xref: /netbsd-src/sys/arch/hppa/gsc/harmony.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /*	$NetBSD: harmony.c,v 1.1 2014/02/24 07:23:43 skrll Exp $	*/
2 
3 /*	$OpenBSD: harmony.c,v 1.23 2004/02/13 21:28:19 mickey Exp $	*/
4 
5 /*-
6  * Copyright (c) 2009 The NetBSD Foundation, Inc.
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to The NetBSD Foundation
10  * by Matt Fleming.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 /*
35  * Copyright (c) 2003 Jason L. Wright (jason@thought.net)
36  * All rights reserved.
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  *
47  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
48  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
49  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
50  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
51  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
52  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
53  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
55  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
56  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
57  * POSSIBILITY OF SUCH DAMAGE.
58  */
59 
60 /*
61  * Harmony (CS4215/AD1849 LASI) audio interface.
62  */
63 
64 
65 
66 #include <sys/param.h>
67 #include <sys/kernel.h>
68 #include <sys/systm.h>
69 #include <sys/errno.h>
70 #include <sys/ioctl.h>
71 #include <sys/device.h>
72 #include <sys/proc.h>
73 #include <sys/kmem.h>
74 #include <uvm/uvm_extern.h>
75 
76 #include <sys/rnd.h>
77 
78 #include <sys/audioio.h>
79 #include <dev/audio_if.h>
80 #include <dev/auconv.h>
81 
82 #include <machine/cpu.h>
83 #include <machine/intr.h>
84 #include <machine/iomod.h>
85 #include <machine/autoconf.h>
86 #include <sys/bus.h>
87 
88 #include <hppa/dev/cpudevs.h>
89 #include <hppa/gsc/gscbusvar.h>
90 #include <hppa/gsc/harmonyreg.h>
91 #include <hppa/gsc/harmonyvar.h>
92 
93 int	harmony_open(void *, int);
94 void	harmony_close(void *);
95 int	harmony_query_encoding(void *, struct audio_encoding *);
96 int	harmony_set_params(void *, int, int, audio_params_t *,
97     audio_params_t *, stream_filter_list_t *, stream_filter_list_t *);
98 int	harmony_round_blocksize(void *, int, int, const audio_params_t *);
99 
100 int	harmony_control_wait(struct harmony_softc *);
101 int	harmony_commit_settings(void *);
102 
103 int	harmony_halt_output(void *);
104 int	harmony_halt_input(void *);
105 int	harmony_getdev(void *, struct audio_device *);
106 int	harmony_set_port(void *, mixer_ctrl_t *);
107 int	harmony_get_port(void *, mixer_ctrl_t *);
108 int	harmony_query_devinfo(void *, mixer_devinfo_t *);
109 void *	harmony_allocm(void *, int, size_t);
110 void	harmony_freem(void *, void *, size_t);
111 size_t	harmony_round_buffersize(void *, int, size_t);
112 int	harmony_get_props(void *);
113 int	harmony_trigger_output(void *, void *, void *, int,
114     void (*)(void *), void *, const audio_params_t *);
115 int	harmony_trigger_input(void *, void *, void *, int,
116     void (*)(void *), void *, const audio_params_t *);
117 void	harmony_get_locks(void *, kmutex_t **, kmutex_t **);
118 
119 const struct audio_hw_if harmony_sa_hw_if = {
120 	harmony_open,
121 	harmony_close,
122 	NULL,
123 	harmony_query_encoding,
124 	harmony_set_params,
125 	harmony_round_blocksize,
126 	harmony_commit_settings,
127 	NULL,
128 	NULL,
129 	NULL,
130 	NULL,
131 	harmony_halt_output,
132 	harmony_halt_input,
133 	NULL,
134 	harmony_getdev,
135 	NULL,
136 	harmony_set_port,
137 	harmony_get_port,
138 	harmony_query_devinfo,
139 	harmony_allocm,
140 	harmony_freem,
141 	harmony_round_buffersize,
142 	NULL,
143 	harmony_get_props,
144 	harmony_trigger_output,
145 	harmony_trigger_input,
146 	NULL,
147 	harmony_get_locks,
148 };
149 
150 int harmony_match(device_t, struct cfdata *, void *);
151 void harmony_attach(device_t, device_t, void *);
152 
153 
154 CFATTACH_DECL_NEW(harmony, sizeof(struct harmony_softc),
155     harmony_match, harmony_attach, NULL, NULL);
156 
157 int harmony_intr(void *);
158 void harmony_intr_enable(struct harmony_softc *);
159 void harmony_intr_disable(struct harmony_softc *);
160 uint32_t harmony_speed_bits(struct harmony_softc *, u_int *);
161 int harmony_set_gainctl(struct harmony_softc *);
162 void harmony_reset_codec(struct harmony_softc *);
163 void harmony_start_cp(struct harmony_softc *, int);
164 void harmony_start_pp(struct harmony_softc *, int);
165 void harmony_tick_pb(void *);
166 void harmony_tick_cp(void *);
167 void harmony_try_more(struct harmony_softc *, int, int,
168 	struct harmony_channel *);
169 static void harmony_empty_input(struct harmony_softc *);
170 static void harmony_empty_output(struct harmony_softc *);
171 
172 void harmony_acc_tmo(void *);
173 #define	ADD_CLKALLICA(sc) do {						\
174 	(sc)->sc_acc <<= 1;						\
175 	(sc)->sc_acc |= READ_REG((sc), HARMONY_DIAG) & DIAG_CO;		\
176 	if ((sc)->sc_acc_cnt++ && !((sc)->sc_acc_cnt % 32))		\
177 		rnd_add_uint32(&(sc)->sc_rnd_source,			\
178 			       (sc)->sc_acc_num ^= (sc)->sc_acc);	\
179 } while(0)
180 
181 int
182 harmony_match(device_t parent, struct cfdata *match, void *aux)
183 {
184 	struct gsc_attach_args *ga;
185 
186 	ga = aux;
187 	if (ga->ga_type.iodc_type == HPPA_TYPE_FIO) {
188 		if (ga->ga_type.iodc_sv_model == HPPA_FIO_A1 ||
189 		    ga->ga_type.iodc_sv_model == HPPA_FIO_A2NB ||
190 		    ga->ga_type.iodc_sv_model == HPPA_FIO_A1NB ||
191 		    ga->ga_type.iodc_sv_model == HPPA_FIO_A2)
192 			return 1;
193 	}
194 	return 0;
195 }
196 
197 void
198 harmony_attach(device_t parent, device_t self, void *aux)
199 {
200 	struct harmony_softc *sc = device_private(self);
201 	struct gsc_attach_args *ga;
202 	uint8_t rev;
203 	uint32_t cntl;
204 	int i;
205 
206 	sc->sc_dv = self;
207 	ga = aux;
208 	sc->sc_bt = ga->ga_iot;
209 	sc->sc_dmat = ga->ga_dmatag;
210 
211 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
212 	mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_AUDIO);
213 
214 	if (bus_space_map(sc->sc_bt, ga->ga_hpa, HARMONY_NREGS, 0,
215 	    &sc->sc_bh) != 0) {
216 		aprint_error(": couldn't map registers\n");
217 		return;
218 	}
219 
220 	cntl = READ_REG(sc, HARMONY_ID);
221 	switch ((cntl & ID_REV_MASK)) {
222 	case ID_REV_TS:
223 		sc->sc_teleshare = 1;
224 	case ID_REV_NOTS:
225 		break;
226 	default:
227 		aprint_error(": unknown id == 0x%02x\n",
228 		    (cntl & ID_REV_MASK) >> ID_REV_SHIFT);
229 		bus_space_unmap(sc->sc_bt, sc->sc_bh, HARMONY_NREGS);
230 		return;
231 	}
232 
233 	if (bus_dmamem_alloc(sc->sc_dmat, sizeof(struct harmony_empty),
234 	    PAGE_SIZE, 0, &sc->sc_empty_seg, 1, &sc->sc_empty_rseg,
235 	    BUS_DMA_WAITOK) != 0) {
236 		aprint_error(": could not alloc DMA memory\n");
237 		bus_space_unmap(sc->sc_bt, sc->sc_bh, HARMONY_NREGS);
238 		return;
239 	}
240 	if (bus_dmamem_map(sc->sc_dmat, &sc->sc_empty_seg, 1,
241 	    sizeof(struct harmony_empty), (void **)&sc->sc_empty_kva,
242 	    BUS_DMA_WAITOK) != 0) {
243 		aprint_error(": couldn't map DMA memory\n");
244 		bus_dmamem_free(sc->sc_dmat, &sc->sc_empty_seg,
245 		    sc->sc_empty_rseg);
246 		bus_space_unmap(sc->sc_bt, sc->sc_bh, HARMONY_NREGS);
247 		return;
248 	}
249 	if (bus_dmamap_create(sc->sc_dmat, sizeof(struct harmony_empty), 1,
250 	    sizeof(struct harmony_empty), 0, BUS_DMA_WAITOK,
251 	    &sc->sc_empty_map) != 0) {
252 		aprint_error(": can't create DMA map\n");
253 		bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_empty_kva,
254 		    sizeof(struct harmony_empty));
255 		bus_dmamem_free(sc->sc_dmat, &sc->sc_empty_seg,
256 		    sc->sc_empty_rseg);
257 		bus_space_unmap(sc->sc_bt, sc->sc_bh, HARMONY_NREGS);
258 		return;
259 	}
260 	if (bus_dmamap_load(sc->sc_dmat, sc->sc_empty_map, sc->sc_empty_kva,
261 	    sizeof(struct harmony_empty), NULL, BUS_DMA_WAITOK) != 0) {
262 		aprint_error(": can't load DMA map\n");
263 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_empty_map);
264 		bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_empty_kva,
265 		    sizeof(struct harmony_empty));
266 		bus_dmamem_free(sc->sc_dmat, &sc->sc_empty_seg,
267 		    sc->sc_empty_rseg);
268 		bus_space_unmap(sc->sc_bt, sc->sc_bh, HARMONY_NREGS);
269 		return;
270 	}
271 
272 	sc->sc_playback_empty = 0;
273 	for (i = 0; i < PLAYBACK_EMPTYS; i++)
274 		sc->sc_playback_paddrs[i] =
275 		    sc->sc_empty_map->dm_segs[0].ds_addr +
276 		    offsetof(struct harmony_empty, playback[i][0]);
277 
278 	sc->sc_capture_empty = 0;
279 	for (i = 0; i < CAPTURE_EMPTYS; i++)
280 		sc->sc_capture_paddrs[i] =
281 		    sc->sc_empty_map->dm_segs[0].ds_addr +
282 		    offsetof(struct harmony_empty, capture[i][0]);
283 
284 	bus_dmamap_sync(sc->sc_dmat, sc->sc_empty_map,
285 	    offsetof(struct harmony_empty, playback[0][0]),
286 	    PLAYBACK_EMPTYS * HARMONY_BUFSIZE, BUS_DMASYNC_PREWRITE);
287 
288 	(void) hppa_intr_establish(IPL_AUDIO, harmony_intr, sc, ga->ga_ir,
289 	     ga->ga_irq);
290 
291 	/* set defaults */
292 	sc->sc_in_port = HARMONY_IN_LINE;
293 	sc->sc_out_port = HARMONY_OUT_SPEAKER;
294 	sc->sc_input_lvl.left = sc->sc_input_lvl.right = 240;
295 	sc->sc_output_lvl.left = sc->sc_output_lvl.right = 244;
296 	sc->sc_monitor_lvl.left = sc->sc_monitor_lvl.right = 208;
297 	sc->sc_outputgain = 0;
298 
299 	/* reset chip, and push default gain controls */
300 	harmony_reset_codec(sc);
301 
302 	cntl = READ_REG(sc, HARMONY_CNTL);
303 	rev = (cntl & CNTL_CODEC_REV_MASK) >> CNTL_CODEC_REV_SHIFT;
304 	aprint_normal(": rev %u", rev);
305 
306 	if (sc->sc_teleshare)
307 		printf(", teleshare");
308 	aprint_normal("\n");
309 
310 	if ((rev & CS4215_REV_VER) >= CS4215_REV_VER_E)
311 		sc->sc_hasulinear8 = 1;
312 
313 	strlcpy(sc->sc_audev.name, ga->ga_name, sizeof(sc->sc_audev.name));
314 	snprintf(sc->sc_audev.version, sizeof sc->sc_audev.version,
315 	    "%u.%u;%u", ga->ga_type.iodc_sv_rev,
316 	    ga->ga_type.iodc_model, ga->ga_type.iodc_revision);
317 	strlcpy(sc->sc_audev.config, device_xname(sc->sc_dv),
318 	    sizeof(sc->sc_audev.config));
319 
320 	audio_attach_mi(&harmony_sa_hw_if, sc, sc->sc_dv);
321 
322 	rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dv),
323 	    RND_TYPE_UNKNOWN, 0);
324 
325 	callout_init(&sc->sc_acc_tmo, 0);
326 	callout_setfunc(&sc->sc_acc_tmo, harmony_acc_tmo, sc);
327 	sc->sc_acc_num = 0xa5a5a5a5;
328 }
329 
330 void
331 harmony_reset_codec(struct harmony_softc *sc)
332 {
333 
334 	/* silence */
335 	WRITE_REG(sc, HARMONY_GAINCTL, GAINCTL_OUTPUT_LEFT_M |
336 	    GAINCTL_OUTPUT_RIGHT_M | GAINCTL_MONITOR_M);
337 
338 	/* start reset */
339 	WRITE_REG(sc, HARMONY_RESET, RESET_RST);
340 
341 	DELAY(100000);		/* wait at least 0.05 sec */
342 
343 	harmony_set_gainctl(sc);
344 	WRITE_REG(sc, HARMONY_RESET, 0);
345 }
346 
347 void
348 harmony_acc_tmo(void *v)
349 {
350 	struct harmony_softc *sc;
351 
352 	sc = v;
353 	ADD_CLKALLICA(sc);
354 	callout_schedule(&sc->sc_acc_tmo, 1);
355 }
356 
357 /*
358  * interrupt handler
359  */
360 int
361 harmony_intr(void *vsc)
362 {
363 	struct harmony_softc *sc;
364 	uint32_t dstatus;
365 	int r;
366 
367 	sc = vsc;
368 	r = 0;
369 	ADD_CLKALLICA(sc);
370 
371 	mutex_spin_enter(&sc->sc_intr_lock);
372 
373 	harmony_intr_disable(sc);
374 
375 	dstatus = READ_REG(sc, HARMONY_DSTATUS);
376 
377 	if (dstatus & DSTATUS_PN) {
378 		r = 1;
379 		harmony_start_pp(sc, 0);
380 	}
381 
382 	if (dstatus & DSTATUS_RN) {
383 		r = 1;
384 		harmony_start_cp(sc, 0);
385 	}
386 
387 	if (READ_REG(sc, HARMONY_OV) & OV_OV) {
388 		sc->sc_ov = 1;
389 		WRITE_REG(sc, HARMONY_OV, 0);
390 	} else
391 		sc->sc_ov = 0;
392 
393 	harmony_intr_enable(sc);
394 
395 	mutex_spin_exit(&sc->sc_intr_lock);
396 
397 	return r;
398 }
399 
400 void
401 harmony_intr_enable(struct harmony_softc *sc)
402 {
403 
404 	WRITE_REG(sc, HARMONY_DSTATUS, DSTATUS_IE);
405 	SYNC_REG(sc, HARMONY_DSTATUS, BUS_SPACE_BARRIER_WRITE);
406 }
407 
408 void
409 harmony_intr_disable(struct harmony_softc *sc)
410 {
411 
412 	WRITE_REG(sc, HARMONY_DSTATUS, 0);
413 	SYNC_REG(sc, HARMONY_DSTATUS, BUS_SPACE_BARRIER_WRITE);
414 }
415 
416 int
417 harmony_open(void *vsc, int flags)
418 {
419 	struct harmony_softc *sc;
420 
421 	sc = vsc;
422 	if (sc->sc_open)
423 		return EBUSY;
424 	sc->sc_open = 1;
425 	return 0;
426 }
427 
428 void
429 harmony_close(void *vsc)
430 {
431 	struct harmony_softc *sc;
432 
433 	sc = vsc;
434 	harmony_halt_input(sc);
435 	harmony_halt_output(sc);
436 	harmony_intr_disable(sc);
437 	sc->sc_open = 0;
438 }
439 
440 int
441 harmony_query_encoding(void *vsc, struct audio_encoding *fp)
442 {
443 	struct harmony_softc *sc;
444 	int err;
445 
446 	sc = vsc;
447 	err = 0;
448 	switch (fp->index) {
449 	case 0:
450 		strlcpy(fp->name, AudioEmulaw, sizeof fp->name);
451 		fp->encoding = AUDIO_ENCODING_ULAW;
452 		fp->precision = 8;
453 		fp->flags = 0;
454 		break;
455 	case 1:
456 		strlcpy(fp->name, AudioEalaw, sizeof fp->name);
457 		fp->encoding = AUDIO_ENCODING_ALAW;
458 		fp->precision = 8;
459 		fp->flags = 0;
460 		break;
461 	case 2:
462 		strlcpy(fp->name, AudioEslinear_be, sizeof fp->name);
463 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
464 		fp->precision = 16;
465 		fp->flags = 0;
466 		break;
467 	case 3:
468 		strlcpy(fp->name, AudioEslinear_le, sizeof fp->name);
469 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
470 		fp->precision = 16;
471 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
472 		break;
473 	case 4:
474 		strlcpy(fp->name, AudioEulinear_be, sizeof fp->name);
475 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
476 		fp->precision = 16;
477 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
478 		break;
479 	case 5:
480 		strlcpy(fp->name, AudioEulinear_le, sizeof fp->name);
481 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
482 		fp->precision = 16;
483 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
484 		break;
485 	case 6:
486 		if (sc->sc_hasulinear8) {
487 			strlcpy(fp->name, AudioEulinear, sizeof fp->name);
488 			fp->encoding = AUDIO_ENCODING_ULINEAR;
489 			fp->precision = 8;
490 			fp->flags = 0;
491 			break;
492 		}
493 		/*FALLTHROUGH*/
494 	case 7:
495 		if (sc->sc_hasulinear8) {
496 			strlcpy(fp->name, AudioEslinear, sizeof fp->name);
497 			fp->encoding = AUDIO_ENCODING_SLINEAR;
498 			fp->precision = 8;
499 			fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
500 			break;
501 		}
502 		/*FALLTHROUGH*/
503 	default:
504 		err = EINVAL;
505 	}
506 	return err;
507 }
508 
509 int
510 harmony_set_params(void *vsc, int setmode, int usemode,
511     audio_params_t *p, audio_params_t *r,
512     stream_filter_list_t *pfil, stream_filter_list_t *rfil)
513 {
514 	audio_params_t hw;
515 	struct harmony_softc *sc;
516 	uint32_t bits;
517 	stream_filter_factory_t *pswcode = NULL;
518 	stream_filter_factory_t *rswcode = NULL;
519 
520 	sc = vsc;
521 	/* assume p.equals(r) */
522 	hw = *p;
523 	switch (p->encoding) {
524 	case AUDIO_ENCODING_ULAW:
525 		if (p->precision != 8)
526 			return EINVAL;
527 		bits = CNTL_FORMAT_ULAW;
528 		break;
529 	case AUDIO_ENCODING_ALAW:
530 		if (p->precision != 8)
531 			return EINVAL;
532 		bits = CNTL_FORMAT_ALAW;
533 		break;
534 	case AUDIO_ENCODING_SLINEAR_BE:
535 		if (p->precision == 8) {
536 			bits = CNTL_FORMAT_ULINEAR8;
537 			hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
538 			rswcode = pswcode = change_sign8;
539 			break;
540 		}
541 		if (p->precision == 16) {
542 			bits = CNTL_FORMAT_SLINEAR16BE;
543 			break;
544 		}
545 		return EINVAL;
546 	case AUDIO_ENCODING_ULINEAR:
547 		if (p->precision != 8)
548 			return EINVAL;
549 		bits = CNTL_FORMAT_ULINEAR8;
550 		break;
551 	case AUDIO_ENCODING_SLINEAR:
552 		if (p->precision != 8)
553 			return EINVAL;
554 		bits = CNTL_FORMAT_ULINEAR8;
555 		hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
556 		rswcode = pswcode = change_sign8;
557 		break;
558 	case AUDIO_ENCODING_SLINEAR_LE:
559 		if (p->precision == 8) {
560 			bits = CNTL_FORMAT_ULINEAR8;
561 			hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
562 			rswcode = pswcode = change_sign8;
563 			break;
564 		}
565 		if (p->precision == 16) {
566 			bits = CNTL_FORMAT_SLINEAR16BE;
567 			hw.encoding = AUDIO_ENCODING_SLINEAR_BE;
568 			rswcode = pswcode = swap_bytes;
569 			break;
570 		}
571 		return EINVAL;
572 	case AUDIO_ENCODING_ULINEAR_BE:
573 		if (p->precision == 8) {
574 			bits = CNTL_FORMAT_ULINEAR8;
575 			break;
576 		}
577 		if (p->precision == 16) {
578 			bits = CNTL_FORMAT_SLINEAR16BE;
579 			rswcode = pswcode = change_sign16;
580 			break;
581 		}
582 		return EINVAL;
583 	case AUDIO_ENCODING_ULINEAR_LE:
584 		if (p->precision == 8) {
585 			bits = CNTL_FORMAT_ULINEAR8;
586 			break;
587 		}
588 		if (p->precision == 16) {
589 			bits = CNTL_FORMAT_SLINEAR16BE;
590 			hw.encoding = AUDIO_ENCODING_SLINEAR_BE;
591 			rswcode = pswcode = swap_bytes_change_sign16;
592 			break;
593 		}
594 		return EINVAL;
595 	default:
596 		return EINVAL;
597 	}
598 
599 	if (sc->sc_outputgain)
600 		bits |= CNTL_OLB;
601 
602 	if (p->channels == 1)
603 		bits |= CNTL_CHANS_MONO;
604 	else if (p->channels == 2)
605 		bits |= CNTL_CHANS_STEREO;
606 	else
607 		return EINVAL;
608 
609 	bits |= harmony_speed_bits(sc, &p->sample_rate);
610 	if (pswcode != NULL)
611 		pfil->append(pfil, pswcode, &hw);
612 	if (rswcode != NULL)
613 		rfil->append(rfil, rswcode, &hw);
614 	sc->sc_cntlbits = bits;
615 	sc->sc_need_commit = 1;
616 
617 	return 0;
618 }
619 
620 int
621 harmony_round_blocksize(void *vsc, int blk,
622     int mode, const audio_params_t *param)
623 {
624 
625 	return HARMONY_BUFSIZE;
626 }
627 
628 int
629 harmony_control_wait(struct harmony_softc *sc)
630 {
631 	uint32_t reg;
632 	int j = 0;
633 
634 	while (j < 10) {
635 		/* Wait for it to come out of control mode */
636 		reg = READ_REG(sc, HARMONY_CNTL);
637 		if ((reg & CNTL_C) == 0)
638 			return 0;
639 		DELAY(50000);		/* wait 0.05 */
640 		j++;
641 	}
642 
643 	return 1;
644 }
645 
646 int
647 harmony_commit_settings(void *vsc)
648 {
649 	struct harmony_softc *sc;
650 	uint32_t reg;
651 	uint8_t quietchar;
652 	int i;
653 
654 	sc = vsc;
655 	if (sc->sc_need_commit == 0)
656 		return 0;
657 
658 	harmony_intr_disable(sc);
659 
660 	for (;;) {
661 		reg = READ_REG(sc, HARMONY_DSTATUS);
662 		if ((reg & (DSTATUS_PC | DSTATUS_RC)) == 0)
663 			break;
664 	}
665 
666 	/* Setting some bits in gainctl requires a reset */
667 	harmony_reset_codec(sc);
668 
669 	/* set the silence character based on the encoding type */
670 	bus_dmamap_sync(sc->sc_dmat, sc->sc_empty_map,
671 	    offsetof(struct harmony_empty, playback[0][0]),
672 	    PLAYBACK_EMPTYS * HARMONY_BUFSIZE, BUS_DMASYNC_POSTWRITE);
673 	switch (sc->sc_cntlbits & CNTL_FORMAT_MASK) {
674 	case CNTL_FORMAT_ULAW:
675 		quietchar = 0x7f;
676 		break;
677 	case CNTL_FORMAT_ALAW:
678 		quietchar = 0x55;
679 		break;
680 	case CNTL_FORMAT_SLINEAR16BE:
681 	case CNTL_FORMAT_ULINEAR8:
682 	default:
683 		quietchar = 0;
684 		break;
685 	}
686 	for (i = 0; i < PLAYBACK_EMPTYS; i++)
687 		memset(&sc->sc_empty_kva->playback[i][0],
688 		    quietchar, HARMONY_BUFSIZE);
689 	bus_dmamap_sync(sc->sc_dmat, sc->sc_empty_map,
690 	    offsetof(struct harmony_empty, playback[0][0]),
691 	    PLAYBACK_EMPTYS * HARMONY_BUFSIZE, BUS_DMASYNC_PREWRITE);
692 
693 	harmony_control_wait(sc);
694 
695 	bus_space_write_4(sc->sc_bt, sc->sc_bh, HARMONY_CNTL,
696 	    sc->sc_cntlbits | CNTL_C);
697 
698 	harmony_control_wait(sc);
699 
700 	sc->sc_need_commit = 0;
701 
702 	if (sc->sc_playing || sc->sc_capturing)
703 		harmony_intr_enable(sc);
704 
705 	return 0;
706 }
707 
708 static void
709 harmony_empty_output(struct harmony_softc *sc)
710 {
711 
712 	WRITE_REG(sc, HARMONY_PNXTADD,
713 	    sc->sc_playback_paddrs[sc->sc_playback_empty]);
714 	SYNC_REG(sc, HARMONY_PNXTADD, BUS_SPACE_BARRIER_WRITE);
715 
716 	if (++sc->sc_playback_empty == PLAYBACK_EMPTYS)
717 		sc->sc_playback_empty = 0;
718 }
719 
720 int
721 harmony_halt_output(void *vsc)
722 {
723 	struct harmony_softc *sc;
724 
725 	sc = vsc;
726 	sc->sc_playing = 0;
727 
728 	harmony_empty_output(sc);
729 	return 0;
730 }
731 
732 static void
733 harmony_empty_input(struct harmony_softc *sc)
734 {
735 
736 	WRITE_REG(sc, HARMONY_RNXTADD,
737 	    sc->sc_capture_paddrs[sc->sc_capture_empty]);
738 	SYNC_REG(sc, HARMONY_RNXTADD, BUS_SPACE_BARRIER_WRITE);
739 
740 	if (++sc->sc_capture_empty == CAPTURE_EMPTYS)
741 		sc->sc_capture_empty = 0;
742 }
743 
744 int
745 harmony_halt_input(void *vsc)
746 {
747 	struct harmony_softc *sc;
748 
749 	sc = vsc;
750 	sc->sc_capturing = 0;
751 
752 	harmony_empty_input(sc);
753 	return 0;
754 }
755 
756 int
757 harmony_getdev(void *vsc, struct audio_device *retp)
758 {
759 	struct harmony_softc *sc;
760 
761 	sc = vsc;
762 	*retp = sc->sc_audev;
763 	return 0;
764 }
765 
766 int
767 harmony_set_port(void *vsc, mixer_ctrl_t *cp)
768 {
769 	struct harmony_softc *sc;
770 	int err;
771 
772 	sc = vsc;
773 	err = EINVAL;
774 	switch (cp->dev) {
775 	case HARMONY_PORT_INPUT_LVL:
776 		if (cp->type != AUDIO_MIXER_VALUE)
777 			break;
778 		if (cp->un.value.num_channels == 1)
779 			sc->sc_input_lvl.left = sc->sc_input_lvl.right =
780 			    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
781 		else if (cp->un.value.num_channels == 2) {
782 			sc->sc_input_lvl.left =
783 			    cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
784 			sc->sc_input_lvl.right =
785 			    cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
786 		} else
787 			break;
788 		sc->sc_need_commit = 1;
789 		err = 0;
790 		break;
791 	case HARMONY_PORT_OUTPUT_LVL:
792 		if (cp->type != AUDIO_MIXER_VALUE)
793 			break;
794 		if (cp->un.value.num_channels == 1)
795 			sc->sc_output_lvl.left = sc->sc_output_lvl.right =
796 			    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
797 		else if (cp->un.value.num_channels == 2) {
798 			sc->sc_output_lvl.left =
799 			    cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
800 			sc->sc_output_lvl.right =
801 			    cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
802 		} else
803 			break;
804 		sc->sc_need_commit = 1;
805 		err = 0;
806 		break;
807 	case HARMONY_PORT_OUTPUT_GAIN:
808 		if (cp->type != AUDIO_MIXER_ENUM)
809 			break;
810 		sc->sc_outputgain = cp->un.ord ? 1 : 0;
811 		err = 0;
812 		break;
813 	case HARMONY_PORT_MONITOR_LVL:
814 		if (cp->type != AUDIO_MIXER_VALUE)
815 			break;
816 		if (cp->un.value.num_channels != 1)
817 			break;
818 		sc->sc_monitor_lvl.left = sc->sc_input_lvl.right =
819 		    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
820 		sc->sc_need_commit = 1;
821 		err = 0;
822 		break;
823 	case HARMONY_PORT_RECORD_SOURCE:
824 		if (cp->type != AUDIO_MIXER_ENUM)
825 			break;
826 		if (cp->un.ord != HARMONY_IN_LINE &&
827 		    cp->un.ord != HARMONY_IN_MIC)
828 			break;
829 		sc->sc_in_port = cp->un.ord;
830 		err = 0;
831 		sc->sc_need_commit = 1;
832 		break;
833 	case HARMONY_PORT_OUTPUT_SOURCE:
834 		if (cp->type != AUDIO_MIXER_ENUM)
835 			break;
836 		if (cp->un.ord != HARMONY_OUT_LINE &&
837 		    cp->un.ord != HARMONY_OUT_SPEAKER &&
838 		    cp->un.ord != HARMONY_OUT_HEADPHONE)
839 			break;
840 		sc->sc_out_port = cp->un.ord;
841 		err = 0;
842 		sc->sc_need_commit = 1;
843 		break;
844 	}
845 
846 	return err;
847 }
848 
849 int
850 harmony_get_port(void *vsc, mixer_ctrl_t *cp)
851 {
852 	struct harmony_softc *sc;
853 	int err;
854 
855 	sc = vsc;
856 	err = EINVAL;
857 	switch (cp->dev) {
858 	case HARMONY_PORT_INPUT_LVL:
859 		if (cp->type != AUDIO_MIXER_VALUE)
860 			break;
861 		if (cp->un.value.num_channels == 1) {
862 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
863 			    sc->sc_input_lvl.left;
864 		} else if (cp->un.value.num_channels == 2) {
865 			cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
866 			    sc->sc_input_lvl.left;
867 			cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
868 			    sc->sc_input_lvl.right;
869 		} else
870 			break;
871 		err = 0;
872 		break;
873 	case HARMONY_PORT_INPUT_OV:
874 		if (cp->type != AUDIO_MIXER_ENUM)
875 			break;
876 		cp->un.ord = sc->sc_ov ? 1 : 0;
877 		err = 0;
878 		break;
879 	case HARMONY_PORT_OUTPUT_LVL:
880 		if (cp->type != AUDIO_MIXER_VALUE)
881 			break;
882 		if (cp->un.value.num_channels == 1) {
883 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
884 			    sc->sc_output_lvl.left;
885 		} else if (cp->un.value.num_channels == 2) {
886 			cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
887 			    sc->sc_output_lvl.left;
888 			cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
889 			    sc->sc_output_lvl.right;
890 		} else
891 			break;
892 		err = 0;
893 		break;
894 	case HARMONY_PORT_OUTPUT_GAIN:
895 		if (cp->type != AUDIO_MIXER_ENUM)
896 			break;
897 		cp->un.ord = sc->sc_outputgain ? 1 : 0;
898 		err = 0;
899 		break;
900 	case HARMONY_PORT_MONITOR_LVL:
901 		if (cp->type != AUDIO_MIXER_VALUE)
902 			break;
903 		if (cp->un.value.num_channels != 1)
904 			break;
905 		cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
906 		    sc->sc_monitor_lvl.left;
907 		err = 0;
908 		break;
909 	case HARMONY_PORT_RECORD_SOURCE:
910 		if (cp->type != AUDIO_MIXER_ENUM)
911 			break;
912 		cp->un.ord = sc->sc_in_port;
913 		err = 0;
914 		break;
915 	case HARMONY_PORT_OUTPUT_SOURCE:
916 		if (cp->type != AUDIO_MIXER_ENUM)
917 			break;
918 		cp->un.ord = sc->sc_out_port;
919 		err = 0;
920 		break;
921 	}
922 	return err;
923 }
924 
925 int
926 harmony_query_devinfo(void *vsc, mixer_devinfo_t *dip)
927 {
928 	int err;
929 
930 	err = 0;
931 	switch (dip->index) {
932 	case HARMONY_PORT_INPUT_LVL:
933 		dip->type = AUDIO_MIXER_VALUE;
934 		dip->mixer_class = HARMONY_PORT_INPUT_CLASS;
935 		dip->prev = dip->next = AUDIO_MIXER_LAST;
936 		strlcpy(dip->label.name, AudioNinput, sizeof dip->label.name);
937 		dip->un.v.num_channels = 2;
938 		strlcpy(dip->un.v.units.name, AudioNvolume,
939 		    sizeof dip->un.v.units.name);
940 		break;
941 	case HARMONY_PORT_INPUT_OV:
942 		dip->type = AUDIO_MIXER_ENUM;
943 		dip->mixer_class = HARMONY_PORT_INPUT_CLASS;
944 		dip->prev = dip->next = AUDIO_MIXER_LAST;
945 		strlcpy(dip->label.name, "overrange", sizeof dip->label.name);
946 		dip->un.e.num_mem = 2;
947 		strlcpy(dip->un.e.member[0].label.name, AudioNoff,
948 		    sizeof dip->un.e.member[0].label.name);
949 		dip->un.e.member[0].ord = 0;
950 		strlcpy(dip->un.e.member[1].label.name, AudioNon,
951 		    sizeof dip->un.e.member[1].label.name);
952 		dip->un.e.member[1].ord = 1;
953 		break;
954 	case HARMONY_PORT_OUTPUT_LVL:
955 		dip->type = AUDIO_MIXER_VALUE;
956 		dip->mixer_class = HARMONY_PORT_OUTPUT_CLASS;
957 		dip->prev = dip->next = AUDIO_MIXER_LAST;
958 		strlcpy(dip->label.name, AudioNoutput, sizeof dip->label.name);
959 		dip->un.v.num_channels = 2;
960 		strlcpy(dip->un.v.units.name, AudioNvolume,
961 		    sizeof dip->un.v.units.name);
962 		break;
963 	case HARMONY_PORT_OUTPUT_GAIN:
964 		dip->type = AUDIO_MIXER_ENUM;
965 		dip->mixer_class = HARMONY_PORT_OUTPUT_CLASS;
966 		dip->prev = dip->next = AUDIO_MIXER_LAST;
967 		strlcpy(dip->label.name, "gain", sizeof dip->label.name);
968 		dip->un.e.num_mem = 2;
969 		strlcpy(dip->un.e.member[0].label.name, AudioNoff,
970 		    sizeof dip->un.e.member[0].label.name);
971 		dip->un.e.member[0].ord = 0;
972 		strlcpy(dip->un.e.member[1].label.name, AudioNon,
973 		    sizeof dip->un.e.member[1].label.name);
974 		dip->un.e.member[1].ord = 1;
975 		break;
976 	case HARMONY_PORT_MONITOR_LVL:
977 		dip->type = AUDIO_MIXER_VALUE;
978 		dip->mixer_class = HARMONY_PORT_MONITOR_CLASS;
979 		dip->prev = dip->next = AUDIO_MIXER_LAST;
980 		strlcpy(dip->label.name, AudioNmonitor, sizeof dip->label.name);
981 		dip->un.v.num_channels = 1;
982 		strlcpy(dip->un.v.units.name, AudioNvolume,
983 		    sizeof dip->un.v.units.name);
984 		break;
985 	case HARMONY_PORT_RECORD_SOURCE:
986 		dip->type = AUDIO_MIXER_ENUM;
987 		dip->mixer_class = HARMONY_PORT_RECORD_CLASS;
988 		dip->prev = dip->next = AUDIO_MIXER_LAST;
989 		strlcpy(dip->label.name, AudioNsource, sizeof dip->label.name);
990 		dip->un.e.num_mem = 2;
991 		strlcpy(dip->un.e.member[0].label.name, AudioNmicrophone,
992 		    sizeof dip->un.e.member[0].label.name);
993 		dip->un.e.member[0].ord = HARMONY_IN_MIC;
994 		strlcpy(dip->un.e.member[1].label.name, AudioNline,
995 		    sizeof dip->un.e.member[1].label.name);
996 		dip->un.e.member[1].ord = HARMONY_IN_LINE;
997 		break;
998 	case HARMONY_PORT_OUTPUT_SOURCE:
999 		dip->type = AUDIO_MIXER_ENUM;
1000 		dip->mixer_class = HARMONY_PORT_MONITOR_CLASS;
1001 		dip->prev = dip->next = AUDIO_MIXER_LAST;
1002 		strlcpy(dip->label.name, AudioNoutput, sizeof dip->label.name);
1003 		dip->un.e.num_mem = 3;
1004 		strlcpy(dip->un.e.member[0].label.name, AudioNline,
1005 		    sizeof dip->un.e.member[0].label.name);
1006 		dip->un.e.member[0].ord = HARMONY_OUT_LINE;
1007 		strlcpy(dip->un.e.member[1].label.name, AudioNspeaker,
1008 		    sizeof dip->un.e.member[1].label.name);
1009 		dip->un.e.member[1].ord = HARMONY_OUT_SPEAKER;
1010 		strlcpy(dip->un.e.member[2].label.name, AudioNheadphone,
1011 		    sizeof dip->un.e.member[2].label.name);
1012 		dip->un.e.member[2].ord = HARMONY_OUT_HEADPHONE;
1013 		break;
1014 	case HARMONY_PORT_INPUT_CLASS:
1015 		dip->type = AUDIO_MIXER_CLASS;
1016 		dip->mixer_class = HARMONY_PORT_INPUT_CLASS;
1017 		dip->prev = dip->next = AUDIO_MIXER_LAST;
1018 		strlcpy(dip->label.name, AudioCinputs, sizeof dip->label.name);
1019 		break;
1020 	case HARMONY_PORT_OUTPUT_CLASS:
1021 		dip->type = AUDIO_MIXER_CLASS;
1022 		dip->mixer_class = HARMONY_PORT_INPUT_CLASS;
1023 		dip->prev = dip->next = AUDIO_MIXER_LAST;
1024 		strlcpy(dip->label.name, AudioCoutputs, sizeof dip->label.name);
1025 		break;
1026 	case HARMONY_PORT_MONITOR_CLASS:
1027 		dip->type = AUDIO_MIXER_CLASS;
1028 		dip->mixer_class = HARMONY_PORT_INPUT_CLASS;
1029 		dip->prev = dip->next = AUDIO_MIXER_LAST;
1030 		strlcpy(dip->label.name, AudioCmonitor, sizeof dip->label.name);
1031 		break;
1032 	case HARMONY_PORT_RECORD_CLASS:
1033 		dip->type = AUDIO_MIXER_CLASS;
1034 		dip->mixer_class = HARMONY_PORT_RECORD_CLASS;
1035 		dip->prev = dip->next = AUDIO_MIXER_LAST;
1036 		strlcpy(dip->label.name, AudioCrecord, sizeof dip->label.name);
1037 		break;
1038 	default:
1039 		err = ENXIO;
1040 		break;
1041 	}
1042 
1043 	return err;
1044 }
1045 
1046 void *
1047 harmony_allocm(void *vsc, int dir, size_t size)
1048 {
1049 	struct harmony_softc *sc;
1050 	struct harmony_dma *d;
1051 	int rseg;
1052 
1053 	sc = vsc;
1054 	d = kmem_alloc(sizeof(*d), KM_SLEEP);
1055 	if (d == NULL)
1056 		goto fail;
1057 
1058 	if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, BUS_DMA_WAITOK,
1059 	    &d->d_map) != 0)
1060 		goto fail1;
1061 
1062 	if (bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &d->d_seg, 1,
1063 	    &rseg, BUS_DMA_WAITOK) != 0)
1064 		goto fail2;
1065 
1066 	if (bus_dmamem_map(sc->sc_dmat, &d->d_seg, 1, size, &d->d_kva,
1067 	    BUS_DMA_WAITOK) != 0)
1068 		goto fail3;
1069 
1070 	if (bus_dmamap_load(sc->sc_dmat, d->d_map, d->d_kva, size, NULL,
1071 	    BUS_DMA_WAITOK) != 0)
1072 		goto fail4;
1073 
1074 	d->d_next = sc->sc_dmas;
1075 	sc->sc_dmas = d;
1076 	d->d_size = size;
1077 	return (d->d_kva);
1078 
1079 fail4:
1080 	bus_dmamem_unmap(sc->sc_dmat, d->d_kva, size);
1081 fail3:
1082 	bus_dmamem_free(sc->sc_dmat, &d->d_seg, 1);
1083 fail2:
1084 	bus_dmamap_destroy(sc->sc_dmat, d->d_map);
1085 fail1:
1086 	kmem_free(d, sizeof(*d));
1087 fail:
1088 	return (NULL);
1089 }
1090 
1091 void
1092 harmony_freem(void *vsc, void *ptr, size_t size)
1093 {
1094 	struct harmony_softc *sc;
1095 	struct harmony_dma *d, **dd;
1096 
1097 	sc = vsc;
1098 	for (dd = &sc->sc_dmas; (d = *dd) != NULL; dd = &(*dd)->d_next) {
1099 		if (d->d_kva != ptr)
1100 			continue;
1101 		bus_dmamap_unload(sc->sc_dmat, d->d_map);
1102 		bus_dmamem_unmap(sc->sc_dmat, d->d_kva, d->d_size);
1103 		bus_dmamem_free(sc->sc_dmat, &d->d_seg, 1);
1104 		bus_dmamap_destroy(sc->sc_dmat, d->d_map);
1105 		kmem_free(d, sizeof(*d));
1106 		return;
1107 	}
1108 	printf("%s: free rogue pointer\n", device_xname(sc->sc_dv));
1109 }
1110 
1111 size_t
1112 harmony_round_buffersize(void *vsc, int direction, size_t size)
1113 {
1114 
1115 	return ((size + HARMONY_BUFSIZE - 1) & (size_t)(-HARMONY_BUFSIZE));
1116 }
1117 
1118 int
1119 harmony_get_props(void *vsc)
1120 {
1121 
1122 	return AUDIO_PROP_FULLDUPLEX;
1123 }
1124 
1125 void
1126 harmony_get_locks(void *vsc, kmutex_t **intr, kmutex_t **thread)
1127 {
1128 	struct harmony_softc *sc;
1129 
1130 	sc = vsc;
1131 	*intr = &sc->sc_intr_lock;
1132 	*thread = &sc->sc_lock;
1133 }
1134 
1135 int
1136 harmony_trigger_output(void *vsc, void *start, void *end, int blksize,
1137     void (*intr)(void *), void *intrarg, const audio_params_t *param)
1138 {
1139 	struct harmony_softc *sc;
1140 	struct harmony_channel *c;
1141 	struct harmony_dma *d;
1142 
1143 	sc = vsc;
1144 	c = &sc->sc_playback;
1145 	for (d = sc->sc_dmas; d->d_kva != start; d = d->d_next)
1146 		continue;
1147 	if (d == NULL) {
1148 		printf("%s: trigger_output: bad addr: %p\n",
1149 		    device_xname(sc->sc_dv), start);
1150 		return EINVAL;
1151 	}
1152 
1153 	mutex_spin_enter(&sc->sc_intr_lock);
1154 
1155 	c->c_intr = intr;
1156 	c->c_intrarg = intrarg;
1157 	c->c_blksz = blksize;
1158 	c->c_current = d;
1159 	c->c_segsz = (char *)end - (char *)start;
1160 	c->c_cnt = 0;
1161 	c->c_lastaddr = d->d_map->dm_segs[0].ds_addr;
1162 
1163 	sc->sc_playing = 1;
1164 
1165 	harmony_start_pp(sc, 1);
1166 	harmony_start_cp(sc, 0);
1167 	harmony_intr_enable(sc);
1168 
1169 	mutex_spin_exit(&sc->sc_intr_lock);
1170 
1171 	return 0;
1172 }
1173 
1174 void
1175 harmony_start_cp(struct harmony_softc *sc, int start)
1176 {
1177 	struct harmony_channel *c;
1178 	struct harmony_dma *d;
1179 	bus_addr_t nextaddr;
1180 	bus_size_t togo;
1181 
1182 	KASSERT(mutex_owned(&sc->sc_intr_lock));
1183 
1184 	c = &sc->sc_capture;
1185 	if (sc->sc_capturing == 0)
1186 		harmony_empty_input(sc);
1187 	else {
1188 		d = c->c_current;
1189 		togo = c->c_segsz - c->c_cnt;
1190 		if (togo == 0) {
1191 			nextaddr = d->d_map->dm_segs[0].ds_addr;
1192 			c->c_cnt = togo = c->c_blksz;
1193 		} else {
1194 			nextaddr = c->c_lastaddr;
1195 			if (togo > c->c_blksz)
1196 				togo = c->c_blksz;
1197 			c->c_cnt += togo;
1198 		}
1199 
1200 		bus_dmamap_sync(sc->sc_dmat, d->d_map,
1201 		    nextaddr - d->d_map->dm_segs[0].ds_addr,
1202 		    c->c_blksz, BUS_DMASYNC_PREWRITE);
1203 
1204 		WRITE_REG(sc, HARMONY_RNXTADD, nextaddr);
1205 		if (start)
1206 			c->c_theaddr = nextaddr;
1207 		SYNC_REG(sc, HARMONY_RNXTADD, BUS_SPACE_BARRIER_WRITE);
1208 		c->c_lastaddr = nextaddr + togo;
1209 
1210 		harmony_try_more(sc, HARMONY_RCURADD,
1211 		    RCURADD_BUFMASK, &sc->sc_capture);
1212 	}
1213 
1214 	callout_schedule(&sc->sc_acc_tmo, 1);
1215 }
1216 
1217 void
1218 harmony_start_pp(struct harmony_softc *sc, int start)
1219 {
1220 	struct harmony_channel *c;
1221 	struct harmony_dma *d;
1222 	bus_addr_t nextaddr;
1223 	bus_size_t togo;
1224 
1225 	KASSERT(mutex_owned(&sc->sc_intr_lock));
1226 
1227 	c = &sc->sc_playback;
1228 	if (sc->sc_playing == 0)
1229 		harmony_empty_output(sc);
1230 	else {
1231 		d = c->c_current;
1232 		togo = c->c_segsz - c->c_cnt;
1233 		if (togo == 0) {
1234 			nextaddr = d->d_map->dm_segs[0].ds_addr;
1235 			c->c_cnt = togo = c->c_blksz;
1236 		} else {
1237 			nextaddr = c->c_lastaddr;
1238 			if (togo > c->c_blksz)
1239 				togo = c->c_blksz;
1240 			c->c_cnt += togo;
1241 		}
1242 
1243 		bus_dmamap_sync(sc->sc_dmat, d->d_map,
1244 		    nextaddr - d->d_map->dm_segs[0].ds_addr,
1245 		    c->c_blksz, BUS_DMASYNC_PREWRITE);
1246 
1247 		WRITE_REG(sc, HARMONY_PNXTADD, nextaddr);
1248 		if (start)
1249 			c->c_theaddr = nextaddr;
1250 		SYNC_REG(sc, HARMONY_PNXTADD, BUS_SPACE_BARRIER_WRITE);
1251 		c->c_lastaddr = nextaddr + togo;
1252 
1253 		harmony_try_more(sc, HARMONY_PCURADD,
1254 		    PCURADD_BUFMASK, &sc->sc_playback);
1255 	}
1256 }
1257 
1258 int
1259 harmony_trigger_input(void *vsc, void *start, void *end, int blksize,
1260     void (*intr)(void *), void *intrarg, const audio_params_t *param)
1261 {
1262 	struct harmony_softc *sc = vsc;
1263 	struct harmony_channel *c = &sc->sc_capture;
1264 	struct harmony_dma *d;
1265 
1266 	KASSERT(mutex_owned(&sc->sc_intr_lock));
1267 
1268 	for (d = sc->sc_dmas; d->d_kva != start; d = d->d_next)
1269 		continue;
1270 	if (d == NULL) {
1271 		printf("%s: trigger_input: bad addr: %p\n",
1272 		    device_xname(sc->sc_dv), start);
1273 		return EINVAL;
1274 	}
1275 
1276 	c->c_intr = intr;
1277 	c->c_intrarg = intrarg;
1278 	c->c_blksz = blksize;
1279 	c->c_current = d;
1280 	c->c_segsz = (char *)end - (char *)start;
1281 	c->c_cnt = 0;
1282 	c->c_lastaddr = d->d_map->dm_segs[0].ds_addr;
1283 
1284 	sc->sc_capturing = 1;
1285 
1286 	harmony_start_cp(sc, 1);
1287 	harmony_intr_enable(sc);
1288 
1289 	return 0;
1290 }
1291 
1292 static const struct speed_struct {
1293 	uint32_t speed;
1294 	uint32_t bits;
1295 } harmony_speeds[] = {
1296 	{ 5125, CNTL_RATE_5125 },
1297 	{ 6615, CNTL_RATE_6615 },
1298 	{ 8000, CNTL_RATE_8000 },
1299 	{ 9600, CNTL_RATE_9600 },
1300 	{ 11025, CNTL_RATE_11025 },
1301 	{ 16000, CNTL_RATE_16000 },
1302 	{ 18900, CNTL_RATE_18900 },
1303 	{ 22050, CNTL_RATE_22050 },
1304 	{ 27428, CNTL_RATE_27428 },
1305 	{ 32000, CNTL_RATE_32000 },
1306 	{ 33075, CNTL_RATE_33075 },
1307 	{ 37800, CNTL_RATE_37800 },
1308 	{ 44100, CNTL_RATE_44100 },
1309 	{ 48000, CNTL_RATE_48000 },
1310 };
1311 
1312 uint32_t
1313 harmony_speed_bits(struct harmony_softc *sc, u_int *speedp)
1314 {
1315 	int i, n, selected;
1316 
1317 	selected = -1;
1318 	n = sizeof(harmony_speeds) / sizeof(harmony_speeds[0]);
1319 
1320 	if ((*speedp) <= harmony_speeds[0].speed)
1321 		selected = 0;
1322 	else if ((*speedp) >= harmony_speeds[n - 1].speed)
1323 		selected = n - 1;
1324 	else {
1325 		for (i = 1; selected == -1 && i < n; i++) {
1326 			if ((*speedp) == harmony_speeds[i].speed)
1327 				selected = i;
1328 			else if ((*speedp) < harmony_speeds[i].speed) {
1329 				int diff1, diff2;
1330 
1331 				diff1 = (*speedp) - harmony_speeds[i - 1].speed;
1332 				diff2 = harmony_speeds[i].speed - (*speedp);
1333 				if (diff1 < diff2)
1334 					selected = i - 1;
1335 				else
1336 					selected = i;
1337 			}
1338 		}
1339 	}
1340 
1341 	if (selected == -1)
1342 		selected = 2;
1343 
1344 	*speedp = harmony_speeds[selected].speed;
1345 	return harmony_speeds[selected].bits;
1346 }
1347 
1348 int
1349 harmony_set_gainctl(struct harmony_softc *sc)
1350 {
1351 	uint32_t bits, mask, val, old;
1352 
1353 	/* XXX leave these bits alone or the chip will not come out of CNTL */
1354 	bits = GAINCTL_LE | GAINCTL_HE | GAINCTL_SE | GAINCTL_IS_MASK;
1355 
1356 	/* input level */
1357 	bits |= ((sc->sc_input_lvl.left >> (8 - GAINCTL_INPUT_BITS)) <<
1358 	    GAINCTL_INPUT_LEFT_S) & GAINCTL_INPUT_LEFT_M;
1359 	bits |= ((sc->sc_input_lvl.right >> (8 - GAINCTL_INPUT_BITS)) <<
1360 	    GAINCTL_INPUT_RIGHT_S) & GAINCTL_INPUT_RIGHT_M;
1361 
1362 	/* output level (inverted) */
1363 	mask = (1 << GAINCTL_OUTPUT_BITS) - 1;
1364 	val = mask - (sc->sc_output_lvl.left >> (8 - GAINCTL_OUTPUT_BITS));
1365 	bits |= (val << GAINCTL_OUTPUT_LEFT_S) & GAINCTL_OUTPUT_LEFT_M;
1366 	val = mask - (sc->sc_output_lvl.right >> (8 - GAINCTL_OUTPUT_BITS));
1367 	bits |= (val << GAINCTL_OUTPUT_RIGHT_S) & GAINCTL_OUTPUT_RIGHT_M;
1368 
1369 	/* monitor level (inverted) */
1370 	mask = (1 << GAINCTL_MONITOR_BITS) - 1;
1371 	val = mask - (sc->sc_monitor_lvl.left >> (8 - GAINCTL_MONITOR_BITS));
1372 	bits |= (val << GAINCTL_MONITOR_S) & GAINCTL_MONITOR_M;
1373 
1374 	/* XXX messing with these causes CNTL_C to get stuck... grr. */
1375 	bits &= ~GAINCTL_IS_MASK;
1376 	if (sc->sc_in_port == HARMONY_IN_MIC)
1377 		bits |= GAINCTL_IS_LINE;
1378 	else
1379 		bits |= GAINCTL_IS_MICROPHONE;
1380 
1381 	/* XXX messing with these causes CNTL_C to get stuck... grr. */
1382 	bits &= ~(GAINCTL_LE | GAINCTL_HE | GAINCTL_SE);
1383 	if (sc->sc_out_port == HARMONY_OUT_LINE)
1384 		bits |= GAINCTL_LE;
1385 	else if (sc->sc_out_port == HARMONY_OUT_SPEAKER)
1386 		bits |= GAINCTL_SE;
1387 	else
1388 		bits |= GAINCTL_HE;
1389 
1390 	mask = GAINCTL_LE | GAINCTL_HE | GAINCTL_SE | GAINCTL_IS_MASK;
1391 	old = bus_space_read_4(sc->sc_bt, sc->sc_bh, HARMONY_GAINCTL);
1392 	bus_space_write_4(sc->sc_bt, sc->sc_bh, HARMONY_GAINCTL, bits);
1393 	if ((old & mask) != (bits & mask))
1394 		return 1;
1395 	return 0;
1396 }
1397 
1398 void
1399 harmony_try_more(struct harmony_softc *sc, int curadd, int bufmask,
1400 	struct harmony_channel *c)
1401 {
1402 	struct harmony_dma *d;
1403 	uint32_t cur;
1404 	int i, nsegs;
1405 
1406 	d = c->c_current;
1407 	cur = bus_space_read_4(sc->sc_bt, sc->sc_bh, curadd);
1408 	cur &= bufmask;
1409 	nsegs = 0;
1410 
1411 #ifdef DIAGNOSTIC
1412 	if (cur < d->d_map->dm_segs[0].ds_addr ||
1413 	    cur >= (d->d_map->dm_segs[0].ds_addr + c->c_segsz))
1414 		panic("%s: bad current %x < %lx || %x > %lx",
1415 		    device_xname(sc->sc_dv), cur,
1416 		    d->d_map->dm_segs[0].ds_addr, cur,
1417 		    d->d_map->dm_segs[0].ds_addr + c->c_segsz);
1418 #endif /* DIAGNOSTIC */
1419 
1420 	if (cur > c->c_theaddr) {
1421 		nsegs = (cur - c->c_theaddr) / HARMONY_BUFSIZE;
1422 	} else if (cur < c->c_theaddr) {
1423 		nsegs = (d->d_map->dm_segs[0].ds_addr + c->c_segsz -
1424 		    c->c_theaddr) / HARMONY_BUFSIZE;
1425 		nsegs += (cur - d->d_map->dm_segs[0].ds_addr) /
1426 		    HARMONY_BUFSIZE;
1427 	}
1428 
1429 	if (nsegs != 0 && c->c_intr != NULL) {
1430 		for (i = 0; i < nsegs; i++)
1431 			(*c->c_intr)(c->c_intrarg);
1432 		c->c_theaddr = cur;
1433 	}
1434 }
1435