_ACTIVE(); /* tell ADB that we want 1341 * to send */ 1342 ADB_SET_STATE_ACKOFF(); /* make sure */ 1343 ADB_SET_SR_OUTPUT(); /* set shift register 1344 * for OUT */ 1345 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; 1346 ADB_SET_STATE_ACKON(); /* tell ADB byte ready 1347 * to shift */ 1348 } 1349 } 1350 break; 1351 1352 case ADB_ACTION_OUT: 1353 i = ADB_SR(); /* reset SR-intr in IFR */ 1354 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */ 1355 1356 ADB_SET_STATE_ACKOFF(); /* finish ACK */ 1357 adbSentChars++; 1358 if (ADB_INTR_IS_ON) { /* ADB intr low during write */ 1359 ADB_SET_STATE_IDLE_IISI(); /* reset */ 1360 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */ 1361 adbSentChars = 0; /* must start all over */ 1362 adbActionState = ADB_ACTION_IDLE; /* new state */ 1363 adbInputBuffer[0] = 0; 1364 adbWriteDelay = 1; /* must retry when done with 1365 * read */ 1366 delay(ADB_DELAY); /* delay */ 1367 (void)intr_dispatch(0x70); /* grab any serial interrupts */ 1368 goto switch_start; /* process next state right 1369 * now */ 1370 break; 1371 } 1372 delay(ADB_DELAY); /* required delay */ 1373 (void)intr_dispatch(0x70); /* grab any serial interrupts */ 1374 1375 if (adbOutputBuffer[0] == adbSentChars) { /* check for done */ 1376 if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data 1377 * back? */ 1378 adbWaiting = 1; /* signal waiting for return */ 1379 adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */ 1380 } else {/* no talk, so done */ 1381 /* set up stuff for adb_pass_up */ 1382 memcpy(packet.data, adbInputBuffer, 1383 adbInputBuffer[0] + 1); 1384 packet.saveBuf = adbBuffer; 1385 packet.compRout = adbCompRout; 1386 packet.compData = adbCompData; 1387 packet.cmd = adbWaitingCmd; 1388 packet.unsol = 0; 1389 packet.ack_only = 1; 1390 adb_pass_up(&packet); 1391 1392 /* reset "waiting" vars, just in case */ 1393 adbWaitingCmd = 0; 1394 adbBuffer = (long)0; 1395 adbCompRout = (long)0; 1396 adbCompData = (long)0; 1397 } 1398 1399 adbWriteDelay = 0; /* done writing */ 1400 adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */ 1401 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */ 1402 ADB_SET_STATE_INACTIVE(); /* end of frame */ 1403 } else { 1404 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* send next byte */ 1405 ADB_SET_STATE_ACKON(); /* signal byte ready to shift */ 1406 } 1407 break; 1408 1409 case ADB_ACTION_NOTREADY: 1410 #ifdef ADB_DEBUG 1411 if (adb_debug) 1412 printf_intr("adb: not yet initialized\n"); 1413 #endif 1414 break; 1415 1416 default: 1417 #ifdef ADB_DEBUG 1418 if (adb_debug) 1419 printf_intr("intr: unknown ADB state\n"); 1420 #endif 1421 break; 1422 } 1423 1424 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */ 1425 1426 splx(s); /* restore */ 1427 1428 return; 1429 } /* end adb_intr_IIsi */ 1430 1431 1432 /***************************************************************************** 1433 * if the device is currently busy, and there is no data waiting to go out, then 1434 * the data is "queued" in the outgoing buffer. If we are already waiting, then 1435 * we return. 1436 * in: if (in == 0) then the command string is built from command and buffer 1437 * if (in != 0) then in is used as the command string 1438 * buffer: additional data to be sent (used only if in == 0) 1439 * this is also where return data is stored 1440 * compRout: the completion routine that is called when then return value 1441 * is received (if a return value is expected) 1442 * data: a data pointer that can be used by the completion routine 1443 * command: an ADB command to be sent (used only if in == 0) 1444 * 1445 */ 1446 int 1447 send_adb_IIsi(u_char * in, u_char * buffer, void *compRout, void *data, int 1448 command) 1449 { 1450 int s, len; 1451 1452 if (adbActionState == ADB_ACTION_NOTREADY) 1453 return 1; 1454 1455 /* Don't interrupt while we are messing with the ADB */ 1456 s = splhigh(); 1457 1458 if ((adbActionState == ADB_ACTION_IDLE) && /* ADB available? */ 1459 (ADB_INTR_IS_OFF)) {/* and no incoming interrupt? */ 1460 1461 } else 1462 if (adbWriteDelay == 0) /* it's busy, but is anything waiting? */ 1463 adbWriteDelay = 1; /* if no, then we'll "queue" 1464 * it up */ 1465 else { 1466 splx(s); 1467 return 1; /* really busy! */ 1468 } 1469 1470 if ((long)in == (long)0) { /* need to convert? */ 1471 /* 1472 * Don't need to use adb_cmd_extra here because this section 1473 * will be called ONLY when it is an ADB command (no RTC or 1474 * PRAM) 1475 */ 1476 if ((command & 0x0c) == 0x08) /* copy addl data ONLY if 1477 * doing a listen! */ 1478 len = buffer[0]; /* length of additional data */ 1479 else 1480 len = 0;/* no additional data */ 1481 1482 adbOutputBuffer[0] = 2 + len; /* dev. type + command + addl. 1483 * data */ 1484 adbOutputBuffer[1] = 0x00; /* mark as an ADB command */ 1485 adbOutputBuffer[2] = (u_char)command; /* load command */ 1486 1487 /* copy additional output data, if any */ 1488 memcpy(adbOutputBuffer + 3, buffer + 1, len); 1489 } else 1490 /* if data ready, just copy over */ 1491 memcpy(adbOutputBuffer, in, in[0] + 2); 1492 1493 adbSentChars = 0; /* nothing sent yet */ 1494 adbBuffer = buffer; /* save buffer to know where to save result */ 1495 adbCompRout = compRout; /* save completion routine pointer */ 1496 adbCompData = data; /* save completion routine data pointer */ 1497 adbWaitingCmd = adbOutputBuffer[2]; /* save wait command */ 1498 1499 if (adbWriteDelay != 1) { /* start command now? */ 1500 adbActionState = ADB_ACTION_OUT; /* set next state */ 1501 1502 ADB_SET_STATE_ACTIVE(); /* tell ADB that we want to send */ 1503 ADB_SET_STATE_ACKOFF(); /* make sure */ 1504 1505 ADB_SET_SR_OUTPUT(); /* set shift register for OUT */ 1506 1507 ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */ 1508 1509 ADB_SET_STATE_ACKON(); /* tell ADB byte ready to shift */ 1510 } 1511 adbWriteDelay = 1; /* something in the write "queue" */ 1512 1513 splx(s); 1514 1515 if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked? */ 1516 /* poll until byte done */ 1517 while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON) 1518 || (adbWaiting == 1)) 1519 if (ADB_SR_INTR_IS_ON) { /* wait for "interrupt" */ 1520 adb_intr_IIsi(NULL); /* go process it */ 1521 if (adb_polling) 1522 adb_soft_intr(); 1523 } 1524 1525 return 0; 1526 } /* send_adb_IIsi */ 1527 1528 void 1529 adb_iop_recv(IOP *iop, struct iop_msg *msg) 1530 { 1531 struct adbCommand pkt; 1532 unsigned flags; 1533 1534 if (adbActionState != ADB_ACTION_RUNNING) 1535 return; 1536 1537 switch (msg->status) { 1538 case IOP_MSGSTAT_SENT: 1539 if (0 == adb_cmd_result(msg->msg + 1)) { 1540 adbWaiting = 1; 1541 adbWaitingCmd = msg->msg[2]; 1542 } 1543 break; 1544 case IOP_MSGSTAT_RECEIVED: 1545 case IOP_MSGSTAT_UNEXPECTED: 1546 flags = msg->msg[0]; 1547 if (flags != 0) { 1548 printf("ADB FLAGS 0x%x", flags); 1549 break; 1550 } 1551 if (adbWaiting && 1552 (msg->msg[2] == adbWaitingCmd)) { 1553 pkt.saveBuf = msg->msg + 1; 1554 pkt.compRout = adbCompRout; 1555 pkt.compData = adbCompData; 1556 pkt.unsol = 0; 1557 pkt.ack_only = 0; 1558 adb_pass_up(&pkt); 1559 1560 adbWaitingCmd = 0; 1561 adbWaiting = 0; 1562 } else { 1563 pkt.unsol = 1; 1564 pkt.ack_only = 0; 1565 adb_pass_up(&pkt); 1566 } 1567 break; 1568 default: 1569 return; 1570 } 1571 } 1572 1573 int 1574 send_adb_iop(int cmd, u_char * buffer, void *compRout, void *data) 1575 { 1576 u_char buff[32]; 1577 int cnt; 1578 1579 if (adbActionState != ADB_ACTION_RUNNING) 1580 return -1; 1581 1582 buff[0] = IOP_ADB_FL_EXPLICIT; 1583 buff[1] = buffer[0]; 1584 buff[2] = cmd; 1585 cnt = (int) buff[1]; 1586 memcpy(buff + 3, buffer + 1, cnt); 1587 return iop_send_msg(ISM_IOP, IOP_CHAN_ADB, buff, cnt+3, 1588 adb_iop_recv, NULL); 1589 } 1590 1591 /* 1592 * adb_pass_up is called by the interrupt-time routines. 1593 * It takes the raw packet data that was received from the 1594 * device and puts it into the queue that the upper half 1595 * processes. It then signals for a soft ADB interrupt which 1596 * will eventually call the upper half routine (adb_soft_intr). 1597 * 1598 * If in->unsol is 0, then this is either the notification 1599 * that the packet was sent (on a LISTEN, for example), or the 1600 * response from the device (on a TALK). The completion routine 1601 * is called only if the user specified one. 1602 * 1603 * If in->unsol is 1, then this packet was unsolicited and 1604 * so we look up the device in the ADB device table to determine 1605 * what it's default service routine is. 1606 * 1607 * If in->ack_only is 1, then we really only need to call 1608 * the completion routine, so don't do any other stuff. 1609 * 1610 * Note that in->data contains the packet header AND data, 1611 * while adbInbound[]->data contains ONLY data. 1612 * 1613 * Note: Called only at interrupt time. Assumes this. 1614 */ 1615 void 1616 adb_pass_up(struct adbCommand *in) 1617 { 1618 int start = 0, len = 0, cmd = 0; 1619 ADBDataBlock block; 1620 1621 /* temp for testing */ 1622 /*u_char *buffer = 0;*/ 1623 /*u_char *compdata = 0;*/ 1624 /*u_char *comprout = 0;*/ 1625 1626 if (adbInCount >= ADB_QUEUE) { 1627 #ifdef ADB_DEBUG 1628 if (adb_debug) 1629 printf_intr("adb: ring buffer overflow\n"); 1630 #endif 1631 return; 1632 } 1633 1634 if (in->ack_only) { 1635 len = in->data[0]; 1636 cmd = in->cmd; 1637 start = 0; 1638 } else { 1639 switch (adbHardware) { 1640 case ADB_HW_IOP: 1641 case ADB_HW_II: 1642 cmd = in->data[1]; 1643 if (in->data[0] < 2) 1644 len = 0; 1645 else 1646 len = in->data[0]-1; 1647 start = 1; 1648 break; 1649 1650 case ADB_HW_IISI: 1651 case ADB_HW_CUDA: 1652 /* If it's unsolicited, accept only ADB data for now */ 1653 if (in->unsol) 1654 if (0 != in->data[2]) 1655 return; 1656 cmd = in->data[4]; 1657 if (in->data[0] < 5) 1658 len = 0; 1659 else 1660 len = in->data[0]-4; 1661 start = 4; 1662 break; 1663 1664 case ADB_HW_PB: 1665 cmd = in->data[1]; 1666 if (in->data[0] < 2) 1667 len = 0; 1668 else 1669 len = in->data[0]-1; 1670 start = 1; 1671 break; 1672 1673 case ADB_HW_UNKNOWN: 1674 return; 1675 } 1676 1677 /* Make sure there is a valid device entry for this device */ 1678 if (in->unsol) { 1679 /* ignore unsolicited data during adbreinit */ 1680 if (adbStarting) 1681 return; 1682 /* get device's comp. routine and data area */ 1683 if (-1 == get_adb_info(&block, ADB_CMDADDR(cmd))) 1684 return; 1685 } 1686 } 1687 1688 /* 1689 * If this is an unsolicited packet, we need to fill in 1690 * some info so adb_soft_intr can process this packet 1691 * properly. If it's not unsolicited, then use what 1692 * the caller sent us. 1693 */ 1694 if (in->unsol) { 1695 adbInbound[adbInTail].compRout = (void *)block.dbServiceRtPtr; 1696 adbInbound[adbInTail].compData = (void *)block.dbDataAreaAddr; 1697 adbInbound[adbInTail].saveBuf = (void *)adbInbound[adbInTail].data; 1698 } else { 1699 adbInbound[adbInTail].compRout = (void *)in->compRout; 1700 adbInbound[adbInTail].compData = (void *)in->compData; 1701 adbInbound[adbInTail].saveBuf = (void *)in->saveBuf; 1702 } 1703 1704 #ifdef ADB_DEBUG 1705 if (adb_debug && in->data[1] == 2) 1706 printf_intr("adb: caught error\n"); 1707 #endif 1708 1709 /* copy the packet data over */ 1710 /* 1711 * TO DO: If the *_intr routines fed their incoming data 1712 * directly into an adbCommand struct, which is passed to 1713 * this routine, then we could eliminate this copy. 1714 */ 1715 memcpy(adbInbound[adbInTail].data + 1, in->data + start + 1, len); 1716 adbInbound[adbInTail].data[0] = len; 1717 adbInbound[adbInTail].cmd = cmd; 1718 1719 adbInCount++; 1720 if (++adbInTail >= ADB_QUEUE) 1721 adbInTail = 0; 1722 1723 /* 1724 * If the debugger is running, call upper half manually. 1725 * Otherwise, trigger a soft interrupt to handle the rest later. 1726 */ 1727 if (adb_polling) 1728 adb_soft_intr(); 1729 else 1730 setsoftadb(); 1731 1732 return; 1733 } 1734 1735 1736 /* 1737 * Called to process the packets after they have been 1738 * placed in the incoming queue. 1739 * 1740 */ 1741 void 1742 adb_soft_intr(void) 1743 { 1744 int s; 1745 int cmd = 0; 1746 u_char *buffer = 0; 1747 u_char *comprout = 0; 1748 u_char *compdata = 0; 1749 1750 #if 0 1751 s = splhigh(); 1752 printf_intr("sr: %x\n", (s & 0x0700)); 1753 splx(s); 1754 #endif 1755 1756 /*delay(2*ADB_DELAY);*/ 1757 1758 while (adbInCount) { 1759 #ifdef ADB_DEBUG 1760 if (adb_debug & 0x80) 1761 printf_intr("%x %x %x ", 1762 adbInCount, adbInHead, adbInTail); 1763 #endif 1764 /* get the data we need from the queue */ 1765 buffer = adbInbound[adbInHead].saveBuf; 1766 comprout = adbInbound[adbInHead].compRout; 1767 compdata = adbInbound[adbInHead].compData; 1768 cmd = adbInbound[adbInHead].cmd; 1769 1770 /* copy over data to data area if it's valid */ 1771 /* 1772 * Note that for unsol packets we don't want to copy the 1773 * data anywhere, so buffer was already set to 0. 1774 * For ack_only buffer was set to 0, so don't copy. 1775 */ 1776 if (buffer) 1777 memcpy(buffer, adbInbound[adbInHead].data, 1778 adbInbound[adbInHead].data[0] + 1); 1779 1780 #ifdef ADB_DEBUG 1781 if (adb_debug & 0x80) { 1782 printf_intr("%p %p %p %x ", 1783 buffer, comprout, compdata, (short)cmd); 1784 printf_intr("buf: "); 1785 print_single(adbInbound[adbInHead].data); 1786 } 1787 #endif 1788 1789 /* call default completion routine if it's valid */ 1790 if (comprout) { 1791 #ifdef __NetBSD__ 1792 __asm __volatile ( 1793 " movml #0xffff,%%sp@- \n" /* save all regs */ 1794 " movl %0,%%a2 \n" /* compdata */ 1795 " movl %1,%%a1 \n" /* comprout */ 1796 " movl %2,%%a0 \n" /* buffer */ 1797 " movl %3,%%d0 \n" /* cmd */ 1798 " jbsr %%a1@ \n" /* go call routine */ 1799 " movml %%sp@+,#0xffff" /* restore all regs */ 1800 : 1801 : "g"(compdata), "g"(comprout), 1802 "g"(buffer), "g"(cmd) 1803 : "d0", "a0", "a1", "a2"); 1804 #else /* for macos based testing */ 1805 asm 1806 { 1807 movem.l a0/a1/a2/d0, -(a7) 1808 move.l compdata, a2 1809 move.l comprout, a1 1810 move.l buffer, a0 1811 move.w cmd, d0 1812 jsr(a1) 1813 movem.l(a7)+, d0/a2/a1/a0 1814 } 1815 #endif 1816 } 1817 1818 s = splhigh(); 1819 adbInCount--; 1820 if (++adbInHead >= ADB_QUEUE) 1821 adbInHead = 0; 1822 splx(s); 1823 1824 } 1825 return; 1826 } 1827 1828 1829 /* 1830 * This is my version of the ADBOp routine. It mainly just calls the 1831 * hardware-specific routine. 1832 * 1833 * data : pointer to data area to be used by compRout 1834 * compRout : completion routine 1835 * buffer : for LISTEN: points to data to send - MAX 8 data bytes, 1836 * byte 0 = # of bytes 1837 * : for TALK: points to place to save return data 1838 * command : the adb command to send 1839 * result : 0 = success 1840 * : -1 = could not complete 1841 */ 1842 int 1843 adb_op(Ptr buffer, Ptr compRout, Ptr data, short command) 1844 { 1845 int result; 1846 1847 switch (adbHardware) { 1848 case ADB_HW_II: 1849 result = send_adb_II((u_char *)0, (u_char *)buffer, 1850 (void *)compRout, (void *)data, (int)command); 1851 if (result == 0) 1852 return 0; 1853 else 1854 return -1; 1855 break; 1856 1857 case ADB_HW_IOP: 1858 #ifdef __notyet__ 1859 result = send_adb_iop((int)command, (u_char *)buffer, 1860 (void *)compRout, (void *)data); 1861 if (result == 0) 1862 return 0; 1863 else 1864 #endif 1865 return -1; 1866 break; 1867 1868 case ADB_HW_IISI: 1869 result = send_adb_IIsi((u_char *)0, (u_char *)buffer, 1870 (void *)compRout, (void *)data, (int)command); 1871 /* 1872 * I wish I knew why this delay is needed. It usually needs to 1873 * be here when several commands are sent in close succession, 1874 * especially early in device probes when doing collision 1875 * detection. It must be some race condition. Sigh. - jpw 1876 */ 1877 delay(100); 1878 if (result == 0) 1879 return 0; 1880 else 1881 return -1; 1882 break; 1883 1884 case ADB_HW_PB: 1885 result = pm_adb_op((u_char *)buffer, (void *)compRout, 1886 (void *)data, (int)command); 1887 1888 if (result == 0) 1889 return 0; 1890 else 1891 return -1; 1892 break; 1893 1894 case ADB_HW_CUDA: 1895 result = send_adb_cuda((u_char *)0, (u_char *)buffer, 1896 (void *)compRout, (void *)data, (int)command); 1897 if (result == 0) 1898 return 0; 1899 else 1900 return -1; 1901 break; 1902 1903 case ADB_HW_UNKNOWN: 1904 default: 1905 return -1; 1906 } 1907 } 1908 1909 1910 /* 1911 * adb_hw_setup 1912 * This routine sets up the possible machine specific hardware 1913 * config (mainly VIA settings) for the various models. 1914 */ 1915 void 1916 adb_hw_setup(void) 1917 { 1918 volatile int i; 1919 u_char send_string[ADB_MAX_MSG_LENGTH]; 1920 1921 switch (adbHardware) { 1922 case ADB_HW_II: 1923 via1_register_irq(2, adb_intr_II, NULL); 1924 1925 via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5: 1926 * outputs */ 1927 via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */ 1928 via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set 1929 * to IN (II, IIsi) */ 1930 adbActionState = ADB_ACTION_IDLE; /* used by all types of 1931 * hardware (II, IIsi) */ 1932 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series 1933 * code only */ 1934 via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts 1935 * are on (II, IIsi) */ 1936 ADB_SET_STATE_IDLE_II(); /* set ADB bus state to idle */ 1937 1938 ADB_VIA_CLR_INTR(); /* clear interrupt */ 1939 break; 1940 1941 case ADB_HW_IOP: 1942 via_reg(VIA1, vIER) = 0x84; 1943 via_reg(VIA1, vIFR) = 0x04; 1944 #ifdef __notyet__ 1945 adbActionState = ADB_ACTION_RUNNING; 1946 #endif 1947 break; 1948 1949 case ADB_HW_IISI: 1950 via1_register_irq(2, adb_intr_IIsi, NULL); 1951 via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5: 1952 * outputs */ 1953 via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */ 1954 via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set 1955 * to IN (II, IIsi) */ 1956 adbActionState = ADB_ACTION_IDLE; /* used by all types of 1957 * hardware (II, IIsi) */ 1958 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series 1959 * code only */ 1960 via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts 1961 * are on (II, IIsi) */ 1962 ADB_SET_STATE_IDLE_IISI(); /* set ADB bus state to idle */ 1963 1964 /* get those pesky clock ticks we missed while booting */ 1965 for (i = 0; i < 30; i++) { 1966 delay(ADB_DELAY); 1967 adb_hw_setup_IIsi(send_string); 1968 #ifdef ADB_DEBUG 1969 if (adb_debug) { 1970 printf_intr("adb: cleanup: "); 1971 print_single(send_string); 1972 } 1973 #endif 1974 delay(ADB_DELAY); 1975 if (ADB_INTR_IS_OFF) 1976 break; 1977 } 1978 break; 1979 1980 case ADB_HW_PB: 1981 /* 1982 * XXX - really PM_VIA_CLR_INTR - should we put it in 1983 * pm_direct.h? 1984 */ 1985 pm_hw_setup(); 1986 break; 1987 1988 case ADB_HW_CUDA: 1989 via1_register_irq(2, adb_intr_cuda, NULL); 1990 via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5: 1991 * outputs */ 1992 via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */ 1993 via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set 1994 * to IN */ 1995 via_reg(VIA1, vACR) = (via_reg(VIA1, vACR) | 0x0c) & ~0x10; 1996 adbActionState = ADB_ACTION_IDLE; /* used by all types of 1997 * hardware */ 1998 adbBusState = ADB_BUS_IDLE; /* this var. used in II-series 1999 * code only */ 2000 via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts 2001 * are on */ 2002 ADB_SET_STATE_IDLE_CUDA(); /* set ADB bus state to idle */ 2003 2004 /* sort of a device reset */ 2005 i = ADB_SR(); /* clear interrupt */ 2006 ADB_VIA_INTR_DISABLE(); /* no interrupts while clearing */ 2007 ADB_SET_STATE_IDLE_CUDA(); /* reset state to idle */ 2008 delay(ADB_DELAY); 2009 ADB_SET_STATE_TIP(); /* signal start of frame */ 2010 delay(ADB_DELAY); 2011 ADB_TOGGLE_STATE_ACK_CUDA(); 2012 delay(ADB_DELAY); 2013 ADB_CLR_STATE_TIP(); 2014 delay(ADB_DELAY); 2015 ADB_SET_STATE_IDLE_CUDA(); /* back to idle state */ 2016 i = ADB_SR(); /* clear interrupt */ 2017 ADB_VIA_INTR_ENABLE(); /* ints ok now */ 2018 break; 2019 2020 case ADB_HW_UNKNOWN: 2021 default: 2022 via_reg(VIA1, vIER) = 0x04; /* turn interrupts off - TO 2023 * DO: turn PB ints off? */ 2024 return; 2025 break; 2026 } 2027 } 2028 2029 2030 /* 2031 * adb_hw_setup_IIsi 2032 * This is sort of a "read" routine that forces the adb hardware through a read cycle 2033 * if there is something waiting. This helps "clean up" any commands that may have gotten 2034 * stuck or stopped during the boot process. 2035 * 2036 */ 2037 void 2038 adb_hw_setup_IIsi(u_char * buffer) 2039 { 2040 int i; 2041 int dummy; 2042 int s; 2043 long my_time; 2044 int endofframe; 2045 2046 delay(ADB_DELAY); 2047 2048 i = 1; /* skip over [0] */ 2049 s = splhigh(); /* block ALL interrupts while we are working */ 2050 ADB_SET_SR_INPUT(); /* make sure SR is set to IN */ 2051 ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */ 2052 /* this is required, especially on faster machines */ 2053 delay(ADB_DELAY); 2054 2055 if (ADB_INTR_IS_ON) { 2056 ADB_SET_STATE_ACTIVE(); /* signal start of data frame */ 2057 2058 endofframe = 0; 2059 while (0 == endofframe) { 2060 /* 2061 * Poll for ADB interrupt and watch for timeout. 2062 * If time out, keep going in hopes of not hanging 2063 * the ADB chip - I think 2064 */ 2065 my_time = ADB_DELAY * 5; 2066 while ((ADB_SR_INTR_IS_OFF) && (my_time-- > 0)) 2067 dummy = via_reg(VIA1, vBufB); 2068 2069 buffer[i++] = ADB_SR(); /* reset interrupt flag by 2070 * reading vSR */ 2071 /* 2072 * Perhaps put in a check here that ignores all data 2073 * after the first ADB_MAX_MSG_LENGTH bytes ??? 2074 */ 2075 if (ADB_INTR_IS_OFF) /* check for end of frame */ 2076 endofframe = 1; 2077 2078 ADB_SET_STATE_ACKON(); /* send ACK to ADB chip */ 2079 delay(ADB_DELAY); /* delay */ 2080 ADB_SET_STATE_ACKOFF(); /* send ACK to ADB chip */ 2081 } 2082 ADB_SET_STATE_INACTIVE(); /* signal end of frame and 2083 * delay */ 2084 2085 /* probably don't need to delay this long */ 2086 delay(ADB_DELAY); 2087 } 2088 buffer[0] = --i; /* [0] is length of message */ 2089 ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */ 2090 splx(s); /* restore interrupts */ 2091 2092 return; 2093 } /* adb_hw_setup_IIsi */ 2094 2095 2096 2097 /* 2098 * adb_reinit sets up the adb stuff 2099 * 2100 */ 2101 void 2102 adb_reinit(void) 2103 { 2104 u_char send_string[ADB_MAX_MSG_LENGTH]; 2105 ADBDataBlock data; /* temp. holder for getting device info */ 2106 volatile int i, x; 2107 int s; 2108 int command; 2109 int result; 2110 int saveptr; /* point to next free relocation address */ 2111 int device; 2112 int nonewtimes; /* times thru loop w/o any new devices */ 2113 2114 adb_setup_hw_type(); /* setup hardware type */ 2115 2116 /* Make sure we are not interrupted while building the table. */ 2117 /* ints must be on for PB & IOP (at least, for now) */ 2118 if (adbHardware != ADB_HW_PB && adbHardware != ADB_HW_IOP) 2119 s = splhigh(); 2120 else 2121 s = 0; /* XXX shut the compiler up*/ 2122 2123 ADBNumDevices = 0; /* no devices yet */ 2124 2125 /* Let intr routines know we are running reinit */ 2126 adbStarting = 1; 2127 2128 /* 2129 * Initialize the ADB table. For now, we'll always use the same table 2130 * that is defined at the beginning of this file - no mallocs. 2131 */ 2132 for (i = 0; i < 16; i++) { 2133 ADBDevTable[i].devType = 0; 2134 ADBDevTable[i].origAddr = ADBDevTable[i].currentAddr = 0; 2135 } 2136 2137 adb_hw_setup(); /* init the VIA bits and hard reset ADB */ 2138 2139 delay(1000); 2140 2141 /* send an ADB reset first */ 2142 (void)adb_op_sync((Ptr)0, (Ptr)0, (Ptr)0, (short)0x00); 2143 delay(3000); 2144 2145 /* 2146 * Probe for ADB devices. Probe devices 1-15 quickly to determine 2147 * which device addresses are in use and which are free. For each 2148 * address that is in use, move the device at that address to a higher 2149 * free address. Continue doing this at that address until no device 2150 * responds at that address. Then move the last device that was moved 2151 * back to the original address. Do this for the remaining addresses 2152 * that we determined were in use. 2153 * 2154 * When finished, do this entire process over again with the updated 2155 * list of in use addresses. Do this until no new devices have been 2156 * found in 20 passes though the in use address list. (This probably 2157 * seems long and complicated, but it's the best way to detect multiple 2158 * devices at the same address - sometimes it takes a couple of tries 2159 * before the collision is detected.) 2160 */ 2161 2162 /* initial scan through the devices */ 2163 for (i = 1; i < 16; i++) { 2164 command = ADBTALK(i, 3); 2165 result = adb_op_sync((Ptr)send_string, (Ptr)0, 2166 (Ptr)0, (short)command); 2167 2168 if (result == 0 && send_string[0] != 0) { 2169 /* found a device */ 2170 ++ADBNumDevices; 2171 KASSERT(ADBNumDevices < 16); 2172 ADBDevTable[ADBNumDevices].devType = 2173 (int)(send_string[2]); 2174 ADBDevTable[ADBNumDevices].origAddr = i; 2175 ADBDevTable[ADBNumDevices].currentAddr = i; 2176 ADBDevTable[ADBNumDevices].DataAreaAddr = 2177 (long)0; 2178 ADBDevTable[ADBNumDevices].ServiceRtPtr = (void *)0; 2179 pm_check_adb_devices(i); /* tell pm driver device 2180 * is here */ 2181 } 2182 } 2183 2184 /* find highest unused address */ 2185 for (saveptr = 15; saveptr > 0; saveptr--) 2186 if (-1 == get_adb_info(&data, saveptr)) 2187 break; 2188 2189 #ifdef ADB_DEBUG 2190 if (adb_debug & 0x80) { 2191 printf_intr("first free is: 0x%02x\n", saveptr); 2192 printf_intr("devices: %i\n", ADBNumDevices); 2193 } 2194 #endif 2195 2196 nonewtimes = 0; /* no loops w/o new devices */ 2197 while (saveptr > 0 && nonewtimes++ < 11) { 2198 for (i = 1;saveptr > 0 && i <= ADBNumDevices; i++) { 2199 device = ADBDevTable[i].currentAddr; 2200 #ifdef ADB_DEBUG 2201 if (adb_debug & 0x80) 2202 printf_intr("moving device 0x%02x to 0x%02x " 2203 "(index 0x%02x) ", device, saveptr, i); 2204 #endif 2205 2206 /* send TALK R3 to address */ 2207 command = ADBTALK(device, 3); 2208 (void)adb_op_sync((Ptr)send_string, (Ptr)0, 2209 (Ptr)0, (short)command); 2210 2211 /* move device to higher address */ 2212 command = ADBLISTEN(device, 3); 2213 send_string[0] = 2; 2214 send_string[1] = (u_char)(saveptr | 0x60); 2215 send_string[2] = 0xfe; 2216 (void)adb_op_sync((Ptr)send_string, (Ptr)0, 2217 (Ptr)0, (short)command); 2218 delay(1000); 2219 2220 /* send TALK R3 - anthing at new address? */ 2221 command = ADBTALK(saveptr, 3); 2222 send_string[0] = 0; 2223 result = adb_op_sync((Ptr)send_string, (Ptr)0, 2224 (Ptr)0, (short)command); 2225 delay(1000); 2226 2227 if (result != 0 || send_string[0] == 0) { 2228 /* 2229 * maybe there's a communication breakdown; 2230 * just in case, move it back from whence it 2231 * came, and we'll try again later 2232 */ 2233 command = ADBLISTEN(saveptr, 3); 2234 send_string[0] = 2; 2235 send_string[1] = (u_char)(device | 0x60); 2236 send_string[2] = 0x00; 2237 (void)adb_op_sync((Ptr)send_string, (Ptr)0, 2238 (Ptr)0, (short)command); 2239 #ifdef ADB_DEBUG 2240 if (adb_debug & 0x80) 2241 printf_intr("failed, continuing\n"); 2242 #endif 2243 delay(1000); 2244 continue; 2245 } 2246 2247 /* send TALK R3 - anything at old address? */ 2248 command = ADBTALK(device, 3); 2249 send_string[0] = 0; 2250 result = adb_op_sync((Ptr)send_string, (Ptr)0, 2251 (Ptr)0, (short)command); 2252 if (result == 0 && send_string[0] != 0) { 2253 /* new device found */ 2254 /* update data for previously moved device */ 2255 ADBDevTable[i].currentAddr = saveptr; 2256 #ifdef ADB_DEBUG 2257 if (adb_debug & 0x80) 2258 printf_intr("old device at index %i\n",i); 2259 #endif 2260 /* add new device in table */ 2261 #ifdef ADB_DEBUG 2262 if (adb_debug & 0x80) 2263 printf_intr("new device found\n"); 2264 #endif 2265 if (saveptr > ADBNumDevices) { 2266 ++ADBNumDevices; 2267 KASSERT(ADBNumDevices < 16); 2268 } 2269 ADBDevTable[ADBNumDevices].devType = 2270 (int)(send_string[2]); 2271 ADBDevTable[ADBNumDevices].origAddr = device; 2272 ADBDevTable[ADBNumDevices].currentAddr = device; 2273 /* These will be set correctly in adbsys.c */ 2274 /* Until then, unsol. data will be ignored. */ 2275 ADBDevTable[ADBNumDevices].DataAreaAddr = 2276 (long)0; 2277 ADBDevTable[ADBNumDevices].ServiceRtPtr = 2278 (void *)0; 2279 /* find next unused address */ 2280 for (x = saveptr; x > 0; x--) { 2281 if (-1 == get_adb_info(&data, x)) { 2282 saveptr = x; 2283 break; 2284 } 2285 } 2286 if (x == 0) 2287 saveptr = 0; 2288 #ifdef ADB_DEBUG 2289 if (adb_debug & 0x80) 2290 printf_intr("new free is 0x%02x\n", 2291 saveptr); 2292 #endif 2293 nonewtimes = 0; 2294 /* tell pm driver device is here */ 2295 pm_check_adb_devices(device); 2296 } else { 2297 #ifdef ADB_DEBUG 2298 if (adb_debug & 0x80) 2299 printf_intr("moving back...\n"); 2300 #endif 2301 /* move old device back */ 2302 command = ADBLISTEN(saveptr, 3); 2303 send_string[0] = 2; 2304 send_string[1] = (u_char)(device | 0x60); 2305 send_string[2] = 0xfe; 2306 (void)adb_op_sync((Ptr)send_string, (Ptr)0, 2307 (Ptr)0, (short)command); 2308 delay(1000); 2309 } 2310 } 2311 } 2312 2313 #ifdef ADB_DEBUG 2314 if (adb_debug) { 2315 for (i = 1; i <= ADBNumDevices; i++) { 2316 x = get_ind_adb_info(&data, i); 2317 if (x != -1) 2318 printf_intr("index 0x%x, addr 0x%x, type 0x%hx\n", 2319 i, x, data.devType); 2320 } 2321 } 2322 #endif 2323 2324 #ifndef MRG_ADB 2325 /* enable the programmer's switch, if we have one */ 2326 adb_prog_switch_enable(); 2327 #endif 2328 2329 #ifdef ADB_DEBUG 2330 if (adb_debug) { 2331 if (0 == ADBNumDevices) /* tell user if no devices found */ 2332 printf_intr("adb: no devices found\n"); 2333 } 2334 #endif 2335 2336 adbStarting = 0; /* not starting anymore */ 2337 #ifdef ADB_DEBUG 2338 if (adb_debug) 2339 printf_intr("adb: ADBReInit complete\n"); 2340 #endif 2341 2342 if (adbHardware == ADB_HW_CUDA) 2343 callout_reset(&adb_cuda_tickle_ch, ADB_TICKLE_TICKS, 2344 (void *)adb_cuda_tickle, NULL); 2345 2346 /* ints must be on for PB & IOP (at least, for now) */ 2347 if (adbHardware != ADB_HW_PB && adbHardware != ADB_HW_IOP) 2348 splx(s); 2349 2350 return; 2351 } 2352 2353 2354 /* 2355 * adb_comp_exec 2356 * This is a general routine that calls the completion routine if there is one. 2357 * NOTE: This routine is now only used by pm_direct.c 2358 * All the code in this file (adb_direct.c) uses 2359 * the adb_pass_up routine now. 2360 */ 2361 void 2362 adb_comp_exec(void) 2363 { 2364 if ((long)0 != adbCompRout) /* don't call if empty return location */ 2365 #ifdef __NetBSD__ 2366 __asm __volatile( 2367 " movml #0xffff,%%sp@- \n" /* save all registers */ 2368 " movl %0,%%a2 \n" /* adbCompData */ 2369 " movl %1,%%a1 \n" /* adbCompRout */ 2370 " movl %2,%%a0 \n" /* adbBuffer */ 2371 " movl %3,%%d0 \n" /* adbWaitingCmd */ 2372 " jbsr %%a1@ \n" /* go call the routine */ 2373 " movml %%sp@+,#0xffff" /* restore all registers */ 2374 : 2375 : "g"(adbCompData), "g"(adbCompRout), 2376 "g"(adbBuffer), "g"(adbWaitingCmd) 2377 : "d0", "a0", "a1", "a2"); 2378 #else /* for Mac OS-based testing */ 2379 asm { 2380 movem.l a0/a1/a2/d0, -(a7) 2381 move.l adbCompData, a2 2382 move.l adbCompRout, a1 2383 move.l adbBuffer, a0 2384 move.w adbWaitingCmd, d0 2385 jsr(a1) 2386 movem.l(a7) +, d0/a2/a1/a0 2387 } 2388 #endif 2389 } 2390 2391 2392 /* 2393 * adb_cmd_result 2394 * 2395 * This routine lets the caller know whether the specified adb command string 2396 * should expect a returned result, such as a TALK command. 2397 * 2398 * returns: 0 if a result should be expected 2399 * 1 if a result should NOT be expected 2400 */ 2401 int 2402 adb_cmd_result(u_char *in) 2403 { 2404 switch (adbHardware) { 2405 case ADB_HW_IOP: 2406 case ADB_HW_II: 2407 /* was it an ADB talk command? */ 2408 if ((in[1] & 0x0c) == 0x0c) 2409 return 0; 2410 return 1; 2411 2412 case ADB_HW_IISI: 2413 case ADB_HW_CUDA: 2414 /* was it an ADB talk command? */ 2415 if ((in[1] == 0x00) && ((in[2] & 0x0c) == 0x0c)) 2416 return 0; 2417 /* was it an RTC/PRAM read date/time? */ 2418 if ((in[1] == 0x01) && (in[2] == 0x03)) 2419 return 0; 2420 return 1; 2421 2422 case ADB_HW_PB: 2423 return 1; 2424 2425 case ADB_HW_UNKNOWN: 2426 default: 2427 return 1; 2428 } 2429 } 2430 2431 2432 /* 2433 * adb_cmd_extra 2434 * 2435 * This routine lets the caller know whether the specified adb command string 2436 * may have extra data appended to the end of it, such as a LISTEN command. 2437 * 2438 * returns: 0 if extra data is allowed 2439 * 1 if extra data is NOT allowed 2440 */ 2441 int 2442 adb_cmd_extra(u_char *in) 2443 { 2444 switch (adbHardware) { 2445 case ADB_HW_II: 2446 case ADB_HW_IOP: 2447 if ((in[1] & 0x0c) == 0x08) /* was it a listen command? */ 2448 return 0; 2449 return 1; 2450 2451 case ADB_HW_IISI: 2452 case ADB_HW_CUDA: 2453 /* 2454 * TO DO: support needs to be added to recognize RTC and PRAM 2455 * commands 2456 */ 2457 if ((in[2] & 0x0c) == 0x08) /* was it a listen command? */ 2458 return 0; 2459 /* add others later */ 2460 return 1; 2461 2462 case ADB_HW_PB: 2463 return 1; 2464 2465 case ADB_HW_UNKNOWN: 2466 default: 2467 return 1; 2468 } 2469 } 2470 2471 2472 void 2473 adb_setup_hw_type(void) 2474 { 2475 long response; 2476 2477 response = mac68k_machine.machineid; 2478 2479 /* 2480 * Determine what type of ADB hardware we are running on. 2481 */ 2482 switch (response) { 2483 case MACH_MACC610: /* Centris 610 */ 2484 case MACH_MACC650: /* Centris 650 */ 2485 case MACH_MACII: /* II */ 2486 case MACH_MACIICI: /* IIci */ 2487 case MACH_MACIICX: /* IIcx */ 2488 case MACH_MACIIX: /* IIx */ 2489 case MACH_MACQ610: /* Quadra 610 */ 2490 case MACH_MACQ650: /* Quadra 650 */ 2491 case MACH_MACQ700: /* Quadra 700 */ 2492 case MACH_MACQ800: /* Quadra 800 */ 2493 case MACH_MACSE30: /* SE/30 */ 2494 adbHardware = ADB_HW_II; 2495 #ifdef ADB_DEBUG 2496 if (adb_debug) 2497 printf_intr("adb: using II series hardware support\n"); 2498 #endif 2499 break; 2500 2501 case MACH_MACCLASSICII: /* Classic II */ 2502 case MACH_MACLCII: /* LC II, Performa 400/405/430 */ 2503 case MACH_MACLCIII: /* LC III, Performa 450 */ 2504 case MACH_MACIISI: /* IIsi */ 2505 case MACH_MACIIVI: /* IIvi */ 2506 case MACH_MACIIVX: /* IIvx */ 2507 case MACH_MACP460: /* Performa 460/465/467 */ 2508 case MACH_MACP600: /* Performa 600 */ 2509 adbHardware = ADB_HW_IISI; 2510 #ifdef ADB_DEBUG 2511 if (adb_debug) 2512 printf_intr("adb: using IIsi series hardware support\n"); 2513 #endif 2514 break; 2515 2516 case MACH_MACPB140: /* PowerBook 140 */ 2517 case MACH_MACPB145: /* PowerBook 145 */ 2518 case MACH_MACPB160: /* PowerBook 160 */ 2519 case MACH_MACPB165: /* PowerBook 165 */ 2520 case MACH_MACPB165C: /* PowerBook 165c */ 2521 case MACH_MACPB170: /* PowerBook 170 */ 2522 case MACH_MACPB180: /* PowerBook 180 */ 2523 case MACH_MACPB180C: /* PowerBook 180c */ 2524 adbHardware = ADB_HW_PB; 2525 pm_setup_adb(); 2526 #ifdef ADB_DEBUG 2527 if (adb_debug) 2528 printf_intr("adb: using PowerBook 100-series hardware support\n"); 2529 #endif 2530 break; 2531 2532 case MACH_MACPB150: /* PowerBook 150 */ 2533 case MACH_MACPB210: /* PowerBook Duo 210 */ 2534 case MACH_MACPB230: /* PowerBook Duo 230 */ 2535 case MACH_MACPB250: /* PowerBook Duo 250 */ 2536 case MACH_MACPB270: /* PowerBook Duo 270 */ 2537 case MACH_MACPB280: /* PowerBook Duo 280 */ 2538 case MACH_MACPB280C: /* PowerBook Duo 280c */ 2539 case MACH_MACPB500: /* PowerBook 500 series */ 2540 case MACH_MACPB190: /* PowerBook 190 */ 2541 case MACH_MACPB190CS: /* PowerBook 190cs */ 2542 adbHardware = ADB_HW_PB; 2543 pm_setup_adb(); 2544 #ifdef ADB_DEBUG 2545 if (adb_debug) 2546 printf_intr("adb: using PowerBook Duo-series and PowerBook 500-series hardware support\n"); 2547 #endif 2548 break; 2549 2550 case MACH_MACC660AV: /* Centris 660AV */ 2551 case MACH_MACCCLASSIC: /* Color Classic */ 2552 case MACH_MACCCLASSICII: /* Color Classic II */ 2553 case MACH_MACLC475: /* LC 475, Performa 475/476 */ 2554 case MACH_MACLC475_33: /* Clock-chipped 47x */ 2555 case MACH_MACLC520: /* LC 520 */ 2556 case MACH_MACLC575: /* LC 575, Performa 575/577/578 */ 2557 case MACH_MACP550: /* LC 550, Performa 550 */ 2558 case MACH_MACTV: /* Macintosh TV */ 2559 case MACH_MACP580: /* Performa 580/588 */ 2560 case MACH_MACQ605: /* Quadra 605 */ 2561 case MACH_MACQ605_33: /* Clock-chipped Quadra 605 */ 2562 case MACH_MACQ630: /* LC 630, Performa 630, Quadra 630 */ 2563 case MACH_MACQ840AV: /* Quadra 840AV */ 2564 adbHardware = ADB_HW_CUDA; 2565 #ifdef ADB_DEBUG 2566 if (adb_debug) 2567 printf_intr("adb: using Cuda series hardware support\n"); 2568 #endif 2569 break; 2570 2571 case MACH_MACQ900: /* Quadra 900 */ 2572 case MACH_MACQ950: /* Quadra 950 */ 2573 case MACH_MACIIFX: /* Mac IIfx */ 2574 adbHardware = ADB_HW_IOP; 2575 iop_register_listener(ISM_IOP, IOP_CHAN_ADB, adb_iop_recv, NULL); 2576 #ifdef ADB_DEBUG 2577 if (adb_debug) 2578 printf_intr("adb: using IOP-based ADB\n"); 2579 #endif 2580 break; 2581 2582 default: 2583 adbHardware = ADB_HW_UNKNOWN; 2584 #ifdef ADB_DEBUG 2585 if (adb_debug) { 2586 printf_intr("adb: hardware type unknown for this machine\n"); 2587 printf_intr("adb: ADB support is disabled\n"); 2588 } 2589 #endif 2590 break; 2591 } 2592 2593 /* 2594 * Determine whether this machine has ADB based soft power. 2595 */ 2596 switch (response) { 2597 case MACH_MACCCLASSIC: /* Color Classic */ 2598 case MACH_MACCCLASSICII: /* Color Classic II */ 2599 case MACH_MACIISI: /* IIsi */ 2600 case MACH_MACIIVI: /* IIvi */ 2601 case MACH_MACIIVX: /* IIvx */ 2602 case MACH_MACLC520: /* LC 520 */ 2603 case MACH_MACLC575: /* LC 575, Performa 575/577/578 */ 2604 case MACH_MACP550: /* LC 550, Performa 550 */ 2605 case MACH_MACTV: /* Macintosh TV */ 2606 case MACH_MACP580: /* Performa 580/588 */ 2607 case MACH_MACP600: /* Performa 600 */ 2608 case MACH_MACQ630: /* LC 630, Performa 630, Quadra 630 */ 2609 case MACH_MACQ840AV: /* Quadra 840AV */ 2610 adbSoftPower = 1; 2611 break; 2612 } 2613 } 2614 2615 int 2616 count_adbs(void) 2617 { 2618 int i; 2619 int found; 2620 2621 found = 0; 2622 2623 for (i = 1; i < 16; i++) 2624 if (0 != ADBDevTable[i].currentAddr) 2625 found++; 2626 2627 return found; 2628 } 2629 2630 int 2631 get_ind_adb_info(ADBDataBlock * info, int index) 2632 { 2633 if ((index < 1) || (index > 15)) /* check range 1-15 */ 2634 return (-1); 2635 2636 #ifdef ADB_DEBUG 2637 if (adb_debug & 0x80) 2638 printf_intr("index 0x%x devType is: 0x%x\n", index, 2639 ADBDevTable[index].devType); 2640 #endif 2641 if (0 == ADBDevTable[index].devType) /* make sure it's a valid entry */ 2642 return (-1); 2643 2644 info->devType = (unsigned char)(ADBDevTable[index].devType); 2645 info->origADBAddr = (unsigned char)(ADBDevTable[index].origAddr); 2646 info->dbServiceRtPtr = (Ptr)ADBDevTable[index].ServiceRtPtr; 2647 info->dbDataAreaAddr = (Ptr)ADBDevTable[index].DataAreaAddr; 2648 2649 return (ADBDevTable[index].currentAddr); 2650 } 2651 2652 int 2653 get_adb_info(ADBDataBlock * info, int adbAddr) 2654 { 2655 int i; 2656 2657 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */ 2658 return (-1); 2659 2660 for (i = 1; i < 15; i++) 2661 if (ADBDevTable[i].currentAddr == adbAddr) { 2662 info->devType = (unsigned char)(ADBDevTable[i].devType); 2663 info->origADBAddr = (unsigned char)(ADBDevTable[i].origAddr); 2664 info->dbServiceRtPtr = (Ptr)ADBDevTable[i].ServiceRtPtr; 2665 info->dbDataAreaAddr = ADBDevTable[i].DataAreaAddr; 2666 return 0; /* found */ 2667 } 2668 2669 return (-1); /* not found */ 2670 } 2671 2672 int 2673 set_adb_info(ADBSetInfoBlock * info, int adbAddr) 2674 { 2675 int i; 2676 2677 if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */ 2678 return (-1); 2679 2680 for (i = 1; i < 15; i++) 2681 if (ADBDevTable[i].currentAddr == adbAddr) { 2682 ADBDevTable[i].ServiceRtPtr = 2683 (void *)(info->siServiceRtPtr); 2684 ADBDevTable[i].DataAreaAddr = info->siDataAreaAddr; 2685 return 0; /* found */ 2686 } 2687 2688 return (-1); /* not found */ 2689 2690 } 2691 2692 #ifndef MRG_ADB 2693 long 2694 mrg_adbintr(void) 2695 { 2696 adb_intr(NULL); 2697 return 1; /* mimic mrg_adbintr in macrom.h just in case */ 2698 } 2699 2700 long 2701 mrg_pmintr(void) 2702 { 2703 pm_intr(NULL); 2704 return 1; /* mimic mrg_pmintr in macrom.h just in case */ 2705 } 2706 2707 /* caller should really use machine-independant version: getPramTime */ 2708 /* this version does pseudo-adb access only */ 2709 int 2710 adb_read_date_time(unsigned long *time) 2711 { 2712 u_char output[ADB_MAX_MSG_LENGTH]; 2713 int result; 2714 volatile int flag = 0; 2715 2716 switch (adbHardware) { 2717 case ADB_HW_II: 2718 return -1; 2719 2720 case ADB_HW_IOP: 2721 return -1; 2722 2723 case ADB_HW_IISI: 2724 output[0] = 0x02; /* 2 byte message */ 2725 output[1] = 0x01; /* to pram/rtc device */ 2726 output[2] = 0x03; /* read date/time */ 2727 result = send_adb_IIsi((u_char *)output, (u_char *)output, 2728 (void *)adb_op_comprout, (int *)&flag, (int)0); 2729 if (result != 0) /* exit if not sent */ 2730 return -1; 2731 2732 while (0 == flag) /* wait for result */ 2733 ; 2734 2735 *time = (long)(*(long *)(output + 1)); 2736 return 0; 2737 2738 case ADB_HW_PB: 2739 return -1; 2740 2741 case ADB_HW_CUDA: 2742 output[0] = 0x02; /* 2 byte message */ 2743 output[1] = 0x01; /* to pram/rtc device */ 2744 output[2] = 0x03; /* read date/time */ 2745 result = send_adb_cuda((u_char *)output, (u_char *)output, 2746 (void *)adb_op_comprout, (void *)&flag, (int)0); 2747 if (result != 0) /* exit if not sent */ 2748 return -1; 2749 2750 while (0 == flag) /* wait for result */ 2751 ; 2752 2753 *time = (long)(*(long *)(output + 1)); 2754 return 0; 2755 2756 case ADB_HW_UNKNOWN: 2757 default: 2758 return -1; 2759 } 2760 } 2761 2762 /* caller should really use machine-independant version: setPramTime */ 2763 /* this version does pseudo-adb access only */ 2764 int 2765 adb_set_date_time(unsigned long time) 2766 { 2767 u_char output[ADB_MAX_MSG_LENGTH]; 2768 int result; 2769 volatile int flag = 0; 2770 2771 switch (adbHardware) { 2772 case ADB_HW_II: 2773 return -1; 2774 2775 case ADB_HW_IOP: 2776 return -1; 2777 2778 case ADB_HW_IISI: 2779 output[0] = 0x06; /* 6 byte message */ 2780 output[1] = 0x01; /* to pram/rtc device */ 2781 output[2] = 0x09; /* set date/time */ 2782 output[3] = (u_char)(time >> 24); 2783 output[4] = (u_char)(time >> 16); 2784 output[5] = (u_char)(time >> 8); 2785 output[6] = (u_char)(time); 2786 result = send_adb_IIsi((u_char *)output, (u_char *)0, 2787 (void *)adb_op_comprout, (void *)&flag, (int)0); 2788 if (result != 0) /* exit if not sent */ 2789 return -1; 2790 2791 while (0 == flag) /* wait for send to finish */ 2792 ; 2793 2794 return 0; 2795 2796 case ADB_HW_PB: 2797 return -1; 2798 2799 case ADB_HW_CUDA: 2800 output[0] = 0x06; /* 6 byte message */ 2801 output[1] = 0x01; /* to pram/rtc device */ 2802 output[2] = 0x09; /* set date/time */ 2803 output[3] = (u_char)(time >> 24); 2804 output[4] = (u_char)(time >> 16); 2805 output[5] = (u_char)(time >> 8); 2806 output[6] = (u_char)(time); 2807 result = send_adb_cuda((u_char *)output, (u_char *)0, 2808 (void *)adb_op_comprout, (void *)&flag, (int)0); 2809 if (result != 0) /* exit if not sent */ 2810 return -1; 2811 2812 while (0 == flag) /* wait for send to finish */ 2813 ; 2814 2815 return 0; 2816 2817 case ADB_HW_UNKNOWN: 2818 default: 2819 return -1; 2820 } 2821 } 2822 2823 2824 int 2825 adb_poweroff(void) 2826 { 2827 u_char output[ADB_MAX_MSG_LENGTH]; 2828 int result; 2829 2830 if (!adbSoftPower) 2831 return -1; 2832 2833 adb_polling = 1; 2834 2835 switch (adbHardware) { 2836 case ADB_HW_IISI: 2837 output[0] = 0x02; /* 2 byte message */ 2838 output[1] = 0x01; /* to pram/rtc/soft-power device */ 2839 output[2] = 0x0a; /* set date/time */ 2840 result = send_adb_IIsi((u_char *)output, (u_char *)0, 2841 (void *)0, (void *)0, (int)0); 2842 if (result != 0) /* exit if not sent */ 2843 return -1; 2844 2845 for (;;); /* wait for power off */ 2846 2847 return 0; 2848 2849 case ADB_HW_PB: 2850 return -1; 2851 2852 case ADB_HW_CUDA: 2853 output[0] = 0x02; /* 2 byte message */ 2854 output[1] = 0x01; /* to pram/rtc/soft-power device */ 2855 output[2] = 0x0a; /* set date/time */ 2856 result = send_adb_cuda((u_char *)output, (u_char *)0, 2857 (void *)0, (void *)0, (int)0); 2858 if (result != 0) /* exit if not sent */ 2859 return -1; 2860 2861 for (;;); /* wait for power off */ 2862 2863 return 0; 2864 2865 case ADB_HW_II: /* II models don't do ADB soft power */ 2866 case ADB_HW_IOP: /* IOP models don't do ADB soft power */ 2867 case ADB_HW_UNKNOWN: 2868 default: 2869 return -1; 2870 } 2871 } 2872 2873 int 2874 adb_prog_switch_enable(void) 2875 { 2876 u_char output[ADB_MAX_MSG_LENGTH]; 2877 int result; 2878 volatile int flag = 0; 2879 2880 switch (adbHardware) { 2881 case ADB_HW_IISI: 2882 output[0] = 0x03; /* 3 byte message */ 2883 output[1] = 0x01; /* to pram/rtc/soft-power device */ 2884 output[2] = 0x1c; /* prog. switch control */ 2885 output[3] = 0x01; /* enable */ 2886 result = send_adb_IIsi((u_char *)output, (u_char *)0, 2887 (void *)adb_op_comprout, (void *)&flag, (int)0); 2888 if (result != 0) /* exit if not sent */ 2889 return -1; 2890 2891 while (0 == flag) /* wait for send to finish */ 2892 ; 2893 2894 return 0; 2895 2896 case ADB_HW_PB: 2897 return -1; 2898 2899 case ADB_HW_II: /* II models don't do prog. switch */ 2900 case ADB_HW_IOP: /* IOP models don't do prog. switch */ 2901 case ADB_HW_CUDA: /* cuda doesn't do prog. switch TO DO: verify this */ 2902 case ADB_HW_UNKNOWN: 2903 default: 2904 return -1; 2905 } 2906 } 2907 2908 int 2909 adb_prog_switch_disable(void) 2910 { 2911 u_char output[ADB_MAX_MSG_LENGTH]; 2912 int result; 2913 volatile int flag = 0; 2914 2915 switch (adbHardware) { 2916 case ADB_HW_IISI: 2917 output[0] = 0x03; /* 3 byte message */ 2918 output[1] = 0x01; /* to pram/rtc/soft-power device */ 2919 output[2] = 0x1c; /* prog. switch control */ 2920 output[3] = 0x01; /* disable */ 2921 result = send_adb_IIsi((u_char *)output, (u_char *)0, 2922 (void *)adb_op_comprout, (void *)&flag, (int)0); 2923 if (result != 0) /* exit if not sent */ 2924 return -1; 2925 2926 while (0 == flag) /* wait for send to finish */ 2927 ; 2928 2929 return 0; 2930 2931 case ADB_HW_PB: 2932 return -1; 2933 2934 case ADB_HW_II: /* II models don't do prog. switch */ 2935 case ADB_HW_IOP: /* IOP models don't do prog. switch */ 2936 case ADB_HW_CUDA: /* cuda doesn't do prog. switch */ 2937 case ADB_HW_UNKNOWN: 2938 default: 2939 return -1; 2940 } 2941 } 2942 2943 int 2944 CountADBs(void) 2945 { 2946 return (count_adbs()); 2947 } 2948 2949 void 2950 ADBReInit(void) 2951 { 2952 adb_reinit(); 2953 } 2954 2955 int 2956 GetIndADB(ADBDataBlock * info, int index) 2957 { 2958 return (get_ind_adb_info(info, index)); 2959 } 2960 2961 int 2962 GetADBInfo(ADBDataBlock * info, int adbAddr) 2963 { 2964 return (get_adb_info(info, adbAddr)); 2965 } 2966 2967 int 2968 SetADBInfo(ADBSetInfoBlock * info, int adbAddr) 2969 { 2970 return (set_adb_info(info, adbAddr)); 2971 } 2972 2973 int 2974 ADBOp(Ptr buffer, Ptr compRout, Ptr data, short commandNum) 2975 { 2976 return (adb_op(buffer, compRout, data, commandNum)); 2977 } 2978 2979 #endif 2980