1 /* $NetBSD: fpu_implode.c,v 1.11 2009/03/14 15:36:09 dsl Exp $ */ 2 3 /* 4 * Copyright (c) 1992, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This software was developed by the Computer Systems Engineering group 8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 9 * contributed to Berkeley. 10 * 11 * All advertising materials mentioning features or use of this software 12 * must display the following acknowledgement: 13 * This product includes software developed by the University of 14 * California, Lawrence Berkeley Laboratory. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 3. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * @(#)fpu_implode.c 8.1 (Berkeley) 6/11/93 41 */ 42 43 /* 44 * FPU subroutines: `implode' internal format numbers into the machine's 45 * `packed binary' format. 46 */ 47 48 #include <sys/cdefs.h> 49 __KERNEL_RCSID(0, "$NetBSD: fpu_implode.c,v 1.11 2009/03/14 15:36:09 dsl Exp $"); 50 51 #include <sys/types.h> 52 #include <sys/systm.h> 53 54 #include <machine/ieee.h> 55 #include <machine/reg.h> 56 57 #include "fpu_emulate.h" 58 #include "fpu_arith.h" 59 60 /* Conversion from internal format -- note asymmetry. */ 61 static u_int fpu_ftoi(struct fpemu *fe, struct fpn *fp); 62 static u_int fpu_ftos(struct fpemu *fe, struct fpn *fp); 63 static u_int fpu_ftod(struct fpemu *fe, struct fpn *fp, u_int *); 64 static u_int fpu_ftox(struct fpemu *fe, struct fpn *fp, u_int *); 65 66 /* 67 * Round a number (algorithm from Motorola MC68882 manual, modified for 68 * our internal format). Set inexact exception if rounding is required. 69 * Return true iff we rounded up. 70 * 71 * After rounding, we discard the guard and round bits by shifting right 72 * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky). 73 * This saves effort later. 74 * 75 * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's 76 * responsibility to fix this if necessary. 77 */ 78 int 79 fpu_round(register struct fpemu *fe, register struct fpn *fp) 80 { 81 register u_int m0, m1, m2; 82 register int gr, s; 83 84 m0 = fp->fp_mant[0]; 85 m1 = fp->fp_mant[1]; 86 m2 = fp->fp_mant[2]; 87 gr = m2 & 3; 88 s = fp->fp_sticky; 89 90 /* mant >>= FP_NG */ 91 m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG)); 92 m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG)); 93 m0 >>= FP_NG; 94 95 if ((gr | s) == 0) /* result is exact: no rounding needed */ 96 goto rounddown; 97 98 fe->fe_fpsr |= FPSR_INEX2; /* inexact */ 99 100 /* Go to rounddown to round down; break to round up. */ 101 switch (fe->fe_fpcr & FPCR_ROUND) { 102 103 case FPCR_NEAR: 104 default: 105 /* 106 * Round only if guard is set (gr & 2). If guard is set, 107 * but round & sticky both clear, then we want to round 108 * but have a tie, so round to even, i.e., add 1 iff odd. 109 */ 110 if ((gr & 2) == 0) 111 goto rounddown; 112 if ((gr & 1) || fp->fp_sticky || (m2 & 1)) 113 break; 114 goto rounddown; 115 116 case FPCR_ZERO: 117 /* Round towards zero, i.e., down. */ 118 goto rounddown; 119 120 case FPCR_MINF: 121 /* Round towards -Inf: up if negative, down if positive. */ 122 if (fp->fp_sign) 123 break; 124 goto rounddown; 125 126 case FPCR_PINF: 127 /* Round towards +Inf: up if positive, down otherwise. */ 128 if (!fp->fp_sign) 129 break; 130 goto rounddown; 131 } 132 133 /* Bump low bit of mantissa, with carry. */ 134 if (++m2 == 0 && ++m1 == 0) 135 m0++; 136 fp->fp_sticky = 0; 137 fp->fp_mant[0] = m0; 138 fp->fp_mant[1] = m1; 139 fp->fp_mant[2] = m2; 140 return (1); 141 142 rounddown: 143 fp->fp_sticky = 0; 144 fp->fp_mant[0] = m0; 145 fp->fp_mant[1] = m1; 146 fp->fp_mant[2] = m2; 147 return (0); 148 } 149 150 /* 151 * For overflow: return true if overflow is to go to +/-Inf, according 152 * to the sign of the overflowing result. If false, overflow is to go 153 * to the largest magnitude value instead. 154 */ 155 static int 156 toinf(struct fpemu *fe, int sign) 157 { 158 int inf; 159 160 /* look at rounding direction */ 161 switch (fe->fe_fpcr & FPCR_ROUND) { 162 163 default: 164 case FPCR_NEAR: /* the nearest value is always Inf */ 165 inf = 1; 166 break; 167 168 case FPCR_ZERO: /* toward 0 => never towards Inf */ 169 inf = 0; 170 break; 171 172 case FPCR_PINF: /* toward +Inf iff positive */ 173 inf = (sign == 0); 174 break; 175 176 case FPCR_MINF: /* toward -Inf iff negative */ 177 inf = sign; 178 break; 179 } 180 return (inf); 181 } 182 183 /* 184 * fpn -> int (int value returned as return value). 185 * 186 * N.B.: this conversion always rounds towards zero (this is a peculiarity 187 * of the SPARC instruction set). 188 */ 189 static u_int 190 fpu_ftoi(struct fpemu *fe, register struct fpn *fp) 191 { 192 register u_int i; 193 register int sign, exp; 194 195 sign = fp->fp_sign; 196 switch (fp->fp_class) { 197 198 case FPC_ZERO: 199 return (0); 200 201 case FPC_NUM: 202 /* 203 * If exp >= 2^32, overflow. Otherwise shift value right 204 * into last mantissa word (this will not exceed 0xffffffff), 205 * shifting any guard and round bits out into the sticky 206 * bit. Then ``round'' towards zero, i.e., just set an 207 * inexact exception if sticky is set (see fpu_round()). 208 * If the result is > 0x80000000, or is positive and equals 209 * 0x80000000, overflow; otherwise the last fraction word 210 * is the result. 211 */ 212 if ((exp = fp->fp_exp) >= 32) 213 break; 214 /* NB: the following includes exp < 0 cases */ 215 if (fpu_shr(fp, FP_NMANT - 1 - FP_NG - exp) != 0) 216 /* m68881/2 do not underflow when 217 converting to integer */; 218 fpu_round(fe, fp); 219 i = fp->fp_mant[2]; 220 if (i >= ((u_int)0x80000000 + sign)) 221 break; 222 return (sign ? -i : i); 223 224 default: /* Inf, qNaN, sNaN */ 225 break; 226 } 227 /* overflow: replace any inexact exception with invalid */ 228 fe->fe_fpsr = (fe->fe_fpsr & ~FPSR_INEX2) | FPSR_OPERR; 229 return (0x7fffffff + sign); 230 } 231 232 /* 233 * fpn -> single (32 bit single returned as return value). 234 * We assume <= 29 bits in a single-precision fraction (1.f part). 235 */ 236 static u_int 237 fpu_ftos(struct fpemu *fe, register struct fpn *fp) 238 { 239 register u_int sign = fp->fp_sign << 31; 240 register int exp; 241 242 #define SNG_EXP(e) ((e) << SNG_FRACBITS) /* makes e an exponent */ 243 #define SNG_MASK (SNG_EXP(1) - 1) /* mask for fraction */ 244 245 /* Take care of non-numbers first. */ 246 if (ISNAN(fp)) { 247 /* 248 * Preserve upper bits of NaN, per SPARC V8 appendix N. 249 * Note that fp->fp_mant[0] has the quiet bit set, 250 * even if it is classified as a signalling NaN. 251 */ 252 (void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS); 253 exp = SNG_EXP_INFNAN; 254 goto done; 255 } 256 if (ISINF(fp)) 257 return (sign | SNG_EXP(SNG_EXP_INFNAN)); 258 if (ISZERO(fp)) 259 return (sign); 260 261 /* 262 * Normals (including subnormals). Drop all the fraction bits 263 * (including the explicit ``implied'' 1 bit) down into the 264 * single-precision range. If the number is subnormal, move 265 * the ``implied'' 1 into the explicit range as well, and shift 266 * right to introduce leading zeroes. Rounding then acts 267 * differently for normals and subnormals: the largest subnormal 268 * may round to the smallest normal (1.0 x 2^minexp), or may 269 * remain subnormal. In the latter case, signal an underflow 270 * if the result was inexact or if underflow traps are enabled. 271 * 272 * Rounding a normal, on the other hand, always produces another 273 * normal (although either way the result might be too big for 274 * single precision, and cause an overflow). If rounding a 275 * normal produces 2.0 in the fraction, we need not adjust that 276 * fraction at all, since both 1.0 and 2.0 are zero under the 277 * fraction mask. 278 * 279 * Note that the guard and round bits vanish from the number after 280 * rounding. 281 */ 282 if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) { /* subnormal */ 283 fe->fe_fpsr |= FPSR_UNFL; 284 /* -NG for g,r; -SNG_FRACBITS-exp for fraction */ 285 (void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp); 286 if (fpu_round(fe, fp) && fp->fp_mant[2] == SNG_EXP(1)) 287 return (sign | SNG_EXP(1) | 0); 288 if (fe->fe_fpsr & FPSR_INEX2) 289 fe->fe_fpsr |= FPSR_UNFL 290 /* mc68881/2 don't underflow when converting */; 291 return (sign | SNG_EXP(0) | fp->fp_mant[2]); 292 } 293 /* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */ 294 (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS); 295 #ifdef DIAGNOSTIC 296 if ((fp->fp_mant[2] & SNG_EXP(1 << FP_NG)) == 0) 297 panic("fpu_ftos"); 298 #endif 299 if (fpu_round(fe, fp) && fp->fp_mant[2] == SNG_EXP(2)) 300 exp++; 301 if (exp >= SNG_EXP_INFNAN) { 302 /* overflow to inf or to max single */ 303 fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2 | FPSR_OVFL; 304 if (toinf(fe, sign)) 305 return (sign | SNG_EXP(SNG_EXP_INFNAN)); 306 return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK); 307 } 308 done: 309 /* phew, made it */ 310 return (sign | SNG_EXP(exp) | (fp->fp_mant[2] & SNG_MASK)); 311 } 312 313 /* 314 * fpn -> double (32 bit high-order result returned; 32-bit low order result 315 * left in res[1]). Assumes <= 61 bits in double precision fraction. 316 * 317 * This code mimics fpu_ftos; see it for comments. 318 */ 319 static u_int 320 fpu_ftod(struct fpemu *fe, register struct fpn *fp, u_int *res) 321 { 322 register u_int sign = fp->fp_sign << 31; 323 register int exp; 324 325 #define DBL_EXP(e) ((e) << (DBL_FRACBITS & 31)) 326 #define DBL_MASK (DBL_EXP(1) - 1) 327 328 if (ISNAN(fp)) { 329 (void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS); 330 exp = DBL_EXP_INFNAN; 331 goto done; 332 } 333 if (ISINF(fp)) { 334 sign |= DBL_EXP(DBL_EXP_INFNAN); 335 res[1] = 0; 336 return (sign); 337 } 338 if (ISZERO(fp)) { 339 res[1] = 0; 340 return (sign); 341 } 342 343 if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) { 344 fe->fe_fpsr |= FPSR_UNFL; 345 (void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp); 346 if (fpu_round(fe, fp) && fp->fp_mant[1] == DBL_EXP(1)) { 347 res[1] = 0; 348 return (sign | DBL_EXP(1) | 0); 349 } 350 if (fe->fe_fpsr & FPSR_INEX2) 351 fe->fe_fpsr |= FPSR_UNFL 352 /* mc68881/2 don't underflow when converting */; 353 exp = 0; 354 goto done; 355 } 356 (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS); 357 if (fpu_round(fe, fp) && fp->fp_mant[1] == DBL_EXP(2)) 358 exp++; 359 if (exp >= DBL_EXP_INFNAN) { 360 fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2 | FPSR_OVFL; 361 if (toinf(fe, sign)) { 362 res[1] = 0; 363 return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0); 364 } 365 res[1] = ~0; 366 return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK); 367 } 368 done: 369 res[1] = fp->fp_mant[2]; 370 return (sign | DBL_EXP(exp) | (fp->fp_mant[1] & DBL_MASK)); 371 } 372 373 /* 374 * fpn -> 68k extended (32 bit high-order result returned; two 32-bit low 375 * order result left in res[1] & res[2]). Assumes == 64 bits in extended 376 * precision fraction. 377 * 378 * This code mimics fpu_ftos; see it for comments. 379 */ 380 static u_int 381 fpu_ftox(struct fpemu *fe, register struct fpn *fp, u_int *res) 382 { 383 register u_int sign = fp->fp_sign << 31; 384 register int exp; 385 386 #define EXT_EXP(e) ((e) << 16) 387 /* 388 * on m68k extended prec, significand does not share the same long 389 * word with exponent 390 */ 391 #define EXT_MASK 0 392 #define EXT_EXPLICIT1 (1UL << (63 & 31)) 393 #define EXT_EXPLICIT2 (1UL << (64 & 31)) 394 395 if (ISNAN(fp)) { 396 (void) fpu_shr(fp, FP_NMANT - EXT_FRACBITS); 397 exp = EXT_EXP_INFNAN; 398 goto done; 399 } 400 if (ISINF(fp)) { 401 sign |= EXT_EXP(EXT_EXP_INFNAN); 402 res[1] = res[2] = 0; 403 return (sign); 404 } 405 if (ISZERO(fp)) { 406 res[1] = res[2] = 0; 407 return (sign); 408 } 409 410 if ((exp = fp->fp_exp + EXT_EXP_BIAS) < 0) { 411 fe->fe_fpsr |= FPSR_UNFL; 412 /* I'm not sure about this <=... exp==0 doesn't mean 413 it's a denormal in extended format */ 414 (void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS - exp); 415 if (fpu_round(fe, fp) && fp->fp_mant[1] == EXT_EXPLICIT1) { 416 res[1] = res[2] = 0; 417 return (sign | EXT_EXP(1) | 0); 418 } 419 if (fe->fe_fpsr & FPSR_INEX2) 420 fe->fe_fpsr |= FPSR_UNFL 421 /* mc68881/2 don't underflow */; 422 exp = 0; 423 goto done; 424 } 425 #if (FP_NMANT - FP_NG - EXT_FRACBITS) > 0 426 (void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS); 427 #endif 428 if (fpu_round(fe, fp) && fp->fp_mant[0] == EXT_EXPLICIT2) 429 exp++; 430 if (exp >= EXT_EXP_INFNAN) { 431 fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2 | FPSR_OVFL; 432 if (toinf(fe, sign)) { 433 res[1] = res[2] = 0; 434 return (sign | EXT_EXP(EXT_EXP_INFNAN) | 0); 435 } 436 res[1] = res[2] = ~0; 437 return (sign | EXT_EXP(EXT_EXP_INFNAN) | EXT_MASK); 438 } 439 done: 440 res[1] = fp->fp_mant[1]; 441 res[2] = fp->fp_mant[2]; 442 return (sign | EXT_EXP(exp)); 443 } 444 445 /* 446 * Implode an fpn, writing the result into the given space. 447 */ 448 void 449 fpu_implode(struct fpemu *fe, register struct fpn *fp, int type, register u_int *space) 450 { 451 /* XXX Dont delete exceptions set here: fe->fe_fpsr &= ~FPSR_EXCP; */ 452 453 switch (type) { 454 case FTYPE_LNG: 455 space[0] = fpu_ftoi(fe, fp); 456 break; 457 458 case FTYPE_SNG: 459 space[0] = fpu_ftos(fe, fp); 460 break; 461 462 case FTYPE_DBL: 463 space[0] = fpu_ftod(fe, fp, space); 464 break; 465 466 case FTYPE_EXT: 467 /* funky rounding precision options ?? */ 468 space[0] = fpu_ftox(fe, fp, space); 469 break; 470 471 default: 472 panic("fpu_implode"); 473 } 474 } 475