1 /* $NetBSD: harmony.c,v 1.4 2017/06/01 02:45:06 chs Exp $ */ 2 3 /* $OpenBSD: harmony.c,v 1.23 2004/02/13 21:28:19 mickey Exp $ */ 4 5 /*- 6 * Copyright (c) 2009 The NetBSD Foundation, Inc. 7 * All rights reserved. 8 * 9 * This code is derived from software contributed to The NetBSD Foundation 10 * by Matt Fleming. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 /* 35 * Copyright (c) 2003 Jason L. Wright (jason@thought.net) 36 * All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 47 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 48 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 49 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 50 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, 51 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 52 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 53 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 55 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 56 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 57 * POSSIBILITY OF SUCH DAMAGE. 58 */ 59 60 /* 61 * Harmony (CS4215/AD1849 LASI) audio interface. 62 */ 63 64 65 66 #include <sys/param.h> 67 #include <sys/kernel.h> 68 #include <sys/systm.h> 69 #include <sys/errno.h> 70 #include <sys/ioctl.h> 71 #include <sys/device.h> 72 #include <sys/proc.h> 73 #include <sys/kmem.h> 74 #include <uvm/uvm_extern.h> 75 76 #include <sys/rndsource.h> 77 78 #include <sys/audioio.h> 79 #include <dev/audio_if.h> 80 #include <dev/auconv.h> 81 82 #include <machine/cpu.h> 83 #include <machine/intr.h> 84 #include <machine/iomod.h> 85 #include <machine/autoconf.h> 86 #include <sys/bus.h> 87 88 #include <hppa/dev/cpudevs.h> 89 #include <hppa/gsc/gscbusvar.h> 90 #include <hppa/gsc/harmonyreg.h> 91 #include <hppa/gsc/harmonyvar.h> 92 93 int harmony_open(void *, int); 94 void harmony_close(void *); 95 int harmony_query_encoding(void *, struct audio_encoding *); 96 int harmony_set_params(void *, int, int, audio_params_t *, 97 audio_params_t *, stream_filter_list_t *, stream_filter_list_t *); 98 int harmony_round_blocksize(void *, int, int, const audio_params_t *); 99 100 int harmony_control_wait(struct harmony_softc *); 101 int harmony_commit_settings(void *); 102 103 int harmony_halt_output(void *); 104 int harmony_halt_input(void *); 105 int harmony_getdev(void *, struct audio_device *); 106 int harmony_set_port(void *, mixer_ctrl_t *); 107 int harmony_get_port(void *, mixer_ctrl_t *); 108 int harmony_query_devinfo(void *, mixer_devinfo_t *); 109 void * harmony_allocm(void *, int, size_t); 110 void harmony_freem(void *, void *, size_t); 111 size_t harmony_round_buffersize(void *, int, size_t); 112 int harmony_get_props(void *); 113 int harmony_trigger_output(void *, void *, void *, int, 114 void (*)(void *), void *, const audio_params_t *); 115 int harmony_trigger_input(void *, void *, void *, int, 116 void (*)(void *), void *, const audio_params_t *); 117 void harmony_get_locks(void *, kmutex_t **, kmutex_t **); 118 119 const struct audio_hw_if harmony_sa_hw_if = { 120 harmony_open, 121 harmony_close, 122 NULL, 123 harmony_query_encoding, 124 harmony_set_params, 125 harmony_round_blocksize, 126 harmony_commit_settings, 127 NULL, 128 NULL, 129 NULL, 130 NULL, 131 harmony_halt_output, 132 harmony_halt_input, 133 NULL, 134 harmony_getdev, 135 NULL, 136 harmony_set_port, 137 harmony_get_port, 138 harmony_query_devinfo, 139 harmony_allocm, 140 harmony_freem, 141 harmony_round_buffersize, 142 NULL, 143 harmony_get_props, 144 harmony_trigger_output, 145 harmony_trigger_input, 146 NULL, 147 harmony_get_locks, 148 }; 149 150 int harmony_match(device_t, struct cfdata *, void *); 151 void harmony_attach(device_t, device_t, void *); 152 153 154 CFATTACH_DECL_NEW(harmony, sizeof(struct harmony_softc), 155 harmony_match, harmony_attach, NULL, NULL); 156 157 int harmony_intr(void *); 158 void harmony_intr_enable(struct harmony_softc *); 159 void harmony_intr_disable(struct harmony_softc *); 160 uint32_t harmony_speed_bits(struct harmony_softc *, u_int *); 161 int harmony_set_gainctl(struct harmony_softc *); 162 void harmony_reset_codec(struct harmony_softc *); 163 void harmony_start_cp(struct harmony_softc *, int); 164 void harmony_start_pp(struct harmony_softc *, int); 165 void harmony_tick_pb(void *); 166 void harmony_tick_cp(void *); 167 void harmony_try_more(struct harmony_softc *, int, int, 168 struct harmony_channel *); 169 static void harmony_empty_input(struct harmony_softc *); 170 static void harmony_empty_output(struct harmony_softc *); 171 172 void harmony_acc_tmo(void *); 173 #define ADD_CLKALLICA(sc) do { \ 174 (sc)->sc_acc <<= 1; \ 175 (sc)->sc_acc |= READ_REG((sc), HARMONY_DIAG) & DIAG_CO; \ 176 if ((sc)->sc_acc_cnt++ && !((sc)->sc_acc_cnt % 32)) \ 177 rnd_add_uint32(&(sc)->sc_rnd_source, \ 178 (sc)->sc_acc_num ^= (sc)->sc_acc); \ 179 } while(0) 180 181 int 182 harmony_match(device_t parent, struct cfdata *match, void *aux) 183 { 184 struct gsc_attach_args *ga; 185 186 ga = aux; 187 if (ga->ga_type.iodc_type == HPPA_TYPE_FIO) { 188 if (ga->ga_type.iodc_sv_model == HPPA_FIO_A1 || 189 ga->ga_type.iodc_sv_model == HPPA_FIO_A2NB || 190 ga->ga_type.iodc_sv_model == HPPA_FIO_A1NB || 191 ga->ga_type.iodc_sv_model == HPPA_FIO_A2) 192 return 1; 193 } 194 return 0; 195 } 196 197 void 198 harmony_attach(device_t parent, device_t self, void *aux) 199 { 200 struct harmony_softc *sc = device_private(self); 201 struct gsc_attach_args *ga; 202 uint8_t rev; 203 uint32_t cntl; 204 int i; 205 206 sc->sc_dv = self; 207 ga = aux; 208 sc->sc_bt = ga->ga_iot; 209 sc->sc_dmat = ga->ga_dmatag; 210 211 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE); 212 mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_AUDIO); 213 214 if (bus_space_map(sc->sc_bt, ga->ga_hpa, HARMONY_NREGS, 0, 215 &sc->sc_bh) != 0) { 216 aprint_error(": couldn't map registers\n"); 217 return; 218 } 219 220 cntl = READ_REG(sc, HARMONY_ID); 221 switch ((cntl & ID_REV_MASK)) { 222 case ID_REV_TS: 223 sc->sc_teleshare = 1; 224 case ID_REV_NOTS: 225 break; 226 default: 227 aprint_error(": unknown id == 0x%02x\n", 228 (cntl & ID_REV_MASK) >> ID_REV_SHIFT); 229 bus_space_unmap(sc->sc_bt, sc->sc_bh, HARMONY_NREGS); 230 return; 231 } 232 233 if (bus_dmamem_alloc(sc->sc_dmat, sizeof(struct harmony_empty), 234 PAGE_SIZE, 0, &sc->sc_empty_seg, 1, &sc->sc_empty_rseg, 235 BUS_DMA_WAITOK) != 0) { 236 aprint_error(": could not alloc DMA memory\n"); 237 bus_space_unmap(sc->sc_bt, sc->sc_bh, HARMONY_NREGS); 238 return; 239 } 240 if (bus_dmamem_map(sc->sc_dmat, &sc->sc_empty_seg, 1, 241 sizeof(struct harmony_empty), (void **)&sc->sc_empty_kva, 242 BUS_DMA_WAITOK) != 0) { 243 aprint_error(": couldn't map DMA memory\n"); 244 bus_dmamem_free(sc->sc_dmat, &sc->sc_empty_seg, 245 sc->sc_empty_rseg); 246 bus_space_unmap(sc->sc_bt, sc->sc_bh, HARMONY_NREGS); 247 return; 248 } 249 if (bus_dmamap_create(sc->sc_dmat, sizeof(struct harmony_empty), 1, 250 sizeof(struct harmony_empty), 0, BUS_DMA_WAITOK, 251 &sc->sc_empty_map) != 0) { 252 aprint_error(": can't create DMA map\n"); 253 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_empty_kva, 254 sizeof(struct harmony_empty)); 255 bus_dmamem_free(sc->sc_dmat, &sc->sc_empty_seg, 256 sc->sc_empty_rseg); 257 bus_space_unmap(sc->sc_bt, sc->sc_bh, HARMONY_NREGS); 258 return; 259 } 260 if (bus_dmamap_load(sc->sc_dmat, sc->sc_empty_map, sc->sc_empty_kva, 261 sizeof(struct harmony_empty), NULL, BUS_DMA_WAITOK) != 0) { 262 aprint_error(": can't load DMA map\n"); 263 bus_dmamap_destroy(sc->sc_dmat, sc->sc_empty_map); 264 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_empty_kva, 265 sizeof(struct harmony_empty)); 266 bus_dmamem_free(sc->sc_dmat, &sc->sc_empty_seg, 267 sc->sc_empty_rseg); 268 bus_space_unmap(sc->sc_bt, sc->sc_bh, HARMONY_NREGS); 269 return; 270 } 271 272 sc->sc_playback_empty = 0; 273 for (i = 0; i < PLAYBACK_EMPTYS; i++) 274 sc->sc_playback_paddrs[i] = 275 sc->sc_empty_map->dm_segs[0].ds_addr + 276 offsetof(struct harmony_empty, playback[i][0]); 277 278 sc->sc_capture_empty = 0; 279 for (i = 0; i < CAPTURE_EMPTYS; i++) 280 sc->sc_capture_paddrs[i] = 281 sc->sc_empty_map->dm_segs[0].ds_addr + 282 offsetof(struct harmony_empty, capture[i][0]); 283 284 bus_dmamap_sync(sc->sc_dmat, sc->sc_empty_map, 285 offsetof(struct harmony_empty, playback[0][0]), 286 PLAYBACK_EMPTYS * HARMONY_BUFSIZE, BUS_DMASYNC_PREWRITE); 287 288 (void) hppa_intr_establish(IPL_AUDIO, harmony_intr, sc, ga->ga_ir, 289 ga->ga_irq); 290 291 /* set defaults */ 292 sc->sc_in_port = HARMONY_IN_LINE; 293 sc->sc_out_port = HARMONY_OUT_SPEAKER; 294 sc->sc_input_lvl.left = sc->sc_input_lvl.right = 240; 295 sc->sc_output_lvl.left = sc->sc_output_lvl.right = 244; 296 sc->sc_monitor_lvl.left = sc->sc_monitor_lvl.right = 208; 297 sc->sc_outputgain = 0; 298 299 /* reset chip, and push default gain controls */ 300 harmony_reset_codec(sc); 301 302 cntl = READ_REG(sc, HARMONY_CNTL); 303 rev = (cntl & CNTL_CODEC_REV_MASK) >> CNTL_CODEC_REV_SHIFT; 304 aprint_normal(": rev %u", rev); 305 306 if (sc->sc_teleshare) 307 printf(", teleshare"); 308 aprint_normal("\n"); 309 310 if ((rev & CS4215_REV_VER) >= CS4215_REV_VER_E) 311 sc->sc_hasulinear8 = 1; 312 313 strlcpy(sc->sc_audev.name, ga->ga_name, sizeof(sc->sc_audev.name)); 314 snprintf(sc->sc_audev.version, sizeof sc->sc_audev.version, 315 "%u.%u;%u", ga->ga_type.iodc_sv_rev, 316 ga->ga_type.iodc_model, ga->ga_type.iodc_revision); 317 strlcpy(sc->sc_audev.config, device_xname(sc->sc_dv), 318 sizeof(sc->sc_audev.config)); 319 320 audio_attach_mi(&harmony_sa_hw_if, sc, sc->sc_dv); 321 322 rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dv), 323 RND_TYPE_UNKNOWN, RND_FLAG_DEFAULT); 324 325 callout_init(&sc->sc_acc_tmo, 0); 326 callout_setfunc(&sc->sc_acc_tmo, harmony_acc_tmo, sc); 327 sc->sc_acc_num = 0xa5a5a5a5; 328 } 329 330 void 331 harmony_reset_codec(struct harmony_softc *sc) 332 { 333 334 /* silence */ 335 WRITE_REG(sc, HARMONY_GAINCTL, GAINCTL_OUTPUT_LEFT_M | 336 GAINCTL_OUTPUT_RIGHT_M | GAINCTL_MONITOR_M); 337 338 /* start reset */ 339 WRITE_REG(sc, HARMONY_RESET, RESET_RST); 340 341 DELAY(100000); /* wait at least 0.05 sec */ 342 343 harmony_set_gainctl(sc); 344 WRITE_REG(sc, HARMONY_RESET, 0); 345 } 346 347 void 348 harmony_acc_tmo(void *v) 349 { 350 struct harmony_softc *sc; 351 352 sc = v; 353 ADD_CLKALLICA(sc); 354 callout_schedule(&sc->sc_acc_tmo, 1); 355 } 356 357 /* 358 * interrupt handler 359 */ 360 int 361 harmony_intr(void *vsc) 362 { 363 struct harmony_softc *sc; 364 uint32_t dstatus; 365 int r; 366 367 sc = vsc; 368 r = 0; 369 ADD_CLKALLICA(sc); 370 371 mutex_spin_enter(&sc->sc_intr_lock); 372 373 harmony_intr_disable(sc); 374 375 dstatus = READ_REG(sc, HARMONY_DSTATUS); 376 377 if (dstatus & DSTATUS_PN) { 378 r = 1; 379 harmony_start_pp(sc, 0); 380 } 381 382 if (dstatus & DSTATUS_RN) { 383 r = 1; 384 harmony_start_cp(sc, 0); 385 } 386 387 if (READ_REG(sc, HARMONY_OV) & OV_OV) { 388 sc->sc_ov = 1; 389 WRITE_REG(sc, HARMONY_OV, 0); 390 } else 391 sc->sc_ov = 0; 392 393 harmony_intr_enable(sc); 394 395 mutex_spin_exit(&sc->sc_intr_lock); 396 397 return r; 398 } 399 400 void 401 harmony_intr_enable(struct harmony_softc *sc) 402 { 403 404 WRITE_REG(sc, HARMONY_DSTATUS, DSTATUS_IE); 405 SYNC_REG(sc, HARMONY_DSTATUS, BUS_SPACE_BARRIER_WRITE); 406 } 407 408 void 409 harmony_intr_disable(struct harmony_softc *sc) 410 { 411 412 WRITE_REG(sc, HARMONY_DSTATUS, 0); 413 SYNC_REG(sc, HARMONY_DSTATUS, BUS_SPACE_BARRIER_WRITE); 414 } 415 416 int 417 harmony_open(void *vsc, int flags) 418 { 419 struct harmony_softc *sc; 420 421 sc = vsc; 422 if (sc->sc_open) 423 return EBUSY; 424 sc->sc_open = 1; 425 return 0; 426 } 427 428 void 429 harmony_close(void *vsc) 430 { 431 struct harmony_softc *sc; 432 433 sc = vsc; 434 harmony_halt_input(sc); 435 harmony_halt_output(sc); 436 harmony_intr_disable(sc); 437 sc->sc_open = 0; 438 } 439 440 int 441 harmony_query_encoding(void *vsc, struct audio_encoding *fp) 442 { 443 struct harmony_softc *sc; 444 int err; 445 446 sc = vsc; 447 err = 0; 448 switch (fp->index) { 449 case 0: 450 strlcpy(fp->name, AudioEmulaw, sizeof fp->name); 451 fp->encoding = AUDIO_ENCODING_ULAW; 452 fp->precision = 8; 453 fp->flags = 0; 454 break; 455 case 1: 456 strlcpy(fp->name, AudioEalaw, sizeof fp->name); 457 fp->encoding = AUDIO_ENCODING_ALAW; 458 fp->precision = 8; 459 fp->flags = 0; 460 break; 461 case 2: 462 strlcpy(fp->name, AudioEslinear_be, sizeof fp->name); 463 fp->encoding = AUDIO_ENCODING_SLINEAR_BE; 464 fp->precision = 16; 465 fp->flags = 0; 466 break; 467 case 3: 468 strlcpy(fp->name, AudioEslinear_le, sizeof fp->name); 469 fp->encoding = AUDIO_ENCODING_SLINEAR_LE; 470 fp->precision = 16; 471 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 472 break; 473 case 4: 474 strlcpy(fp->name, AudioEulinear_be, sizeof fp->name); 475 fp->encoding = AUDIO_ENCODING_ULINEAR_BE; 476 fp->precision = 16; 477 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 478 break; 479 case 5: 480 strlcpy(fp->name, AudioEulinear_le, sizeof fp->name); 481 fp->encoding = AUDIO_ENCODING_ULINEAR_LE; 482 fp->precision = 16; 483 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 484 break; 485 case 6: 486 if (sc->sc_hasulinear8) { 487 strlcpy(fp->name, AudioEulinear, sizeof fp->name); 488 fp->encoding = AUDIO_ENCODING_ULINEAR; 489 fp->precision = 8; 490 fp->flags = 0; 491 break; 492 } 493 /*FALLTHROUGH*/ 494 case 7: 495 if (sc->sc_hasulinear8) { 496 strlcpy(fp->name, AudioEslinear, sizeof fp->name); 497 fp->encoding = AUDIO_ENCODING_SLINEAR; 498 fp->precision = 8; 499 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 500 break; 501 } 502 /*FALLTHROUGH*/ 503 default: 504 err = EINVAL; 505 } 506 return err; 507 } 508 509 int 510 harmony_set_params(void *vsc, int setmode, int usemode, 511 audio_params_t *p, audio_params_t *r, 512 stream_filter_list_t *pfil, stream_filter_list_t *rfil) 513 { 514 audio_params_t hw; 515 struct harmony_softc *sc; 516 uint32_t bits; 517 stream_filter_factory_t *pswcode = NULL; 518 stream_filter_factory_t *rswcode = NULL; 519 520 sc = vsc; 521 /* assume p.equals(r) */ 522 hw = *p; 523 switch (p->encoding) { 524 case AUDIO_ENCODING_ULAW: 525 if (p->precision != 8) 526 return EINVAL; 527 bits = CNTL_FORMAT_ULAW; 528 break; 529 case AUDIO_ENCODING_ALAW: 530 if (p->precision != 8) 531 return EINVAL; 532 bits = CNTL_FORMAT_ALAW; 533 break; 534 case AUDIO_ENCODING_SLINEAR_BE: 535 if (p->precision == 8) { 536 bits = CNTL_FORMAT_ULINEAR8; 537 hw.encoding = AUDIO_ENCODING_ULINEAR_LE; 538 rswcode = pswcode = change_sign8; 539 break; 540 } 541 if (p->precision == 16) { 542 bits = CNTL_FORMAT_SLINEAR16BE; 543 break; 544 } 545 return EINVAL; 546 case AUDIO_ENCODING_ULINEAR: 547 if (p->precision != 8) 548 return EINVAL; 549 bits = CNTL_FORMAT_ULINEAR8; 550 break; 551 case AUDIO_ENCODING_SLINEAR: 552 if (p->precision != 8) 553 return EINVAL; 554 bits = CNTL_FORMAT_ULINEAR8; 555 hw.encoding = AUDIO_ENCODING_ULINEAR_LE; 556 rswcode = pswcode = change_sign8; 557 break; 558 case AUDIO_ENCODING_SLINEAR_LE: 559 if (p->precision == 8) { 560 bits = CNTL_FORMAT_ULINEAR8; 561 hw.encoding = AUDIO_ENCODING_ULINEAR_LE; 562 rswcode = pswcode = change_sign8; 563 break; 564 } 565 if (p->precision == 16) { 566 bits = CNTL_FORMAT_SLINEAR16BE; 567 hw.encoding = AUDIO_ENCODING_SLINEAR_BE; 568 rswcode = pswcode = swap_bytes; 569 break; 570 } 571 return EINVAL; 572 case AUDIO_ENCODING_ULINEAR_BE: 573 if (p->precision == 8) { 574 bits = CNTL_FORMAT_ULINEAR8; 575 break; 576 } 577 if (p->precision == 16) { 578 bits = CNTL_FORMAT_SLINEAR16BE; 579 rswcode = pswcode = change_sign16; 580 break; 581 } 582 return EINVAL; 583 case AUDIO_ENCODING_ULINEAR_LE: 584 if (p->precision == 8) { 585 bits = CNTL_FORMAT_ULINEAR8; 586 break; 587 } 588 if (p->precision == 16) { 589 bits = CNTL_FORMAT_SLINEAR16BE; 590 hw.encoding = AUDIO_ENCODING_SLINEAR_BE; 591 rswcode = pswcode = swap_bytes_change_sign16; 592 break; 593 } 594 return EINVAL; 595 default: 596 return EINVAL; 597 } 598 599 if (sc->sc_outputgain) 600 bits |= CNTL_OLB; 601 602 if (p->channels == 1) 603 bits |= CNTL_CHANS_MONO; 604 else if (p->channels == 2) 605 bits |= CNTL_CHANS_STEREO; 606 else 607 return EINVAL; 608 609 bits |= harmony_speed_bits(sc, &p->sample_rate); 610 if (pswcode != NULL) 611 pfil->append(pfil, pswcode, &hw); 612 if (rswcode != NULL) 613 rfil->append(rfil, rswcode, &hw); 614 sc->sc_cntlbits = bits; 615 sc->sc_need_commit = 1; 616 617 return 0; 618 } 619 620 int 621 harmony_round_blocksize(void *vsc, int blk, 622 int mode, const audio_params_t *param) 623 { 624 625 return HARMONY_BUFSIZE; 626 } 627 628 int 629 harmony_control_wait(struct harmony_softc *sc) 630 { 631 uint32_t reg; 632 int j = 0; 633 634 while (j < 10) { 635 /* Wait for it to come out of control mode */ 636 reg = READ_REG(sc, HARMONY_CNTL); 637 if ((reg & CNTL_C) == 0) 638 return 0; 639 DELAY(50000); /* wait 0.05 */ 640 j++; 641 } 642 643 return 1; 644 } 645 646 int 647 harmony_commit_settings(void *vsc) 648 { 649 struct harmony_softc *sc; 650 uint32_t reg; 651 uint8_t quietchar; 652 int i; 653 654 sc = vsc; 655 if (sc->sc_need_commit == 0) 656 return 0; 657 658 harmony_intr_disable(sc); 659 660 for (;;) { 661 reg = READ_REG(sc, HARMONY_DSTATUS); 662 if ((reg & (DSTATUS_PC | DSTATUS_RC)) == 0) 663 break; 664 } 665 666 /* Setting some bits in gainctl requires a reset */ 667 harmony_reset_codec(sc); 668 669 /* set the silence character based on the encoding type */ 670 bus_dmamap_sync(sc->sc_dmat, sc->sc_empty_map, 671 offsetof(struct harmony_empty, playback[0][0]), 672 PLAYBACK_EMPTYS * HARMONY_BUFSIZE, BUS_DMASYNC_POSTWRITE); 673 switch (sc->sc_cntlbits & CNTL_FORMAT_MASK) { 674 case CNTL_FORMAT_ULAW: 675 quietchar = 0x7f; 676 break; 677 case CNTL_FORMAT_ALAW: 678 quietchar = 0x55; 679 break; 680 case CNTL_FORMAT_SLINEAR16BE: 681 case CNTL_FORMAT_ULINEAR8: 682 default: 683 quietchar = 0; 684 break; 685 } 686 for (i = 0; i < PLAYBACK_EMPTYS; i++) 687 memset(&sc->sc_empty_kva->playback[i][0], 688 quietchar, HARMONY_BUFSIZE); 689 bus_dmamap_sync(sc->sc_dmat, sc->sc_empty_map, 690 offsetof(struct harmony_empty, playback[0][0]), 691 PLAYBACK_EMPTYS * HARMONY_BUFSIZE, BUS_DMASYNC_PREWRITE); 692 693 harmony_control_wait(sc); 694 695 bus_space_write_4(sc->sc_bt, sc->sc_bh, HARMONY_CNTL, 696 sc->sc_cntlbits | CNTL_C); 697 698 harmony_control_wait(sc); 699 700 sc->sc_need_commit = 0; 701 702 if (sc->sc_playing || sc->sc_capturing) 703 harmony_intr_enable(sc); 704 705 return 0; 706 } 707 708 static void 709 harmony_empty_output(struct harmony_softc *sc) 710 { 711 712 WRITE_REG(sc, HARMONY_PNXTADD, 713 sc->sc_playback_paddrs[sc->sc_playback_empty]); 714 SYNC_REG(sc, HARMONY_PNXTADD, BUS_SPACE_BARRIER_WRITE); 715 716 if (++sc->sc_playback_empty == PLAYBACK_EMPTYS) 717 sc->sc_playback_empty = 0; 718 } 719 720 int 721 harmony_halt_output(void *vsc) 722 { 723 struct harmony_softc *sc; 724 725 sc = vsc; 726 sc->sc_playing = 0; 727 728 harmony_empty_output(sc); 729 return 0; 730 } 731 732 static void 733 harmony_empty_input(struct harmony_softc *sc) 734 { 735 736 WRITE_REG(sc, HARMONY_RNXTADD, 737 sc->sc_capture_paddrs[sc->sc_capture_empty]); 738 SYNC_REG(sc, HARMONY_RNXTADD, BUS_SPACE_BARRIER_WRITE); 739 740 if (++sc->sc_capture_empty == CAPTURE_EMPTYS) 741 sc->sc_capture_empty = 0; 742 } 743 744 int 745 harmony_halt_input(void *vsc) 746 { 747 struct harmony_softc *sc; 748 749 sc = vsc; 750 sc->sc_capturing = 0; 751 752 harmony_empty_input(sc); 753 return 0; 754 } 755 756 int 757 harmony_getdev(void *vsc, struct audio_device *retp) 758 { 759 struct harmony_softc *sc; 760 761 sc = vsc; 762 *retp = sc->sc_audev; 763 return 0; 764 } 765 766 int 767 harmony_set_port(void *vsc, mixer_ctrl_t *cp) 768 { 769 struct harmony_softc *sc; 770 int err; 771 772 sc = vsc; 773 err = EINVAL; 774 switch (cp->dev) { 775 case HARMONY_PORT_INPUT_LVL: 776 if (cp->type != AUDIO_MIXER_VALUE) 777 break; 778 if (cp->un.value.num_channels == 1) 779 sc->sc_input_lvl.left = sc->sc_input_lvl.right = 780 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]; 781 else if (cp->un.value.num_channels == 2) { 782 sc->sc_input_lvl.left = 783 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]; 784 sc->sc_input_lvl.right = 785 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]; 786 } else 787 break; 788 sc->sc_need_commit = 1; 789 err = 0; 790 break; 791 case HARMONY_PORT_OUTPUT_LVL: 792 if (cp->type != AUDIO_MIXER_VALUE) 793 break; 794 if (cp->un.value.num_channels == 1) 795 sc->sc_output_lvl.left = sc->sc_output_lvl.right = 796 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]; 797 else if (cp->un.value.num_channels == 2) { 798 sc->sc_output_lvl.left = 799 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]; 800 sc->sc_output_lvl.right = 801 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]; 802 } else 803 break; 804 sc->sc_need_commit = 1; 805 err = 0; 806 break; 807 case HARMONY_PORT_OUTPUT_GAIN: 808 if (cp->type != AUDIO_MIXER_ENUM) 809 break; 810 sc->sc_outputgain = cp->un.ord ? 1 : 0; 811 err = 0; 812 break; 813 case HARMONY_PORT_MONITOR_LVL: 814 if (cp->type != AUDIO_MIXER_VALUE) 815 break; 816 if (cp->un.value.num_channels != 1) 817 break; 818 sc->sc_monitor_lvl.left = sc->sc_input_lvl.right = 819 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]; 820 sc->sc_need_commit = 1; 821 err = 0; 822 break; 823 case HARMONY_PORT_RECORD_SOURCE: 824 if (cp->type != AUDIO_MIXER_ENUM) 825 break; 826 if (cp->un.ord != HARMONY_IN_LINE && 827 cp->un.ord != HARMONY_IN_MIC) 828 break; 829 sc->sc_in_port = cp->un.ord; 830 err = 0; 831 sc->sc_need_commit = 1; 832 break; 833 case HARMONY_PORT_OUTPUT_SOURCE: 834 if (cp->type != AUDIO_MIXER_ENUM) 835 break; 836 if (cp->un.ord != HARMONY_OUT_LINE && 837 cp->un.ord != HARMONY_OUT_SPEAKER && 838 cp->un.ord != HARMONY_OUT_HEADPHONE) 839 break; 840 sc->sc_out_port = cp->un.ord; 841 err = 0; 842 sc->sc_need_commit = 1; 843 break; 844 } 845 846 return err; 847 } 848 849 int 850 harmony_get_port(void *vsc, mixer_ctrl_t *cp) 851 { 852 struct harmony_softc *sc; 853 int err; 854 855 sc = vsc; 856 err = EINVAL; 857 switch (cp->dev) { 858 case HARMONY_PORT_INPUT_LVL: 859 if (cp->type != AUDIO_MIXER_VALUE) 860 break; 861 if (cp->un.value.num_channels == 1) { 862 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 863 sc->sc_input_lvl.left; 864 } else if (cp->un.value.num_channels == 2) { 865 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = 866 sc->sc_input_lvl.left; 867 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = 868 sc->sc_input_lvl.right; 869 } else 870 break; 871 err = 0; 872 break; 873 case HARMONY_PORT_INPUT_OV: 874 if (cp->type != AUDIO_MIXER_ENUM) 875 break; 876 cp->un.ord = sc->sc_ov ? 1 : 0; 877 err = 0; 878 break; 879 case HARMONY_PORT_OUTPUT_LVL: 880 if (cp->type != AUDIO_MIXER_VALUE) 881 break; 882 if (cp->un.value.num_channels == 1) { 883 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 884 sc->sc_output_lvl.left; 885 } else if (cp->un.value.num_channels == 2) { 886 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = 887 sc->sc_output_lvl.left; 888 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = 889 sc->sc_output_lvl.right; 890 } else 891 break; 892 err = 0; 893 break; 894 case HARMONY_PORT_OUTPUT_GAIN: 895 if (cp->type != AUDIO_MIXER_ENUM) 896 break; 897 cp->un.ord = sc->sc_outputgain ? 1 : 0; 898 err = 0; 899 break; 900 case HARMONY_PORT_MONITOR_LVL: 901 if (cp->type != AUDIO_MIXER_VALUE) 902 break; 903 if (cp->un.value.num_channels != 1) 904 break; 905 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 906 sc->sc_monitor_lvl.left; 907 err = 0; 908 break; 909 case HARMONY_PORT_RECORD_SOURCE: 910 if (cp->type != AUDIO_MIXER_ENUM) 911 break; 912 cp->un.ord = sc->sc_in_port; 913 err = 0; 914 break; 915 case HARMONY_PORT_OUTPUT_SOURCE: 916 if (cp->type != AUDIO_MIXER_ENUM) 917 break; 918 cp->un.ord = sc->sc_out_port; 919 err = 0; 920 break; 921 } 922 return err; 923 } 924 925 int 926 harmony_query_devinfo(void *vsc, mixer_devinfo_t *dip) 927 { 928 int err; 929 930 err = 0; 931 switch (dip->index) { 932 case HARMONY_PORT_INPUT_LVL: 933 dip->type = AUDIO_MIXER_VALUE; 934 dip->mixer_class = HARMONY_PORT_INPUT_CLASS; 935 dip->prev = dip->next = AUDIO_MIXER_LAST; 936 strlcpy(dip->label.name, AudioNinput, sizeof dip->label.name); 937 dip->un.v.num_channels = 2; 938 strlcpy(dip->un.v.units.name, AudioNvolume, 939 sizeof dip->un.v.units.name); 940 break; 941 case HARMONY_PORT_INPUT_OV: 942 dip->type = AUDIO_MIXER_ENUM; 943 dip->mixer_class = HARMONY_PORT_INPUT_CLASS; 944 dip->prev = dip->next = AUDIO_MIXER_LAST; 945 strlcpy(dip->label.name, "overrange", sizeof dip->label.name); 946 dip->un.e.num_mem = 2; 947 strlcpy(dip->un.e.member[0].label.name, AudioNoff, 948 sizeof dip->un.e.member[0].label.name); 949 dip->un.e.member[0].ord = 0; 950 strlcpy(dip->un.e.member[1].label.name, AudioNon, 951 sizeof dip->un.e.member[1].label.name); 952 dip->un.e.member[1].ord = 1; 953 break; 954 case HARMONY_PORT_OUTPUT_LVL: 955 dip->type = AUDIO_MIXER_VALUE; 956 dip->mixer_class = HARMONY_PORT_OUTPUT_CLASS; 957 dip->prev = dip->next = AUDIO_MIXER_LAST; 958 strlcpy(dip->label.name, AudioNoutput, sizeof dip->label.name); 959 dip->un.v.num_channels = 2; 960 strlcpy(dip->un.v.units.name, AudioNvolume, 961 sizeof dip->un.v.units.name); 962 break; 963 case HARMONY_PORT_OUTPUT_GAIN: 964 dip->type = AUDIO_MIXER_ENUM; 965 dip->mixer_class = HARMONY_PORT_OUTPUT_CLASS; 966 dip->prev = dip->next = AUDIO_MIXER_LAST; 967 strlcpy(dip->label.name, "gain", sizeof dip->label.name); 968 dip->un.e.num_mem = 2; 969 strlcpy(dip->un.e.member[0].label.name, AudioNoff, 970 sizeof dip->un.e.member[0].label.name); 971 dip->un.e.member[0].ord = 0; 972 strlcpy(dip->un.e.member[1].label.name, AudioNon, 973 sizeof dip->un.e.member[1].label.name); 974 dip->un.e.member[1].ord = 1; 975 break; 976 case HARMONY_PORT_MONITOR_LVL: 977 dip->type = AUDIO_MIXER_VALUE; 978 dip->mixer_class = HARMONY_PORT_MONITOR_CLASS; 979 dip->prev = dip->next = AUDIO_MIXER_LAST; 980 strlcpy(dip->label.name, AudioNmonitor, sizeof dip->label.name); 981 dip->un.v.num_channels = 1; 982 strlcpy(dip->un.v.units.name, AudioNvolume, 983 sizeof dip->un.v.units.name); 984 break; 985 case HARMONY_PORT_RECORD_SOURCE: 986 dip->type = AUDIO_MIXER_ENUM; 987 dip->mixer_class = HARMONY_PORT_RECORD_CLASS; 988 dip->prev = dip->next = AUDIO_MIXER_LAST; 989 strlcpy(dip->label.name, AudioNsource, sizeof dip->label.name); 990 dip->un.e.num_mem = 2; 991 strlcpy(dip->un.e.member[0].label.name, AudioNmicrophone, 992 sizeof dip->un.e.member[0].label.name); 993 dip->un.e.member[0].ord = HARMONY_IN_MIC; 994 strlcpy(dip->un.e.member[1].label.name, AudioNline, 995 sizeof dip->un.e.member[1].label.name); 996 dip->un.e.member[1].ord = HARMONY_IN_LINE; 997 break; 998 case HARMONY_PORT_OUTPUT_SOURCE: 999 dip->type = AUDIO_MIXER_ENUM; 1000 dip->mixer_class = HARMONY_PORT_MONITOR_CLASS; 1001 dip->prev = dip->next = AUDIO_MIXER_LAST; 1002 strlcpy(dip->label.name, AudioNoutput, sizeof dip->label.name); 1003 dip->un.e.num_mem = 3; 1004 strlcpy(dip->un.e.member[0].label.name, AudioNline, 1005 sizeof dip->un.e.member[0].label.name); 1006 dip->un.e.member[0].ord = HARMONY_OUT_LINE; 1007 strlcpy(dip->un.e.member[1].label.name, AudioNspeaker, 1008 sizeof dip->un.e.member[1].label.name); 1009 dip->un.e.member[1].ord = HARMONY_OUT_SPEAKER; 1010 strlcpy(dip->un.e.member[2].label.name, AudioNheadphone, 1011 sizeof dip->un.e.member[2].label.name); 1012 dip->un.e.member[2].ord = HARMONY_OUT_HEADPHONE; 1013 break; 1014 case HARMONY_PORT_INPUT_CLASS: 1015 dip->type = AUDIO_MIXER_CLASS; 1016 dip->mixer_class = HARMONY_PORT_INPUT_CLASS; 1017 dip->prev = dip->next = AUDIO_MIXER_LAST; 1018 strlcpy(dip->label.name, AudioCinputs, sizeof dip->label.name); 1019 break; 1020 case HARMONY_PORT_OUTPUT_CLASS: 1021 dip->type = AUDIO_MIXER_CLASS; 1022 dip->mixer_class = HARMONY_PORT_INPUT_CLASS; 1023 dip->prev = dip->next = AUDIO_MIXER_LAST; 1024 strlcpy(dip->label.name, AudioCoutputs, sizeof dip->label.name); 1025 break; 1026 case HARMONY_PORT_MONITOR_CLASS: 1027 dip->type = AUDIO_MIXER_CLASS; 1028 dip->mixer_class = HARMONY_PORT_INPUT_CLASS; 1029 dip->prev = dip->next = AUDIO_MIXER_LAST; 1030 strlcpy(dip->label.name, AudioCmonitor, sizeof dip->label.name); 1031 break; 1032 case HARMONY_PORT_RECORD_CLASS: 1033 dip->type = AUDIO_MIXER_CLASS; 1034 dip->mixer_class = HARMONY_PORT_RECORD_CLASS; 1035 dip->prev = dip->next = AUDIO_MIXER_LAST; 1036 strlcpy(dip->label.name, AudioCrecord, sizeof dip->label.name); 1037 break; 1038 default: 1039 err = ENXIO; 1040 break; 1041 } 1042 1043 return err; 1044 } 1045 1046 void * 1047 harmony_allocm(void *vsc, int dir, size_t size) 1048 { 1049 struct harmony_softc *sc; 1050 struct harmony_dma *d; 1051 int rseg; 1052 1053 sc = vsc; 1054 d = kmem_alloc(sizeof(*d), KM_SLEEP); 1055 1056 if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, BUS_DMA_WAITOK, 1057 &d->d_map) != 0) 1058 goto fail1; 1059 1060 if (bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &d->d_seg, 1, 1061 &rseg, BUS_DMA_WAITOK) != 0) 1062 goto fail2; 1063 1064 if (bus_dmamem_map(sc->sc_dmat, &d->d_seg, 1, size, &d->d_kva, 1065 BUS_DMA_WAITOK) != 0) 1066 goto fail3; 1067 1068 if (bus_dmamap_load(sc->sc_dmat, d->d_map, d->d_kva, size, NULL, 1069 BUS_DMA_WAITOK) != 0) 1070 goto fail4; 1071 1072 d->d_next = sc->sc_dmas; 1073 sc->sc_dmas = d; 1074 d->d_size = size; 1075 return (d->d_kva); 1076 1077 fail4: 1078 bus_dmamem_unmap(sc->sc_dmat, d->d_kva, size); 1079 fail3: 1080 bus_dmamem_free(sc->sc_dmat, &d->d_seg, 1); 1081 fail2: 1082 bus_dmamap_destroy(sc->sc_dmat, d->d_map); 1083 fail1: 1084 kmem_free(d, sizeof(*d)); 1085 return (NULL); 1086 } 1087 1088 void 1089 harmony_freem(void *vsc, void *ptr, size_t size) 1090 { 1091 struct harmony_softc *sc; 1092 struct harmony_dma *d, **dd; 1093 1094 sc = vsc; 1095 for (dd = &sc->sc_dmas; (d = *dd) != NULL; dd = &(*dd)->d_next) { 1096 if (d->d_kva != ptr) 1097 continue; 1098 bus_dmamap_unload(sc->sc_dmat, d->d_map); 1099 bus_dmamem_unmap(sc->sc_dmat, d->d_kva, d->d_size); 1100 bus_dmamem_free(sc->sc_dmat, &d->d_seg, 1); 1101 bus_dmamap_destroy(sc->sc_dmat, d->d_map); 1102 kmem_free(d, sizeof(*d)); 1103 return; 1104 } 1105 printf("%s: free rogue pointer\n", device_xname(sc->sc_dv)); 1106 } 1107 1108 size_t 1109 harmony_round_buffersize(void *vsc, int direction, size_t size) 1110 { 1111 1112 return ((size + HARMONY_BUFSIZE - 1) & (size_t)(-HARMONY_BUFSIZE)); 1113 } 1114 1115 int 1116 harmony_get_props(void *vsc) 1117 { 1118 1119 return AUDIO_PROP_FULLDUPLEX; 1120 } 1121 1122 void 1123 harmony_get_locks(void *vsc, kmutex_t **intr, kmutex_t **thread) 1124 { 1125 struct harmony_softc *sc; 1126 1127 sc = vsc; 1128 *intr = &sc->sc_intr_lock; 1129 *thread = &sc->sc_lock; 1130 } 1131 1132 int 1133 harmony_trigger_output(void *vsc, void *start, void *end, int blksize, 1134 void (*intr)(void *), void *intrarg, const audio_params_t *param) 1135 { 1136 struct harmony_softc *sc; 1137 struct harmony_channel *c; 1138 struct harmony_dma *d; 1139 1140 sc = vsc; 1141 c = &sc->sc_playback; 1142 for (d = sc->sc_dmas; d->d_kva != start; d = d->d_next) 1143 continue; 1144 if (d == NULL) { 1145 printf("%s: trigger_output: bad addr: %p\n", 1146 device_xname(sc->sc_dv), start); 1147 return EINVAL; 1148 } 1149 1150 mutex_spin_enter(&sc->sc_intr_lock); 1151 1152 c->c_intr = intr; 1153 c->c_intrarg = intrarg; 1154 c->c_blksz = blksize; 1155 c->c_current = d; 1156 c->c_segsz = (char *)end - (char *)start; 1157 c->c_cnt = 0; 1158 c->c_lastaddr = d->d_map->dm_segs[0].ds_addr; 1159 1160 sc->sc_playing = 1; 1161 1162 harmony_start_pp(sc, 1); 1163 harmony_start_cp(sc, 0); 1164 harmony_intr_enable(sc); 1165 1166 mutex_spin_exit(&sc->sc_intr_lock); 1167 1168 return 0; 1169 } 1170 1171 void 1172 harmony_start_cp(struct harmony_softc *sc, int start) 1173 { 1174 struct harmony_channel *c; 1175 struct harmony_dma *d; 1176 bus_addr_t nextaddr; 1177 bus_size_t togo; 1178 1179 KASSERT(mutex_owned(&sc->sc_intr_lock)); 1180 1181 c = &sc->sc_capture; 1182 if (sc->sc_capturing == 0) 1183 harmony_empty_input(sc); 1184 else { 1185 d = c->c_current; 1186 togo = c->c_segsz - c->c_cnt; 1187 if (togo == 0) { 1188 nextaddr = d->d_map->dm_segs[0].ds_addr; 1189 c->c_cnt = togo = c->c_blksz; 1190 } else { 1191 nextaddr = c->c_lastaddr; 1192 if (togo > c->c_blksz) 1193 togo = c->c_blksz; 1194 c->c_cnt += togo; 1195 } 1196 1197 bus_dmamap_sync(sc->sc_dmat, d->d_map, 1198 nextaddr - d->d_map->dm_segs[0].ds_addr, 1199 c->c_blksz, BUS_DMASYNC_PREWRITE); 1200 1201 WRITE_REG(sc, HARMONY_RNXTADD, nextaddr); 1202 if (start) 1203 c->c_theaddr = nextaddr; 1204 SYNC_REG(sc, HARMONY_RNXTADD, BUS_SPACE_BARRIER_WRITE); 1205 c->c_lastaddr = nextaddr + togo; 1206 1207 harmony_try_more(sc, HARMONY_RCURADD, 1208 RCURADD_BUFMASK, &sc->sc_capture); 1209 } 1210 1211 callout_schedule(&sc->sc_acc_tmo, 1); 1212 } 1213 1214 void 1215 harmony_start_pp(struct harmony_softc *sc, int start) 1216 { 1217 struct harmony_channel *c; 1218 struct harmony_dma *d; 1219 bus_addr_t nextaddr; 1220 bus_size_t togo; 1221 1222 KASSERT(mutex_owned(&sc->sc_intr_lock)); 1223 1224 c = &sc->sc_playback; 1225 if (sc->sc_playing == 0) 1226 harmony_empty_output(sc); 1227 else { 1228 d = c->c_current; 1229 togo = c->c_segsz - c->c_cnt; 1230 if (togo == 0) { 1231 nextaddr = d->d_map->dm_segs[0].ds_addr; 1232 c->c_cnt = togo = c->c_blksz; 1233 } else { 1234 nextaddr = c->c_lastaddr; 1235 if (togo > c->c_blksz) 1236 togo = c->c_blksz; 1237 c->c_cnt += togo; 1238 } 1239 1240 bus_dmamap_sync(sc->sc_dmat, d->d_map, 1241 nextaddr - d->d_map->dm_segs[0].ds_addr, 1242 c->c_blksz, BUS_DMASYNC_PREWRITE); 1243 1244 WRITE_REG(sc, HARMONY_PNXTADD, nextaddr); 1245 if (start) 1246 c->c_theaddr = nextaddr; 1247 SYNC_REG(sc, HARMONY_PNXTADD, BUS_SPACE_BARRIER_WRITE); 1248 c->c_lastaddr = nextaddr + togo; 1249 1250 harmony_try_more(sc, HARMONY_PCURADD, 1251 PCURADD_BUFMASK, &sc->sc_playback); 1252 } 1253 } 1254 1255 int 1256 harmony_trigger_input(void *vsc, void *start, void *end, int blksize, 1257 void (*intr)(void *), void *intrarg, const audio_params_t *param) 1258 { 1259 struct harmony_softc *sc = vsc; 1260 struct harmony_channel *c = &sc->sc_capture; 1261 struct harmony_dma *d; 1262 1263 KASSERT(mutex_owned(&sc->sc_intr_lock)); 1264 1265 for (d = sc->sc_dmas; d->d_kva != start; d = d->d_next) 1266 continue; 1267 if (d == NULL) { 1268 printf("%s: trigger_input: bad addr: %p\n", 1269 device_xname(sc->sc_dv), start); 1270 return EINVAL; 1271 } 1272 1273 c->c_intr = intr; 1274 c->c_intrarg = intrarg; 1275 c->c_blksz = blksize; 1276 c->c_current = d; 1277 c->c_segsz = (char *)end - (char *)start; 1278 c->c_cnt = 0; 1279 c->c_lastaddr = d->d_map->dm_segs[0].ds_addr; 1280 1281 sc->sc_capturing = 1; 1282 1283 harmony_start_cp(sc, 1); 1284 harmony_intr_enable(sc); 1285 1286 return 0; 1287 } 1288 1289 static const struct speed_struct { 1290 uint32_t speed; 1291 uint32_t bits; 1292 } harmony_speeds[] = { 1293 { 5125, CNTL_RATE_5125 }, 1294 { 6615, CNTL_RATE_6615 }, 1295 { 8000, CNTL_RATE_8000 }, 1296 { 9600, CNTL_RATE_9600 }, 1297 { 11025, CNTL_RATE_11025 }, 1298 { 16000, CNTL_RATE_16000 }, 1299 { 18900, CNTL_RATE_18900 }, 1300 { 22050, CNTL_RATE_22050 }, 1301 { 27428, CNTL_RATE_27428 }, 1302 { 32000, CNTL_RATE_32000 }, 1303 { 33075, CNTL_RATE_33075 }, 1304 { 37800, CNTL_RATE_37800 }, 1305 { 44100, CNTL_RATE_44100 }, 1306 { 48000, CNTL_RATE_48000 }, 1307 }; 1308 1309 uint32_t 1310 harmony_speed_bits(struct harmony_softc *sc, u_int *speedp) 1311 { 1312 int i, n, selected; 1313 1314 selected = -1; 1315 n = sizeof(harmony_speeds) / sizeof(harmony_speeds[0]); 1316 1317 if ((*speedp) <= harmony_speeds[0].speed) 1318 selected = 0; 1319 else if ((*speedp) >= harmony_speeds[n - 1].speed) 1320 selected = n - 1; 1321 else { 1322 for (i = 1; selected == -1 && i < n; i++) { 1323 if ((*speedp) == harmony_speeds[i].speed) 1324 selected = i; 1325 else if ((*speedp) < harmony_speeds[i].speed) { 1326 int diff1, diff2; 1327 1328 diff1 = (*speedp) - harmony_speeds[i - 1].speed; 1329 diff2 = harmony_speeds[i].speed - (*speedp); 1330 if (diff1 < diff2) 1331 selected = i - 1; 1332 else 1333 selected = i; 1334 } 1335 } 1336 } 1337 1338 if (selected == -1) 1339 selected = 2; 1340 1341 *speedp = harmony_speeds[selected].speed; 1342 return harmony_speeds[selected].bits; 1343 } 1344 1345 int 1346 harmony_set_gainctl(struct harmony_softc *sc) 1347 { 1348 uint32_t bits, mask, val, old; 1349 1350 /* XXX leave these bits alone or the chip will not come out of CNTL */ 1351 bits = GAINCTL_LE | GAINCTL_HE | GAINCTL_SE | GAINCTL_IS_MASK; 1352 1353 /* input level */ 1354 bits |= ((sc->sc_input_lvl.left >> (8 - GAINCTL_INPUT_BITS)) << 1355 GAINCTL_INPUT_LEFT_S) & GAINCTL_INPUT_LEFT_M; 1356 bits |= ((sc->sc_input_lvl.right >> (8 - GAINCTL_INPUT_BITS)) << 1357 GAINCTL_INPUT_RIGHT_S) & GAINCTL_INPUT_RIGHT_M; 1358 1359 /* output level (inverted) */ 1360 mask = (1 << GAINCTL_OUTPUT_BITS) - 1; 1361 val = mask - (sc->sc_output_lvl.left >> (8 - GAINCTL_OUTPUT_BITS)); 1362 bits |= (val << GAINCTL_OUTPUT_LEFT_S) & GAINCTL_OUTPUT_LEFT_M; 1363 val = mask - (sc->sc_output_lvl.right >> (8 - GAINCTL_OUTPUT_BITS)); 1364 bits |= (val << GAINCTL_OUTPUT_RIGHT_S) & GAINCTL_OUTPUT_RIGHT_M; 1365 1366 /* monitor level (inverted) */ 1367 mask = (1 << GAINCTL_MONITOR_BITS) - 1; 1368 val = mask - (sc->sc_monitor_lvl.left >> (8 - GAINCTL_MONITOR_BITS)); 1369 bits |= (val << GAINCTL_MONITOR_S) & GAINCTL_MONITOR_M; 1370 1371 /* XXX messing with these causes CNTL_C to get stuck... grr. */ 1372 bits &= ~GAINCTL_IS_MASK; 1373 if (sc->sc_in_port == HARMONY_IN_MIC) 1374 bits |= GAINCTL_IS_LINE; 1375 else 1376 bits |= GAINCTL_IS_MICROPHONE; 1377 1378 /* XXX messing with these causes CNTL_C to get stuck... grr. */ 1379 bits &= ~(GAINCTL_LE | GAINCTL_HE | GAINCTL_SE); 1380 if (sc->sc_out_port == HARMONY_OUT_LINE) 1381 bits |= GAINCTL_LE; 1382 else if (sc->sc_out_port == HARMONY_OUT_SPEAKER) 1383 bits |= GAINCTL_SE; 1384 else 1385 bits |= GAINCTL_HE; 1386 1387 mask = GAINCTL_LE | GAINCTL_HE | GAINCTL_SE | GAINCTL_IS_MASK; 1388 old = bus_space_read_4(sc->sc_bt, sc->sc_bh, HARMONY_GAINCTL); 1389 bus_space_write_4(sc->sc_bt, sc->sc_bh, HARMONY_GAINCTL, bits); 1390 if ((old & mask) != (bits & mask)) 1391 return 1; 1392 return 0; 1393 } 1394 1395 void 1396 harmony_try_more(struct harmony_softc *sc, int curadd, int bufmask, 1397 struct harmony_channel *c) 1398 { 1399 struct harmony_dma *d; 1400 uint32_t cur; 1401 int i, nsegs; 1402 1403 d = c->c_current; 1404 cur = bus_space_read_4(sc->sc_bt, sc->sc_bh, curadd); 1405 cur &= bufmask; 1406 nsegs = 0; 1407 1408 #ifdef DIAGNOSTIC 1409 if (cur < d->d_map->dm_segs[0].ds_addr || 1410 cur >= (d->d_map->dm_segs[0].ds_addr + c->c_segsz)) 1411 panic("%s: bad current %x < %lx || %x > %lx", 1412 device_xname(sc->sc_dv), cur, 1413 d->d_map->dm_segs[0].ds_addr, cur, 1414 d->d_map->dm_segs[0].ds_addr + c->c_segsz); 1415 #endif /* DIAGNOSTIC */ 1416 1417 if (cur > c->c_theaddr) { 1418 nsegs = (cur - c->c_theaddr) / HARMONY_BUFSIZE; 1419 } else if (cur < c->c_theaddr) { 1420 nsegs = (d->d_map->dm_segs[0].ds_addr + c->c_segsz - 1421 c->c_theaddr) / HARMONY_BUFSIZE; 1422 nsegs += (cur - d->d_map->dm_segs[0].ds_addr) / 1423 HARMONY_BUFSIZE; 1424 } 1425 1426 if (nsegs != 0 && c->c_intr != NULL) { 1427 for (i = 0; i < nsegs; i++) 1428 (*c->c_intr)(c->c_intrarg); 1429 c->c_theaddr = cur; 1430 } 1431 } 1432