1 /* $NetBSD: glxsb.c,v 1.11 2014/04/04 14:47:26 christos Exp $ */ 2 /* $OpenBSD: glxsb.c,v 1.7 2007/02/12 14:31:45 tom Exp $ */ 3 4 /* 5 * Copyright (c) 2006 Tom Cosgrove <tom@openbsd.org> 6 * Copyright (c) 2003, 2004 Theo de Raadt 7 * Copyright (c) 2003 Jason Wright 8 * 9 * Permission to use, copy, modify, and distribute this software for any 10 * purpose with or without fee is hereby granted, provided that the above 11 * copyright notice and this permission notice appear in all copies. 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 */ 21 22 /* 23 * Driver for the security block on the AMD Geode LX processors 24 * http://www.amd.com/files/connectivitysolutions/geode/geode_lx/33234d_lx_ds.pdf 25 */ 26 27 #include <sys/cdefs.h> 28 __KERNEL_RCSID(0, "$NetBSD: glxsb.c,v 1.11 2014/04/04 14:47:26 christos Exp $"); 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/device.h> 33 #include <sys/malloc.h> 34 #include <sys/mbuf.h> 35 #include <sys/types.h> 36 #include <sys/callout.h> 37 #include <sys/bus.h> 38 #include <sys/cprng.h> 39 40 #include <machine/cpufunc.h> 41 42 #include <dev/pci/pcivar.h> 43 #include <dev/pci/pcidevs.h> 44 45 #include <opencrypto/cryptodev.h> 46 #include <crypto/rijndael/rijndael.h> 47 48 #define SB_GLD_MSR_CAP 0x58002000 /* RO - Capabilities */ 49 #define SB_GLD_MSR_CONFIG 0x58002001 /* RW - Master Config */ 50 #define SB_GLD_MSR_SMI 0x58002002 /* RW - SMI */ 51 #define SB_GLD_MSR_ERROR 0x58002003 /* RW - Error */ 52 #define SB_GLD_MSR_PM 0x58002004 /* RW - Power Mgmt */ 53 #define SB_GLD_MSR_DIAG 0x58002005 /* RW - Diagnostic */ 54 #define SB_GLD_MSR_CTRL 0x58002006 /* RW - Security Block Cntrl */ 55 56 /* For GLD_MSR_CTRL: */ 57 #define SB_GMC_DIV0 0x0000 /* AES update divisor values */ 58 #define SB_GMC_DIV1 0x0001 59 #define SB_GMC_DIV2 0x0002 60 #define SB_GMC_DIV3 0x0003 61 #define SB_GMC_DIV_MASK 0x0003 62 #define SB_GMC_SBI 0x0004 /* AES swap bits */ 63 #define SB_GMC_SBY 0x0008 /* AES swap bytes */ 64 #define SB_GMC_TW 0x0010 /* Time write (EEPROM) */ 65 #define SB_GMC_T_SEL0 0x0000 /* RNG post-proc: none */ 66 #define SB_GMC_T_SEL1 0x0100 /* RNG post-proc: LFSR */ 67 #define SB_GMC_T_SEL2 0x0200 /* RNG post-proc: whitener */ 68 #define SB_GMC_T_SEL3 0x0300 /* RNG LFSR+whitener */ 69 #define SB_GMC_T_SEL_MASK 0x0300 70 #define SB_GMC_T_NE 0x0400 /* Noise (generator) Enable */ 71 #define SB_GMC_T_TM 0x0800 /* RNG test mode */ 72 /* (deterministic) */ 73 74 /* Security Block configuration/control registers (offsets from base) */ 75 76 #define SB_CTL_A 0x0000 /* RW - SB Control A */ 77 #define SB_CTL_B 0x0004 /* RW - SB Control B */ 78 #define SB_AES_INT 0x0008 /* RW - SB AES Interrupt */ 79 #define SB_SOURCE_A 0x0010 /* RW - Source A */ 80 #define SB_DEST_A 0x0014 /* RW - Destination A */ 81 #define SB_LENGTH_A 0x0018 /* RW - Length A */ 82 #define SB_SOURCE_B 0x0020 /* RW - Source B */ 83 #define SB_DEST_B 0x0024 /* RW - Destination B */ 84 #define SB_LENGTH_B 0x0028 /* RW - Length B */ 85 #define SB_WKEY 0x0030 /* WO - Writable Key 0-3 */ 86 #define SB_WKEY_0 0x0030 /* WO - Writable Key 0 */ 87 #define SB_WKEY_1 0x0034 /* WO - Writable Key 1 */ 88 #define SB_WKEY_2 0x0038 /* WO - Writable Key 2 */ 89 #define SB_WKEY_3 0x003C /* WO - Writable Key 3 */ 90 #define SB_CBC_IV 0x0040 /* RW - CBC IV 0-3 */ 91 #define SB_CBC_IV_0 0x0040 /* RW - CBC IV 0 */ 92 #define SB_CBC_IV_1 0x0044 /* RW - CBC IV 1 */ 93 #define SB_CBC_IV_2 0x0048 /* RW - CBC IV 2 */ 94 #define SB_CBC_IV_3 0x004C /* RW - CBC IV 3 */ 95 #define SB_RANDOM_NUM 0x0050 /* RW - Random Number */ 96 #define SB_RANDOM_NUM_STATUS 0x0054 /* RW - Random Number Status */ 97 #define SB_EEPROM_COMM 0x0800 /* RW - EEPROM Command */ 98 #define SB_EEPROM_ADDR 0x0804 /* RW - EEPROM Address */ 99 #define SB_EEPROM_DATA 0x0808 /* RW - EEPROM Data */ 100 #define SB_EEPROM_SEC_STATE 0x080C /* RW - EEPROM Security State */ 101 102 /* For SB_CTL_A and _B */ 103 #define SB_CTL_ST 0x0001 /* Start operation (enc/dec) */ 104 #define SB_CTL_ENC 0x0002 /* Encrypt (0 is decrypt) */ 105 #define SB_CTL_DEC 0x0000 /* Decrypt */ 106 #define SB_CTL_WK 0x0004 /* Use writable key (we set) */ 107 #define SB_CTL_DC 0x0008 /* Destination coherent */ 108 #define SB_CTL_SC 0x0010 /* Source coherent */ 109 #define SB_CTL_CBC 0x0020 /* CBC (0 is ECB) */ 110 111 /* For SB_AES_INT */ 112 #define SB_AI_DISABLE_AES_A 0x0001 /* Disable AES A compl int */ 113 #define SB_AI_ENABLE_AES_A 0x0000 /* Enable AES A compl int */ 114 #define SB_AI_DISABLE_AES_B 0x0002 /* Disable AES B compl int */ 115 #define SB_AI_ENABLE_AES_B 0x0000 /* Enable AES B compl int */ 116 #define SB_AI_DISABLE_EEPROM 0x0004 /* Disable EEPROM op comp int */ 117 #define SB_AI_ENABLE_EEPROM 0x0000 /* Enable EEPROM op compl int */ 118 #define SB_AI_AES_A_COMPLETE 0x0100 /* AES A operation complete */ 119 #define SB_AI_AES_B_COMPLETE 0x0200 /* AES B operation complete */ 120 #define SB_AI_EEPROM_COMPLETE 0x0400 /* EEPROM operation complete */ 121 122 #define SB_RNS_TRNG_VALID 0x0001 /* in SB_RANDOM_NUM_STATUS */ 123 124 #define SB_MEM_SIZE 0x0810 /* Size of memory block */ 125 126 #define SB_AES_ALIGN 0x0010 /* Source and dest buffers */ 127 /* must be 16-byte aligned */ 128 #define SB_AES_BLOCK_SIZE 0x0010 129 130 /* 131 * The Geode LX security block AES acceleration doesn't perform scatter- 132 * gather: it just takes source and destination addresses. Therefore the 133 * plain- and ciphertexts need to be contiguous. To this end, we allocate 134 * a buffer for both, and accept the overhead of copying in and out. If 135 * the number of bytes in one operation is bigger than allowed for by the 136 * buffer (buffer is twice the size of the max length, as it has both input 137 * and output) then we have to perform multiple encryptions/decryptions. 138 */ 139 #define GLXSB_MAX_AES_LEN 16384 140 141 struct glxsb_dma_map { 142 bus_dmamap_t dma_map; 143 bus_dma_segment_t dma_seg; 144 int dma_nsegs; 145 int dma_size; 146 void * dma_vaddr; 147 uint32_t dma_paddr; 148 }; 149 struct glxsb_session { 150 uint32_t ses_key[4]; 151 uint8_t ses_iv[SB_AES_BLOCK_SIZE]; 152 int ses_klen; 153 int ses_used; 154 }; 155 156 struct glxsb_softc { 157 device_t sc_dev; 158 bus_space_tag_t sc_iot; 159 bus_space_handle_t sc_ioh; 160 struct callout sc_co; 161 162 bus_dma_tag_t sc_dmat; 163 struct glxsb_dma_map sc_dma; 164 int32_t sc_cid; 165 int sc_nsessions; 166 struct glxsb_session *sc_sessions; 167 168 krndsource_t sc_rnd_source; 169 }; 170 171 int glxsb_match(device_t, cfdata_t, void *); 172 void glxsb_attach(device_t, device_t, void *); 173 void glxsb_rnd(void *); 174 175 CFATTACH_DECL_NEW(glxsb, sizeof(struct glxsb_softc), 176 glxsb_match, glxsb_attach, NULL, NULL); 177 178 #define GLXSB_SESSION(sid) ((sid) & 0x0fffffff) 179 #define GLXSB_SID(crd,ses) (((crd) << 28) | ((ses) & 0x0fffffff)) 180 181 int glxsb_crypto_setup(struct glxsb_softc *); 182 int glxsb_crypto_newsession(void *, uint32_t *, struct cryptoini *); 183 int glxsb_crypto_process(void *, struct cryptop *, int); 184 int glxsb_crypto_freesession(void *, uint64_t); 185 static __inline void glxsb_aes(struct glxsb_softc *, uint32_t, uint32_t, 186 uint32_t, void *, int, void *); 187 188 int glxsb_dma_alloc(struct glxsb_softc *, int, struct glxsb_dma_map *); 189 void glxsb_dma_pre_op(struct glxsb_softc *, struct glxsb_dma_map *); 190 void glxsb_dma_post_op(struct glxsb_softc *, struct glxsb_dma_map *); 191 void glxsb_dma_free(struct glxsb_softc *, struct glxsb_dma_map *); 192 193 int 194 glxsb_match(device_t parent, cfdata_t match, void *aux) 195 { 196 struct pci_attach_args *pa = aux; 197 198 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_AMD && 199 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_AMD_GEODELX_AES) 200 return (1); 201 202 return (0); 203 } 204 205 void 206 glxsb_attach(device_t parent, device_t self, void *aux) 207 { 208 struct glxsb_softc *sc = device_private(self); 209 struct pci_attach_args *pa = aux; 210 bus_addr_t membase; 211 bus_size_t memsize; 212 uint64_t msr; 213 uint32_t intr; 214 215 msr = rdmsr(SB_GLD_MSR_CAP); 216 if ((msr & 0xFFFF00) != 0x130400) { 217 printf(": unknown ID 0x%x\n", (int) ((msr & 0xFFFF00) >> 16)); 218 return; 219 } 220 221 /* printf(": revision %d", (int) (msr & 0xFF)); */ 222 223 /* Map in the security block configuration/control registers */ 224 if (pci_mapreg_map(pa, PCI_MAPREG_START, 225 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0, 226 &sc->sc_iot, &sc->sc_ioh, &membase, &memsize)) { 227 printf(": can't find mem space\n"); 228 return; 229 } 230 231 sc->sc_dev = self; 232 233 /* 234 * Configure the Security Block. 235 * 236 * We want to enable the noise generator (T_NE), and enable the 237 * linear feedback shift register and whitener post-processing 238 * (T_SEL = 3). Also ensure that test mode (deterministic values) 239 * is disabled. 240 */ 241 msr = rdmsr(SB_GLD_MSR_CTRL); 242 msr &= ~(SB_GMC_T_TM | SB_GMC_T_SEL_MASK); 243 msr |= SB_GMC_T_NE | SB_GMC_T_SEL3; 244 #if 0 245 msr |= SB_GMC_SBI | SB_GMC_SBY; /* for AES, if necessary */ 246 #endif 247 wrmsr(SB_GLD_MSR_CTRL, msr); 248 249 rnd_attach_source(&sc->sc_rnd_source, device_xname(self), 250 RND_TYPE_RNG, RND_FLAG_NO_ESTIMATE); 251 252 /* Install a periodic collector for the "true" (AMD's word) RNG */ 253 callout_init(&sc->sc_co, 0); 254 callout_setfunc(&sc->sc_co, glxsb_rnd, sc); 255 glxsb_rnd(sc); 256 aprint_normal(": RNG"); 257 258 /* We don't have an interrupt handler, so disable completion INTs */ 259 intr = SB_AI_DISABLE_AES_A | SB_AI_DISABLE_AES_B | 260 SB_AI_DISABLE_EEPROM | SB_AI_AES_A_COMPLETE | 261 SB_AI_AES_B_COMPLETE | SB_AI_EEPROM_COMPLETE; 262 bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_AES_INT, intr); 263 264 sc->sc_dmat = pa->pa_dmat; 265 266 if (glxsb_crypto_setup(sc)) 267 aprint_normal(" AES"); 268 269 aprint_normal("\n"); 270 } 271 272 void 273 glxsb_rnd(void *v) 274 { 275 struct glxsb_softc *sc = v; 276 uint32_t status, value; 277 extern int hz; 278 279 status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM_STATUS); 280 if (status & SB_RNS_TRNG_VALID) { 281 value = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM); 282 rnd_add_uint32(&sc->sc_rnd_source, value); 283 } 284 285 callout_schedule(&sc->sc_co, (hz > 100) ? (hz / 100) : 1); 286 } 287 288 int 289 glxsb_crypto_setup(struct glxsb_softc *sc) 290 { 291 292 /* Allocate a contiguous DMA-able buffer to work in */ 293 if (glxsb_dma_alloc(sc, GLXSB_MAX_AES_LEN * 2, &sc->sc_dma) != 0) 294 return 0; 295 296 sc->sc_cid = crypto_get_driverid(0); 297 if (sc->sc_cid < 0) 298 return 0; 299 300 crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0, 301 glxsb_crypto_newsession, glxsb_crypto_freesession, 302 glxsb_crypto_process, sc); 303 304 sc->sc_nsessions = 0; 305 306 return 1; 307 } 308 309 int 310 glxsb_crypto_newsession(void *aux, uint32_t *sidp, struct cryptoini *cri) 311 { 312 struct glxsb_softc *sc = aux; 313 struct glxsb_session *ses = NULL; 314 int sesn; 315 316 if (sc == NULL || sidp == NULL || cri == NULL || 317 cri->cri_next != NULL || cri->cri_alg != CRYPTO_AES_CBC || 318 cri->cri_klen != 128) 319 return (EINVAL); 320 321 for (sesn = 0; sesn < sc->sc_nsessions; sesn++) { 322 if (sc->sc_sessions[sesn].ses_used == 0) { 323 ses = &sc->sc_sessions[sesn]; 324 break; 325 } 326 } 327 328 if (ses == NULL) { 329 sesn = sc->sc_nsessions; 330 ses = malloc((sesn + 1) * sizeof(*ses), M_DEVBUF, M_NOWAIT); 331 if (ses == NULL) 332 return (ENOMEM); 333 if (sesn != 0) { 334 memcpy(ses, sc->sc_sessions, sesn * sizeof(*ses)); 335 memset(sc->sc_sessions, 0, sesn * sizeof(*ses)); 336 free(sc->sc_sessions, M_DEVBUF); 337 } 338 sc->sc_sessions = ses; 339 ses = &sc->sc_sessions[sesn]; 340 sc->sc_nsessions++; 341 } 342 343 memset(ses, 0, sizeof(*ses)); 344 ses->ses_used = 1; 345 346 cprng_fast(ses->ses_iv, sizeof(ses->ses_iv)); 347 ses->ses_klen = cri->cri_klen; 348 349 /* Copy the key (Geode LX wants the primary key only) */ 350 memcpy(ses->ses_key, cri->cri_key, sizeof(ses->ses_key)); 351 352 *sidp = GLXSB_SID(0, sesn); 353 return (0); 354 } 355 356 int 357 glxsb_crypto_freesession(void *aux, uint64_t tid) 358 { 359 struct glxsb_softc *sc = aux; 360 int sesn; 361 uint32_t sid = ((uint32_t)tid) & 0xffffffff; 362 363 if (sc == NULL) 364 return (EINVAL); 365 sesn = GLXSB_SESSION(sid); 366 if (sesn >= sc->sc_nsessions) 367 return (EINVAL); 368 memset(&sc->sc_sessions[sesn], 0, sizeof(sc->sc_sessions[sesn])); 369 return (0); 370 } 371 372 /* 373 * Must be called at splnet() or higher 374 */ 375 static __inline void 376 glxsb_aes(struct glxsb_softc *sc, uint32_t control, uint32_t psrc, 377 uint32_t pdst, void *key, int len, void *iv) 378 { 379 uint32_t status; 380 int i; 381 382 if (len & 0xF) { 383 printf("%s: len must be a multiple of 16 (not %d)\n", 384 device_xname(sc->sc_dev), len); 385 return; 386 } 387 388 /* Set the source */ 389 bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_SOURCE_A, psrc); 390 391 /* Set the destination address */ 392 bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_DEST_A, pdst); 393 394 /* Set the data length */ 395 bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_LENGTH_A, len); 396 397 /* Set the IV */ 398 if (iv != NULL) { 399 bus_space_write_region_4(sc->sc_iot, sc->sc_ioh, 400 SB_CBC_IV, iv, 4); 401 control |= SB_CTL_CBC; 402 } 403 404 /* Set the key */ 405 bus_space_write_region_4(sc->sc_iot, sc->sc_ioh, SB_WKEY, key, 4); 406 407 /* Ask the security block to do it */ 408 bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A, 409 control | SB_CTL_WK | SB_CTL_DC | SB_CTL_SC | SB_CTL_ST); 410 411 /* 412 * Now wait until it is done. 413 * 414 * We do a busy wait. Obviously the number of iterations of 415 * the loop required to perform the AES operation depends upon 416 * the number of bytes to process. 417 * 418 * On a 500 MHz Geode LX we see 419 * 420 * length (bytes) typical max iterations 421 * 16 12 422 * 64 22 423 * 256 59 424 * 1024 212 425 * 8192 1,537 426 * 427 * Since we have a maximum size of operation defined in 428 * GLXSB_MAX_AES_LEN, we use this constant to decide how long 429 * to wait. Allow an order of magnitude longer than it should 430 * really take, just in case. 431 */ 432 for (i = 0; i < GLXSB_MAX_AES_LEN * 10; i++) { 433 status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A); 434 435 if ((status & SB_CTL_ST) == 0) /* Done */ 436 return; 437 } 438 439 aprint_error_dev(sc->sc_dev, "operation failed to complete\n"); 440 } 441 442 int 443 glxsb_crypto_process(void *aux, struct cryptop *crp, int hint) 444 { 445 struct glxsb_softc *sc = aux; 446 struct glxsb_session *ses; 447 struct cryptodesc *crd; 448 char *op_src, *op_dst; 449 uint32_t op_psrc, op_pdst; 450 uint8_t op_iv[SB_AES_BLOCK_SIZE], *piv; 451 int sesn, err = 0; 452 int len, tlen, xlen; 453 int offset; 454 uint32_t control; 455 int s; 456 457 s = splnet(); 458 459 if (crp == NULL || crp->crp_callback == NULL) { 460 err = EINVAL; 461 goto out; 462 } 463 crd = crp->crp_desc; 464 if (crd == NULL || crd->crd_next != NULL || 465 crd->crd_alg != CRYPTO_AES_CBC || 466 (crd->crd_len % SB_AES_BLOCK_SIZE) != 0) { 467 err = EINVAL; 468 goto out; 469 } 470 471 sesn = GLXSB_SESSION(crp->crp_sid); 472 if (sesn >= sc->sc_nsessions) { 473 err = EINVAL; 474 goto out; 475 } 476 ses = &sc->sc_sessions[sesn]; 477 478 /* How much of our buffer will we need to use? */ 479 xlen = crd->crd_len > GLXSB_MAX_AES_LEN ? 480 GLXSB_MAX_AES_LEN : crd->crd_len; 481 482 /* 483 * XXX Check if we can have input == output on Geode LX. 484 * XXX In the meantime, use two separate (adjacent) buffers. 485 */ 486 op_src = sc->sc_dma.dma_vaddr; 487 op_dst = (char *)sc->sc_dma.dma_vaddr + xlen; 488 489 op_psrc = sc->sc_dma.dma_paddr; 490 op_pdst = sc->sc_dma.dma_paddr + xlen; 491 492 if (crd->crd_flags & CRD_F_ENCRYPT) { 493 control = SB_CTL_ENC; 494 if (crd->crd_flags & CRD_F_IV_EXPLICIT) 495 memcpy(op_iv, crd->crd_iv, sizeof(op_iv)); 496 else 497 memcpy(op_iv, ses->ses_iv, sizeof(op_iv)); 498 499 if ((crd->crd_flags & CRD_F_IV_PRESENT) == 0) { 500 if (crp->crp_flags & CRYPTO_F_IMBUF) 501 m_copyback((struct mbuf *)crp->crp_buf, 502 crd->crd_inject, sizeof(op_iv), op_iv); 503 else if (crp->crp_flags & CRYPTO_F_IOV) 504 cuio_copyback((struct uio *)crp->crp_buf, 505 crd->crd_inject, sizeof(op_iv), op_iv); 506 else 507 bcopy(op_iv, 508 (char *)crp->crp_buf + crd->crd_inject, 509 sizeof(op_iv)); 510 } 511 } else { 512 control = SB_CTL_DEC; 513 if (crd->crd_flags & CRD_F_IV_EXPLICIT) 514 memcpy(op_iv, crd->crd_iv, sizeof(op_iv)); 515 else { 516 if (crp->crp_flags & CRYPTO_F_IMBUF) 517 m_copydata((struct mbuf *)crp->crp_buf, 518 crd->crd_inject, sizeof(op_iv), op_iv); 519 else if (crp->crp_flags & CRYPTO_F_IOV) 520 cuio_copydata((struct uio *)crp->crp_buf, 521 crd->crd_inject, sizeof(op_iv), op_iv); 522 else 523 bcopy((char *)crp->crp_buf + crd->crd_inject, 524 op_iv, sizeof(op_iv)); 525 } 526 } 527 528 offset = 0; 529 tlen = crd->crd_len; 530 piv = op_iv; 531 532 /* Process the data in GLXSB_MAX_AES_LEN chunks */ 533 while (tlen > 0) { 534 len = (tlen > GLXSB_MAX_AES_LEN) ? GLXSB_MAX_AES_LEN : tlen; 535 536 if (crp->crp_flags & CRYPTO_F_IMBUF) 537 m_copydata((struct mbuf *)crp->crp_buf, 538 crd->crd_skip + offset, len, op_src); 539 else if (crp->crp_flags & CRYPTO_F_IOV) 540 cuio_copydata((struct uio *)crp->crp_buf, 541 crd->crd_skip + offset, len, op_src); 542 else 543 bcopy((char *)crp->crp_buf + crd->crd_skip + offset, 544 op_src, len); 545 546 glxsb_dma_pre_op(sc, &sc->sc_dma); 547 548 glxsb_aes(sc, control, op_psrc, op_pdst, ses->ses_key, 549 len, op_iv); 550 551 glxsb_dma_post_op(sc, &sc->sc_dma); 552 553 if (crp->crp_flags & CRYPTO_F_IMBUF) 554 m_copyback((struct mbuf *)crp->crp_buf, 555 crd->crd_skip + offset, len, op_dst); 556 else if (crp->crp_flags & CRYPTO_F_IOV) 557 cuio_copyback((struct uio *)crp->crp_buf, 558 crd->crd_skip + offset, len, op_dst); 559 else 560 memcpy((char *)crp->crp_buf + crd->crd_skip + offset, op_dst, 561 len); 562 563 offset += len; 564 tlen -= len; 565 566 if (tlen <= 0) { /* Ideally, just == 0 */ 567 /* Finished - put the IV in session IV */ 568 piv = ses->ses_iv; 569 } 570 571 /* 572 * Copy out last block for use as next iteration/session IV. 573 * 574 * piv is set to op_iv[] before the loop starts, but is 575 * set to ses->ses_iv if we're going to exit the loop this 576 * time. 577 */ 578 if (crd->crd_flags & CRD_F_ENCRYPT) { 579 memcpy(piv, op_dst + len - sizeof(op_iv), sizeof(op_iv)); 580 } else { 581 /* Decryption, only need this if another iteration */ 582 if (tlen > 0) { 583 memcpy(piv, op_src + len - sizeof(op_iv), 584 sizeof(op_iv)); 585 } 586 } 587 } 588 589 /* All AES processing has now been done. */ 590 591 memset(sc->sc_dma.dma_vaddr, 0, xlen * 2); 592 out: 593 crp->crp_etype = err; 594 crypto_done(crp); 595 splx(s); 596 return (err); 597 } 598 599 int 600 glxsb_dma_alloc(struct glxsb_softc *sc, int size, struct glxsb_dma_map *dma) 601 { 602 int rc; 603 604 dma->dma_nsegs = 1; 605 dma->dma_size = size; 606 607 rc = bus_dmamap_create(sc->sc_dmat, size, dma->dma_nsegs, size, 608 0, BUS_DMA_NOWAIT, &dma->dma_map); 609 if (rc != 0) { 610 aprint_error_dev(sc->sc_dev, "couldn't create DMA map for %d bytes (%d)\n", 611 size, rc); 612 613 goto fail0; 614 } 615 616 rc = bus_dmamem_alloc(sc->sc_dmat, size, SB_AES_ALIGN, 0, 617 &dma->dma_seg, dma->dma_nsegs, &dma->dma_nsegs, BUS_DMA_NOWAIT); 618 if (rc != 0) { 619 aprint_error_dev(sc->sc_dev, "couldn't allocate DMA memory of %d bytes (%d)\n", 620 size, rc); 621 622 goto fail1; 623 } 624 625 rc = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, 1, size, 626 &dma->dma_vaddr, BUS_DMA_NOWAIT); 627 if (rc != 0) { 628 aprint_error_dev(sc->sc_dev, "couldn't map DMA memory for %d bytes (%d)\n", 629 size, rc); 630 631 goto fail2; 632 } 633 634 rc = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr, 635 size, NULL, BUS_DMA_NOWAIT); 636 if (rc != 0) { 637 aprint_error_dev(sc->sc_dev, "couldn't load DMA memory for %d bytes (%d)\n", 638 size, rc); 639 640 goto fail3; 641 } 642 643 dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr; 644 645 return 0; 646 647 fail3: 648 bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size); 649 fail2: 650 bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs); 651 fail1: 652 bus_dmamap_destroy(sc->sc_dmat, dma->dma_map); 653 fail0: 654 return rc; 655 } 656 657 void 658 glxsb_dma_pre_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma) 659 { 660 bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size, 661 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 662 } 663 664 void 665 glxsb_dma_post_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma) 666 { 667 bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size, 668 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 669 } 670 671 void 672 glxsb_dma_free(struct glxsb_softc *sc, struct glxsb_dma_map *dma) 673 { 674 bus_dmamap_unload(sc->sc_dmat, dma->dma_map); 675 bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size); 676 bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs); 677 bus_dmamap_destroy(sc->sc_dmat, dma->dma_map); 678 } 679