xref: /netbsd-src/sys/arch/m68k/fpe/fpu_implode.c (revision 76dfffe33547c37f8bdd446e3e4ab0f3c16cea4b)
1 /*	$NetBSD: fpu_implode.c,v 1.2 1996/04/30 11:52:30 briggs Exp $ */
2 
3 /*
4  * Copyright (c) 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This software was developed by the Computer Systems Engineering group
8  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9  * contributed to Berkeley.
10  *
11  * All advertising materials mentioning features or use of this software
12  * must display the following acknowledgement:
13  *	This product includes software developed by the University of
14  *	California, Lawrence Berkeley Laboratory.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. All advertising materials mentioning features or use of this software
25  *    must display the following acknowledgement:
26  *	This product includes software developed by the University of
27  *	California, Berkeley and its contributors.
28  * 4. Neither the name of the University nor the names of its contributors
29  *    may be used to endorse or promote products derived from this software
30  *    without specific prior written permission.
31  *
32  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42  * SUCH DAMAGE.
43  *
44  *	@(#)fpu_implode.c	8.1 (Berkeley) 6/11/93
45  */
46 
47 /*
48  * FPU subroutines: `implode' internal format numbers into the machine's
49  * `packed binary' format.
50  */
51 
52 #include <sys/types.h>
53 #include <sys/systm.h>
54 
55 #include "ieee.h"
56 #include <machine/reg.h>
57 
58 #include "fpu_emulate.h"
59 #include "fpu_arith.h"
60 
61 /* Conversion from internal format -- note asymmetry. */
62 static u_int	fpu_ftoi __P((struct fpemu *fe, struct fpn *fp));
63 static u_int	fpu_ftos __P((struct fpemu *fe, struct fpn *fp));
64 static u_int	fpu_ftod __P((struct fpemu *fe, struct fpn *fp, u_int *));
65 static u_int	fpu_ftox __P((struct fpemu *fe, struct fpn *fp, u_int *));
66 
67 /*
68  * Round a number (algorithm from Motorola MC68882 manual, modified for
69  * our internal format).  Set inexact exception if rounding is required.
70  * Return true iff we rounded up.
71  *
72  * After rounding, we discard the guard and round bits by shifting right
73  * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
74  * This saves effort later.
75  *
76  * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
77  * responsibility to fix this if necessary.
78  */
79 int
80 round(register struct fpemu *fe, register struct fpn *fp)
81 {
82 	register u_int m0, m1, m2, m3;
83 	register int gr, s;
84 
85 	m0 = fp->fp_mant[0];
86 	m1 = fp->fp_mant[1];
87 	m2 = fp->fp_mant[2];
88 	m3 = fp->fp_mant[3];
89 	gr = m3 & 3;
90 	s = fp->fp_sticky;
91 
92 	/* mant >>= FP_NG */
93 	m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG));
94 	m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
95 	m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
96 	m0 >>= FP_NG;
97 
98 	if ((gr | s) == 0)	/* result is exact: no rounding needed */
99 		goto rounddown;
100 
101 	fe->fe_fpsr |= FPSR_INEX2;	/* inexact */
102 
103 	/* Go to rounddown to round down; break to round up. */
104 	switch (fe->fe_fpcr & FPCR_ROUND) {
105 
106 	case FPCR_NEAR:
107 	default:
108 		/*
109 		 * Round only if guard is set (gr & 2).  If guard is set,
110 		 * but round & sticky both clear, then we want to round
111 		 * but have a tie, so round to even, i.e., add 1 iff odd.
112 		 */
113 		if ((gr & 2) == 0)
114 			goto rounddown;
115 		if ((gr & 1) || fp->fp_sticky || (m3 & 1))
116 			break;
117 		goto rounddown;
118 
119 	case FPCR_ZERO:
120 		/* Round towards zero, i.e., down. */
121 		goto rounddown;
122 
123 	case FPCR_MINF:
124 		/* Round towards -Inf: up if negative, down if positive. */
125 		if (fp->fp_sign)
126 			break;
127 		goto rounddown;
128 
129 	case FPCR_PINF:
130 		/* Round towards +Inf: up if positive, down otherwise. */
131 		if (!fp->fp_sign)
132 			break;
133 		goto rounddown;
134 	}
135 
136 	/* Bump low bit of mantissa, with carry. */
137 #ifdef sparc /* ``cheating'' (left out FPU_DECL_CARRY; know this is faster) */
138 	FPU_ADDS(m3, m3, 1);
139 	FPU_ADDCS(m2, m2, 0);
140 	FPU_ADDCS(m1, m1, 0);
141 	FPU_ADDC(m0, m0, 0);
142 #else
143 	if (++m3 == 0 && ++m2 == 0 && ++m1 == 0)
144 		m0++;
145 #endif
146 	fp->fp_mant[0] = m0;
147 	fp->fp_mant[1] = m1;
148 	fp->fp_mant[2] = m2;
149 	fp->fp_mant[3] = m3;
150 	return (1);
151 
152 rounddown:
153 	fp->fp_mant[0] = m0;
154 	fp->fp_mant[1] = m1;
155 	fp->fp_mant[2] = m2;
156 	fp->fp_mant[3] = m3;
157 	return (0);
158 }
159 
160 /*
161  * For overflow: return true if overflow is to go to +/-Inf, according
162  * to the sign of the overflowing result.  If false, overflow is to go
163  * to the largest magnitude value instead.
164  */
165 static int
166 toinf(struct fpemu *fe, int sign)
167 {
168 	int inf;
169 
170 	/* look at rounding direction */
171 	switch (fe->fe_fpcr & FPCR_ROUND) {
172 
173 	default:
174 	case FPCR_NEAR:		/* the nearest value is always Inf */
175 		inf = 1;
176 		break;
177 
178 	case FPCR_ZERO:		/* toward 0 => never towards Inf */
179 		inf = 0;
180 		break;
181 
182 	case FPCR_PINF:		/* toward +Inf iff positive */
183 		inf = (sign == 0);
184 		break;
185 
186 	case FPCR_MINF:		/* toward -Inf iff negative */
187 		inf = sign;
188 		break;
189 	}
190 	return (inf);
191 }
192 
193 /*
194  * fpn -> int (int value returned as return value).
195  *
196  * N.B.: this conversion always rounds towards zero (this is a peculiarity
197  * of the SPARC instruction set).
198  */
199 static u_int
200 fpu_ftoi(fe, fp)
201 	struct fpemu *fe;
202 	register struct fpn *fp;
203 {
204 	register u_int i;
205 	register int sign, exp;
206 
207 	sign = fp->fp_sign;
208 	switch (fp->fp_class) {
209 
210 	case FPC_ZERO:
211 		return (0);
212 
213 	case FPC_NUM:
214 		/*
215 		 * If exp >= 2^32, overflow.  Otherwise shift value right
216 		 * into last mantissa word (this will not exceed 0xffffffff),
217 		 * shifting any guard and round bits out into the sticky
218 		 * bit.  Then ``round'' towards zero, i.e., just set an
219 		 * inexact exception if sticky is set (see round()).
220 		 * If the result is > 0x80000000, or is positive and equals
221 		 * 0x80000000, overflow; otherwise the last fraction word
222 		 * is the result.
223 		 */
224 		if ((exp = fp->fp_exp) >= 32)
225 			break;
226 		/* NB: the following includes exp < 0 cases */
227 		if (fpu_shr(fp, FP_NMANT - 1 - FP_NG - exp) != 0)
228 			/* m68881/2 do not underflow when
229 			   converting to integer */;
230 		round(fe, fp);
231 		i = fp->fp_mant[3];
232 		if (i >= ((u_int)0x80000000 + sign))
233 			break;
234 		return (sign ? -i : i);
235 
236 	default:		/* Inf, qNaN, sNaN */
237 		break;
238 	}
239 	/* overflow: replace any inexact exception with invalid */
240 	fe->fe_fpsr = (fe->fe_fpsr & ~FPSR_INEX2) | FPSR_OPERR;
241 	return (0x7fffffff + sign);
242 }
243 
244 /*
245  * fpn -> single (32 bit single returned as return value).
246  * We assume <= 29 bits in a single-precision fraction (1.f part).
247  */
248 static u_int
249 fpu_ftos(fe, fp)
250 	struct fpemu *fe;
251 	register struct fpn *fp;
252 {
253 	register u_int sign = fp->fp_sign << 31;
254 	register int exp;
255 
256 #define	SNG_EXP(e)	((e) << SNG_FRACBITS)	/* makes e an exponent */
257 #define	SNG_MASK	(SNG_EXP(1) - 1)	/* mask for fraction */
258 
259 	/* Take care of non-numbers first. */
260 	if (ISNAN(fp)) {
261 		/*
262 		 * Preserve upper bits of NaN, per SPARC V8 appendix N.
263 		 * Note that fp->fp_mant[0] has the quiet bit set,
264 		 * even if it is classified as a signalling NaN.
265 		 */
266 		(void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
267 		exp = SNG_EXP_INFNAN;
268 		goto done;
269 	}
270 	if (ISINF(fp))
271 		return (sign | SNG_EXP(SNG_EXP_INFNAN));
272 	if (ISZERO(fp))
273 		return (sign);
274 
275 	/*
276 	 * Normals (including subnormals).  Drop all the fraction bits
277 	 * (including the explicit ``implied'' 1 bit) down into the
278 	 * single-precision range.  If the number is subnormal, move
279 	 * the ``implied'' 1 into the explicit range as well, and shift
280 	 * right to introduce leading zeroes.  Rounding then acts
281 	 * differently for normals and subnormals: the largest subnormal
282 	 * may round to the smallest normal (1.0 x 2^minexp), or may
283 	 * remain subnormal.  In the latter case, signal an underflow
284 	 * if the result was inexact or if underflow traps are enabled.
285 	 *
286 	 * Rounding a normal, on the other hand, always produces another
287 	 * normal (although either way the result might be too big for
288 	 * single precision, and cause an overflow).  If rounding a
289 	 * normal produces 2.0 in the fraction, we need not adjust that
290 	 * fraction at all, since both 1.0 and 2.0 are zero under the
291 	 * fraction mask.
292 	 *
293 	 * Note that the guard and round bits vanish from the number after
294 	 * rounding.
295 	 */
296 	if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) {	/* subnormal */
297 		/* -NG for g,r; -SNG_FRACBITS-exp for fraction */
298 		(void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
299 		if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(1))
300 			return (sign | SNG_EXP(1) | 0);
301 		if (fe->fe_fpsr & FPSR_INEX2)
302 			/* mc68881/2 don't underflow when converting */;
303 		return (sign | SNG_EXP(0) | fp->fp_mant[3]);
304 	}
305 	/* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
306 	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
307 #ifdef DIAGNOSTIC
308 	if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0)
309 		panic("fpu_ftos");
310 #endif
311 	if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(2))
312 		exp++;
313 	if (exp >= SNG_EXP_INFNAN) {
314 		/* overflow to inf or to max single */
315 		fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2;
316 		if (toinf(fe, sign))
317 			return (sign | SNG_EXP(SNG_EXP_INFNAN));
318 		return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
319 	}
320 done:
321 	/* phew, made it */
322 	return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK));
323 }
324 
325 /*
326  * fpn -> double (32 bit high-order result returned; 32-bit low order result
327  * left in res[1]).  Assumes <= 61 bits in double precision fraction.
328  *
329  * This code mimics fpu_ftos; see it for comments.
330  */
331 static u_int
332 fpu_ftod(fe, fp, res)
333 	struct fpemu *fe;
334 	register struct fpn *fp;
335 	u_int *res;
336 {
337 	register u_int sign = fp->fp_sign << 31;
338 	register int exp;
339 
340 #define	DBL_EXP(e)	((e) << (DBL_FRACBITS & 31))
341 #define	DBL_MASK	(DBL_EXP(1) - 1)
342 
343 	if (ISNAN(fp)) {
344 		(void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
345 		exp = DBL_EXP_INFNAN;
346 		goto done;
347 	}
348 	if (ISINF(fp)) {
349 		sign |= DBL_EXP(DBL_EXP_INFNAN);
350 		res[1] = 0;
351 		return (sign);
352 	}
353 	if (ISZERO(fp)) {
354 		res[1] = 0;
355 		return (sign);
356 	}
357 
358 	if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
359 		(void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
360 		if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) {
361 			res[1] = 0;
362 			return (sign | DBL_EXP(1) | 0);
363 		}
364 		if (fe->fe_fpsr & FPSR_INEX2)
365 			/* mc68881/2 don't underflow when converting */;
366 		exp = 0;
367 		goto done;
368 	}
369 	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
370 	if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(2))
371 		exp++;
372 	if (exp >= DBL_EXP_INFNAN) {
373 		fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2;
374 		if (toinf(fe, sign)) {
375 			res[1] = 0;
376 			return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
377 		}
378 		res[1] = ~0;
379 		return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
380 	}
381 done:
382 	res[1] = fp->fp_mant[3];
383 	return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK));
384 }
385 
386 /*
387  * fpn -> 68k extended (32 bit high-order result returned; two 32-bit low
388  * order result left in res[1] & res[2]).  Assumes == 64 bits in extended
389  * precision fraction.
390  *
391  * This code mimics fpu_ftos; see it for comments.
392  */
393 static u_int
394 fpu_ftox(fe, fp, res)
395 	struct fpemu *fe;
396 	register struct fpn *fp;
397 	u_int *res;
398 {
399 	register u_int sign = fp->fp_sign << 31;
400 	register int exp;
401 
402 #define	EXT_EXP(e)	((e) << 16)
403 #define	EXT_MASK	(EXT_EXP(1) - 1)
404 
405 	if (ISNAN(fp)) {
406 		(void) fpu_shr(fp, FP_NMANT - 1 - EXT_FRACBITS);
407 		exp = EXT_EXP_INFNAN;
408 		goto done;
409 	}
410 	if (ISINF(fp)) {
411 		sign |= EXT_EXP(EXT_EXP_INFNAN);
412 		res[1] = res[2] = 0;
413 		return (sign);
414 	}
415 	if (ISZERO(fp)) {
416 		res[1] = res[2] = 0;
417 		return (sign);
418 	}
419 
420 	if ((exp = fp->fp_exp + EXT_EXP_BIAS) <= 0) {
421 		/* I'm not sure about this <=... exp==0 doesn't mean
422 		   it's a denormal in extended format */
423 		(void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS - exp);
424 		if (round(fe, fp) && fp->fp_mant[2] == EXT_EXP(1)) {
425 			res[1] = res[2] = 0;
426 			return (sign | EXT_EXP(1) | 0);
427 		}
428 		if (fe->fe_fpsr & FPSR_INEX2)
429 			/* mc68881/2 don't underflow */;
430 		exp = 0;
431 		goto done;
432 	}
433 	(void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS);
434 	if (round(fe, fp) && fp->fp_mant[2] == EXT_EXP(2))
435 		exp++;
436 	if (exp >= EXT_EXP_INFNAN) {
437 		fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2;
438 		if (toinf(fe, sign)) {
439 			res[1] = res[2] = 0;
440 			return (sign | EXT_EXP(EXT_EXP_INFNAN) | 0);
441 		}
442 		res[1] = res[2] = ~0;
443 		return (sign | EXT_EXP(EXT_EXP_INFNAN) | EXT_MASK);
444 	}
445 done:
446 	res[1] = fp->fp_mant[2];
447 	res[2] = fp->fp_mant[3];
448 	return (sign | EXT_EXP(exp));
449 }
450 
451 /*
452  * Implode an fpn, writing the result into the given space.
453  */
454 void
455 fpu_implode(fe, fp, type, space)
456 	struct fpemu *fe;
457 	register struct fpn *fp;
458 	int type;
459 	register u_int *space;
460 {
461 	fe->fe_fpsr &= ~FPSR_EXCP;
462 
463 	switch (type) {
464 	case FTYPE_LNG:
465 		space[0] = fpu_ftoi(fe, fp);
466 		break;
467 
468 	case FTYPE_SNG:
469 		space[0] = fpu_ftos(fe, fp);
470 		break;
471 
472 	case FTYPE_DBL:
473 		space[0] = fpu_ftod(fe, fp, space);
474 		break;
475 
476 	case FTYPE_EXT:
477 		/* funky rounding precision options ?? */
478 		space[0] = fpu_ftox(fe, fp, space);
479 		break;
480 
481 	default:
482 		panic("fpu_implode");
483 	}
484 }
485