xref: /netbsd-src/sys/arch/hpcmips/vr/rtc.c (revision b1c86f5f087524e68db12794ee9c3e3da1ab17a0)
1 /*	$NetBSD: rtc.c,v 1.26 2009/12/12 14:44:08 tsutsui Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999 Shin Takemura. All rights reserved.
5  * Copyright (c) 1999 SATO Kazumi. All rights reserved.
6  * Copyright (c) 1999 PocketBSD Project. All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the PocketBSD project
19  *	and its contributors.
20  * 4. Neither the name of the project nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  */
37 
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: rtc.c,v 1.26 2009/12/12 14:44:08 tsutsui Exp $");
40 
41 #include "opt_vr41xx.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/timetc.h>
46 #include <sys/device.h>
47 
48 #include <machine/sysconf.h>
49 #include <machine/bus.h>
50 
51 #include <dev/clock_subr.h>
52 
53 #include <hpcmips/vr/vr.h>
54 #include <hpcmips/vr/vrcpudef.h>
55 #include <hpcmips/vr/vripif.h>
56 #include <hpcmips/vr/vripreg.h>
57 #include <hpcmips/vr/rtcreg.h>
58 
59 /*
60  * for debugging definitions
61  * 	VRRTCDEBUG	print rtc debugging information
62  */
63 #ifdef VRRTCDEBUG
64 #ifndef VRRTCDEBUG_CONF
65 #define VRRTCDEBUG_CONF 0
66 #endif
67 int vrrtc_debug = VRRTCDEBUG_CONF;
68 #define DPRINTF(arg) if (vrrtc_debug) printf arg;
69 #define DDUMP_REGS(arg) if (vrrtc_debug) vrrtc_dump_regs(arg);
70 #else /* VRRTCDEBUG */
71 #define DPRINTF(arg)
72 #define DDUMP_REGS(arg)
73 #endif /* VRRTCDEBUG */
74 
75 struct vrrtc_softc {
76 	struct device sc_dev;
77 	bus_space_tag_t sc_iot;
78 	bus_space_handle_t sc_ioh;
79 	void *sc_ih;
80 #ifndef SINGLE_VRIP_BASE
81 	int sc_rtcint_reg;
82 	int sc_tclk_h_reg, sc_tclk_l_reg;
83 	int sc_tclk_cnt_h_reg, sc_tclk_cnt_l_reg;
84 #endif /* SINGLE_VRIP_BASE */
85 	int64_t sc_epoch;
86 	struct todr_chip_handle sc_todr;
87 	struct timecounter sc_tc;
88 };
89 
90 void	vrrtc_init(struct device *);
91 int	vrrtc_get(todr_chip_handle_t, struct timeval *);
92 int	vrrtc_set(todr_chip_handle_t, struct timeval *);
93 uint32_t vrrtc_get_timecount(struct timecounter *);
94 
95 struct platform_clock vr_clock = {
96 #define CLOCK_RATE	128
97 	CLOCK_RATE, vrrtc_init,
98 };
99 
100 int	vrrtc_match(struct device *, struct cfdata *, void *);
101 void	vrrtc_attach(struct device *, struct device *, void *);
102 int	vrrtc_intr(void*, u_int32_t, u_int32_t);
103 void	vrrtc_dump_regs(struct vrrtc_softc *);
104 
105 CFATTACH_DECL(vrrtc, sizeof(struct vrrtc_softc),
106     vrrtc_match, vrrtc_attach, NULL, NULL);
107 
108 int
109 vrrtc_match(struct device *parent, struct cfdata *cf, void *aux)
110 {
111 
112 	return (1);
113 }
114 
115 #ifndef SINGLE_VRIP_BASE
116 #define RTCINT_REG_W		(sc->sc_rtcint_reg)
117 #define TCLK_H_REG_W		(sc->sc_tclk_h_reg)
118 #define TCLK_L_REG_W		(sc->sc_tclk_l_reg)
119 #define TCLK_CNT_H_REG_W	(sc->sc_tclk_cnt_h_reg)
120 #define TCLK_CNT_L_REG_W	(sc->sc_tclk_cnt_l_reg)
121 #endif /* SINGLE_VRIP_BASE */
122 
123 void
124 vrrtc_attach(struct device *parent, struct device *self, void *aux)
125 {
126 	struct vrip_attach_args *va = aux;
127 	struct vrrtc_softc *sc = (void *)self;
128 	int year;
129 
130 #ifndef SINGLE_VRIP_BASE
131 	if (va->va_addr == VR4102_RTC_ADDR) {
132 		sc->sc_rtcint_reg = VR4102_RTCINT_REG_W;
133 		sc->sc_tclk_h_reg = VR4102_TCLK_H_REG_W;
134 		sc->sc_tclk_l_reg = VR4102_TCLK_L_REG_W;
135 		sc->sc_tclk_cnt_h_reg = VR4102_TCLK_CNT_H_REG_W;
136 		sc->sc_tclk_cnt_l_reg = VR4102_TCLK_CNT_L_REG_W;
137 	} else
138 	if (va->va_addr == VR4122_RTC_ADDR) {
139 		sc->sc_rtcint_reg = VR4122_RTCINT_REG_W;
140 		sc->sc_tclk_h_reg = VR4122_TCLK_H_REG_W;
141 		sc->sc_tclk_l_reg = VR4122_TCLK_L_REG_W;
142 		sc->sc_tclk_cnt_h_reg = VR4122_TCLK_CNT_H_REG_W;
143 		sc->sc_tclk_cnt_l_reg = VR4122_TCLK_CNT_L_REG_W;
144 	} else
145 	if (va->va_addr == VR4181_RTC_ADDR) {
146 		sc->sc_rtcint_reg = VR4181_RTCINT_REG_W;
147 		sc->sc_tclk_h_reg = RTC_NO_REG_W;
148 		sc->sc_tclk_l_reg = RTC_NO_REG_W;
149 		sc->sc_tclk_cnt_h_reg = RTC_NO_REG_W;
150 		sc->sc_tclk_cnt_l_reg = RTC_NO_REG_W;
151 	} else {
152 		panic("%s: unknown base address 0x%lx",
153 		    sc->sc_dev.dv_xname, va->va_addr);
154 	}
155 #endif /* SINGLE_VRIP_BASE */
156 
157 	sc->sc_iot = va->va_iot;
158 	if (bus_space_map(sc->sc_iot, va->va_addr, va->va_size,
159 	    0 /* no flags */, &sc->sc_ioh)) {
160 		printf("vrrtc_attach: can't map i/o space\n");
161 		return;
162 	}
163 	/* RTC interrupt handler is directly dispatched from CPU intr */
164 	vr_intr_establish(VR_INTR1, vrrtc_intr, sc);
165 	/* But need to set level 1 interrupt mask register,
166 	 * so regsiter fake interrurpt handler
167 	 */
168 	if (!(sc->sc_ih = vrip_intr_establish(va->va_vc, va->va_unit, 0,
169 	    IPL_CLOCK, 0, 0))) {
170 		printf (":can't map interrupt.\n");
171 		return;
172 	}
173 	/*
174 	 *  Rtc is attached to call this routine
175 	 *  before cpu_initclock() calls clock_init().
176 	 *  So we must disable all interrupt for now.
177 	 */
178 	/*
179 	 * Disable all rtc interrupts
180 	 */
181 	/* Disable Elapse compare intr */
182 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_H_REG_W, 0);
183 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_M_REG_W, 0);
184 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_L_REG_W, 0);
185 	/* Disable RTC Long1 intr */
186 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W, 0);
187 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_L_REG_W, 0);
188 	/* Disable RTC Long2 intr */
189 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL2_H_REG_W, 0);
190 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL2_L_REG_W, 0);
191 	/* Disable RTC TCLK intr */
192 	if (TCLK_H_REG_W != RTC_NO_REG_W) {
193 		bus_space_write_2(sc->sc_iot, sc->sc_ioh, TCLK_H_REG_W, 0);
194 		bus_space_write_2(sc->sc_iot, sc->sc_ioh, TCLK_L_REG_W, 0);
195 	}
196 	/*
197 	 * Clear all rtc intrrupts.
198 	 */
199 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCINT_REG_W, RTCINT_ALL);
200 
201 	/*
202 	 * Figure out the epoch, which could be either forward or
203 	 * backwards in time.  We assume that the start date will always
204 	 * be on Jan 1.
205 	 */
206 	for (year = EPOCHYEAR; year < POSIX_BASE_YEAR; year++) {
207 		sc->sc_epoch += LEAPYEAR4(year) ? SECYR + SECDAY : SECYR;
208 	}
209 	for (year = POSIX_BASE_YEAR; year < EPOCHYEAR; year++) {
210 		sc->sc_epoch -= LEAPYEAR4(year) ? SECYR + SECDAY : SECYR;
211 	}
212 
213 	/*
214 	 * Initialize MI todr(9)
215 	 */
216 	sc->sc_todr.todr_settime = vrrtc_set;
217 	sc->sc_todr.todr_gettime = vrrtc_get;
218 	sc->sc_todr.cookie = sc;
219 	todr_attach(&sc->sc_todr);
220 
221 	platform_clock_attach(sc, &vr_clock);
222 }
223 
224 int
225 vrrtc_intr(void *arg, u_int32_t pc, u_int32_t statusReg)
226 {
227 	struct vrrtc_softc *sc = arg;
228 	struct clockframe cf;
229 
230 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCINT_REG_W, RTCINT_ALL);
231 	cf.pc = pc;
232 	cf.sr = statusReg;
233 	hardclock(&cf);
234 
235 	return 0;
236 }
237 
238 void
239 vrrtc_init(struct device *dev)
240 {
241 	struct vrrtc_softc *sc = (struct vrrtc_softc *)dev;
242 
243 	DDUMP_REGS(sc);
244 	/*
245 	 * Set tick (CLOCK_RATE)
246 	 */
247 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W, 0);
248 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_L_REG_W,
249 	    RTCL1_L_HZ/CLOCK_RATE);
250 
251 	/*
252 	 * Initialize timecounter.
253 	 */
254 	sc->sc_tc.tc_get_timecount = vrrtc_get_timecount;
255 	sc->sc_tc.tc_name = "vrrtc";
256 	sc->sc_tc.tc_counter_mask = 0xffff;
257 	sc->sc_tc.tc_frequency = ETIME_L_HZ;
258 	sc->sc_tc.tc_priv = sc;
259 	sc->sc_tc.tc_quality = 100;
260 	tc_init(&sc->sc_tc);
261 }
262 
263 uint32_t
264 vrrtc_get_timecount(struct timecounter *tc)
265 {
266 	struct vrrtc_softc *sc = (struct vrrtc_softc *)tc->tc_priv;
267 	bus_space_tag_t iot = sc->sc_iot;
268 	bus_space_handle_t ioh = sc->sc_ioh;
269 
270 	return (bus_space_read_2(iot, ioh, ETIME_L_REG_W));
271 }
272 
273 int
274 vrrtc_get(todr_chip_handle_t tch, struct timeval *tvp)
275 {
276 
277 	struct vrrtc_softc *sc = (struct vrrtc_softc *)tch->cookie;
278 	bus_space_tag_t iot = sc->sc_iot;
279 	bus_space_handle_t ioh = sc->sc_ioh;
280 	u_int32_t timeh;	/* elapse time (2*timeh sec) */
281 	u_int32_t timel;	/* timel/32768 sec */
282 	int64_t sec, usec;
283 
284 	timeh = bus_space_read_2(iot, ioh, ETIME_H_REG_W);
285 	timeh = (timeh << 16) | bus_space_read_2(iot, ioh, ETIME_M_REG_W);
286 	timel = bus_space_read_2(iot, ioh, ETIME_L_REG_W);
287 
288 	DPRINTF(("clock_get: timeh %08x timel %08x\n", timeh, timel));
289 
290 	timeh -= EPOCHOFF;
291 	sec = timeh * 2;
292 	sec -= sc->sc_epoch;
293 	tvp->tv_sec = sec;
294 	tvp->tv_sec += timel / ETIME_L_HZ;
295 
296 	/* scale from 32kHz to 1MHz */
297 	usec = (timel % ETIME_L_HZ);
298 	usec *= 1000000;
299 	usec /= ETIME_L_HZ;
300 	tvp->tv_usec = (uint32_t)usec;
301 
302 	return 0;
303 }
304 
305 int
306 vrrtc_set(todr_chip_handle_t tch, struct timeval *tvp)
307 {
308 	struct vrrtc_softc *sc = (struct vrrtc_softc *)tch->cookie;
309 	bus_space_tag_t iot = sc->sc_iot;
310 	bus_space_handle_t ioh = sc->sc_ioh;
311 	u_int32_t timeh;	/* elapse time (2*timeh sec) */
312 	u_int32_t timel;	/* timel/32768 sec */
313 	int64_t sec, cnt;
314 
315 	sec = tvp->tv_sec + sc->sc_epoch;
316 	sec += sc->sc_epoch;
317 	timeh = EPOCHOFF + (sec / 2);
318 	timel = sec % 2;
319 
320 	cnt = tvp->tv_usec;
321 	/* scale from 1MHz to 32kHz */
322 	cnt *= ETIME_L_HZ;
323 	cnt /= 1000000;
324 	timel += (uint32_t)cnt;
325 
326 	bus_space_write_2(iot, ioh, ETIME_H_REG_W, (timeh >> 16) & 0xffff);
327 	bus_space_write_2(iot, ioh, ETIME_M_REG_W, timeh & 0xffff);
328 	bus_space_write_2(iot, ioh, ETIME_L_REG_W, timel);
329 
330 	return 0;
331 }
332 
333 void
334 vrrtc_dump_regs(struct vrrtc_softc *sc)
335 {
336 	int timeh;
337 	int timel;
338 
339 	timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_H_REG_W);
340 	timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_M_REG_W);
341 	timel = (timel << 16)
342 	    | bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_L_REG_W);
343 	printf("clock_init()  Elapse Time %04x%04x\n", timeh, timel);
344 
345 	timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_H_REG_W);
346 	timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_M_REG_W);
347 	timel = (timel << 16)
348 	    | bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_L_REG_W);
349 	printf("clock_init()  Elapse Compare %04x%04x\n", timeh, timel);
350 
351 	timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W);
352 	timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_L_REG_W);
353 	printf("clock_init()  LONG1 %04x%04x\n", timeh, timel);
354 
355 	timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_CNT_H_REG_W);
356 	timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_CNT_L_REG_W);
357 	printf("clock_init()  LONG1 CNTL %04x%04x\n", timeh, timel);
358 
359 	timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_H_REG_W);
360 	timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_L_REG_W);
361 	printf("clock_init()  LONG2 %04x%04x\n", timeh, timel);
362 
363 	timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_CNT_H_REG_W);
364 	timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_CNT_L_REG_W);
365 	printf("clock_init()  LONG2 CNTL %04x%04x\n", timeh, timel);
366 
367 	if (TCLK_H_REG_W != RTC_NO_REG_W) {
368 		timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_H_REG_W);
369 		timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_L_REG_W);
370 		printf("clock_init()  TCLK %04x%04x\n", timeh, timel);
371 
372 		timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_CNT_H_REG_W);
373 		timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_CNT_L_REG_W);
374 		printf("clock_init()  TCLK CNTL %04x%04x\n", timeh, timel);
375 	}
376 }
377