xref: /netbsd-src/sys/arch/hpcmips/vr/rtc.c (revision 220b5c059a84c51ea44107ea8951a57ffaecdc8c)
1 /*	$NetBSD: rtc.c,v 1.10 2001/09/30 11:24:07 sato Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999 Shin Takemura. All rights reserved.
5  * Copyright (c) 1999 SATO Kazumi. All rights reserved.
6  * Copyright (c) 1999 PocketBSD Project. All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the PocketBSD project
19  *	and its contributors.
20  * 4. Neither the name of the project nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  */
37 
38 #include "opt_vr41xx.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 
43 #include <machine/sysconf.h>
44 #include <machine/bus.h>
45 
46 #include <dev/clock_subr.h>
47 
48 #include <hpcmips/vr/vr.h>
49 #include <hpcmips/vr/vrcpudef.h>
50 #include <hpcmips/vr/vripvar.h>
51 #include <hpcmips/vr/rtcreg.h>
52 
53 /*
54  * for debugging definitions
55  * 	VRRTCDEBUG	print rtc debugging information
56  *	VRRTC_HEARTBEAT	print HEARTBEAT (too many print...)
57  */
58 #ifdef VRRTCDEBUG
59 #ifndef VRRTCDEBUG_CONF
60 #define VRRTCDEBUG_CONF 0
61 #endif
62 int vrrtc_debug = VRRTCDEBUG_CONF;
63 #define DPRINTF(arg) if (vrrtc_debug) printf arg;
64 #define DDUMP_REGS(arg) if (vrrtc_debug) vrrtc_dump_regs(arg);
65 #else /* VRRTCDEBUG */
66 #define DPRINTF(arg)
67 #define DDUMP_REGS(arg)
68 #endif /* VRRTCDEBUG */
69 
70 struct vrrtc_softc {
71 	struct device sc_dev;
72 	bus_space_tag_t sc_iot;
73 	bus_space_handle_t sc_ioh;
74 	void *sc_ih;
75 };
76 
77 void	clock_init(struct device *);
78 void	clock_get(struct device *, time_t, struct clock_ymdhms *);
79 void	clock_set(struct device *, struct clock_ymdhms *);
80 
81 struct platform_clock vr_clock = {
82 #define CLOCK_RATE	128
83 	CLOCK_RATE, clock_init, clock_get, clock_set,
84 };
85 
86 int	vrrtc_match(struct device *, struct cfdata *, void *);
87 void	vrrtc_attach(struct device *, struct device *, void *);
88 int	vrrtc_intr(void*, u_int32_t, u_int32_t);
89 void	vrrtc_dump_regs(struct vrrtc_softc *);
90 
91 struct cfattach vrrtc_ca = {
92 	sizeof(struct vrrtc_softc), vrrtc_match, vrrtc_attach
93 };
94 
95 static __inline__ void vrrtc_write(struct vrrtc_softc *, int, u_int16_t);
96 static __inline__ u_int16_t vrrtc_read(struct vrrtc_softc *, int);
97 void	cvt_timehl_ymdhms(u_int32_t, u_int32_t, struct clock_ymdhms *);
98 
99 extern int rtc_offset;
100 static int m2d[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
101 
102 static __inline__ void
103 vrrtc_write(struct vrrtc_softc *sc, int port, u_int16_t val)
104 {
105 
106 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, port, val);
107 }
108 
109 static __inline__ u_int16_t
110 vrrtc_read(struct vrrtc_softc *sc, int port)
111 {
112 
113 	return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, port));
114 }
115 
116 int
117 vrrtc_match(struct device *parent, struct cfdata *cf, void *aux)
118 {
119 
120 	return (1);
121 }
122 
123 void
124 vrrtc_attach(struct device *parent, struct device *self, void *aux)
125 {
126 	struct vrip_attach_args *va = aux;
127 	struct vrrtc_softc *sc = (void *)self;
128 
129 	sc->sc_iot = va->va_iot;
130 	if (bus_space_map(sc->sc_iot, va->va_addr, va->va_size,
131 	    0 /* no flags */, &sc->sc_ioh)) {
132 		printf("vrrtc_attach: can't map i/o space\n");
133 		return;
134 	}
135 	/* RTC interrupt handler is directly dispatched from CPU intr */
136 	vr_intr_establish(VR_INTR1, vrrtc_intr, sc);
137 	/* But need to set level 1 interupt mask register,
138 	 * so regsiter fake interrurpt handler
139 	 */
140 	if (!(sc->sc_ih = vrip_intr_establish(va->va_vc, va->va_intr,
141 	    IPL_CLOCK, 0, 0))) {
142 		printf (":can't map interrupt.\n");
143 		return;
144 	}
145 	/*
146 	 *  Rtc is attached to call this routine
147 	 *  before cpu_initclock() calls clock_init().
148 	 *  So we must disable all interrupt for now.
149 	 */
150 	/*
151 	 * Disable all rtc interrupts
152 	 */
153 	/* Disable Elapse compare intr */
154 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_H_REG_W, 0);
155 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_M_REG_W, 0);
156 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ECMP_L_REG_W, 0);
157 	/* Disable RTC Long1 intr */
158 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W, 0);
159 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_L_REG_W, 0);
160 	/* Disable RTC Long2 intr */
161 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL2_H_REG_W, 0);
162 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL2_L_REG_W, 0);
163 	/* Disable RTC TCLK intr */
164 	if (TCLK_H_REG_W != RTC_NOREG_W) {
165 		bus_space_write_2(sc->sc_iot, sc->sc_ioh, TCLK_H_REG_W, 0);
166 		bus_space_write_2(sc->sc_iot, sc->sc_ioh, TCLK_L_REG_W, 0);
167 	}
168 	/*
169 	 * Clear all rtc intrrupts.
170 	 */
171 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCINT_REG_W, RTCINT_ALL);
172 
173 	platform_clock_attach(sc, &vr_clock);
174 }
175 
176 int
177 vrrtc_intr(void *arg, u_int32_t pc, u_int32_t statusReg)
178 {
179 	struct vrrtc_softc *sc = arg;
180 	struct clockframe cf;
181 
182 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCINT_REG_W, RTCINT_ALL);
183 	cf.pc = pc;
184 	cf.sr = statusReg;
185 	hardclock(&cf);
186 	intrcnt[HARDCLOCK]++;
187 
188 #ifdef VRRTC_HEARTBEAT
189 	if ((intrcnt[HARDCLOCK] % (CLOCK_RATE * 5)) == 0) {
190 		struct clocktime ct;
191 		clock_get((struct device *)sc, NULL, &ct);
192 		printf("%s(%d): rtc_intr: %2d.%2d.%2d %02d:%02d:%02d\n",
193 		    __FILE__, __LINE__,
194 		    ct.year, ct.mon, ct.day,
195 		    ct.hour, ct.min, ct.sec);
196 	}
197 #endif
198 	return 0;
199 }
200 
201 void
202 clock_init(struct device *dev)
203 {
204 	struct vrrtc_softc *sc = (struct vrrtc_softc *)dev;
205 
206 	DDUMP_REGS(sc);
207 	/*
208 	 * Set tick (CLOCK_RATE)
209 	 */
210 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W, 0);
211 	bus_space_write_2(sc->sc_iot, sc->sc_ioh, RTCL1_L_REG_W,
212 	    RTCL1_L_HZ/CLOCK_RATE);
213 }
214 
215 void
216 clock_get(struct device *dev, time_t base, struct clock_ymdhms *dt)
217 {
218 
219 	struct vrrtc_softc *sc = (struct vrrtc_softc *)dev;
220 	bus_space_tag_t iot = sc->sc_iot;
221 	bus_space_handle_t ioh = sc->sc_ioh;
222 	u_int32_t timeh;	/* elapse time (2*timeh sec) */
223 	u_int32_t timel;	/* timel/32768 sec */
224 
225 	timeh = bus_space_read_2(iot, ioh, ETIME_H_REG_W);
226 	timeh = (timeh << 16) | bus_space_read_2(iot, ioh, ETIME_M_REG_W);
227 	timel = bus_space_read_2(iot, ioh, ETIME_L_REG_W);
228 
229 	DPRINTF(("clock_get: timeh %08lx timel %08lx\n", timeh, timel));
230 
231 	cvt_timehl_ymdhms(timeh, timel, dt);
232 
233 	DPRINTF(("clock_get: %d/%d/%d/%d/%d/%d\n", dt->dt_year, dt->dt_mon,
234 	    dt->dt_day, dt->dt_hour, dt->dt_min, dt->dt_sec));
235 }
236 
237 void
238 clock_set(struct device *dev, struct clock_ymdhms *dt)
239 {
240 	struct vrrtc_softc *sc = (struct vrrtc_softc *)dev;
241 	bus_space_tag_t iot = sc->sc_iot;
242 	bus_space_handle_t ioh = sc->sc_ioh;
243 	u_int32_t timeh;	/* elapse time (2*timeh sec) */
244 	u_int32_t timel;	/* timel/32768 sec */
245 	int year, month, sec2;
246 
247 	timeh = 0;
248 	timel = 0;
249 
250 	DPRINTF(("clock_set: %d/%d/%d/%d/%d/%d\n", dt->dt_year, dt->dt_mon,
251 	    dt->dt_day, dt->dt_hour, dt->dt_min, dt->dt_sec));
252 
253 	dt->dt_year += YBASE;
254 
255 	DPRINTF(("clock_set: %d/%d/%d/%d/%d/%d\n", dt->dt_year, dt->dt_mon,
256 	    dt->dt_day, dt->dt_hour, dt->dt_min, dt->dt_sec));
257 
258 	year = EPOCHYEAR;
259 	sec2 = LEAPYEAR4(year)?SEC2YR+SEC2DAY:SEC2YR;
260 	while (year < dt->dt_year) {
261 		year++;
262 		timeh += sec2;
263 		sec2 = LEAPYEAR4(year)?SEC2YR+SEC2DAY:SEC2YR;
264 	}
265 	month = 1; /* now month is 1..12 */
266 	sec2 = SEC2DAY * m2d[month-1];
267 	while (month < dt->dt_mon) {
268 		month++;
269 		timeh += sec2;
270 		sec2 = SEC2DAY * m2d[month-1];
271 		if (month == 2 && LEAPYEAR4(year)) /* feb. and leapyear */
272 			sec2 += SEC2DAY;
273 	}
274 
275 	timeh += (dt->dt_day - 1)*SEC2DAY;
276 
277 	timeh += dt->dt_hour*SEC2HOUR;
278 
279 	timeh += dt->dt_min*SEC2MIN;
280 
281 	timeh += dt->dt_sec/2;
282 	timel += (dt->dt_sec%2)*ETIME_L_HZ;
283 
284 	timeh += EPOCHOFF;
285 	timeh -= (rtc_offset*SEC2MIN);
286 
287 #ifdef VRRTCDEBUG
288 	cvt_timehl_ymdhms(timeh, timel, NULL);
289 #endif /* RTCDEBUG */
290 
291 	bus_space_write_2(iot, ioh, ETIME_H_REG_W, (timeh >> 16) & 0xffff);
292 	bus_space_write_2(iot, ioh, ETIME_M_REG_W, timeh & 0xffff);
293 	bus_space_write_2(iot, ioh, ETIME_L_REG_W, timel);
294 }
295 
296 void
297 cvt_timehl_ymdhms(
298 	u_int32_t timeh, /* 2 sec */
299 	u_int32_t timel, /* 1/32768 sec */
300 	struct clock_ymdhms *dt)
301 {
302 	u_int32_t year, month, date, hour, min, sec, sec2;
303 
304 	timeh -= EPOCHOFF;
305 
306 	timeh += (rtc_offset*SEC2MIN);
307 
308 	year = EPOCHYEAR;
309 	sec2 = LEAPYEAR4(year)?SEC2YR+SEC2DAY:SEC2YR;
310 	while (timeh > sec2) {
311 		year++;
312 		timeh -= sec2;
313 		sec2 = LEAPYEAR4(year)?SEC2YR+SEC2DAY:SEC2YR;
314 	}
315 
316 	DPRINTF(("cvt_timehl_ymdhms: timeh %08lx year %ld yrref %ld\n",
317 	    timeh, year, sec2));
318 
319 	month = 0; /* now month is 0..11 */
320 	sec2 = SEC2DAY * m2d[month];
321 	while (timeh > sec2) {
322 		timeh -= sec2;
323 		month++;
324 		sec2 = SEC2DAY * m2d[month];
325 		if (month == 1 && LEAPYEAR4(year)) /* feb. and leapyear */
326 			sec2 += SEC2DAY;
327 	}
328 	month +=1; /* now month is 1..12 */
329 
330 	DPRINTF(("cvt_timehl_ymdhms: timeh %08lx month %ld mref %ld\n",
331 	    timeh, month, sec2));
332 
333 	sec2 = SEC2DAY;
334 	date = timeh/sec2+1; /* date is 1..31 */
335 	timeh -= (date-1)*sec2;
336 
337 	DPRINTF(("cvt_timehl_ymdhms: timeh %08lx date %ld dref %ld\n",
338 	    timeh, date, sec2));
339 
340 	sec2 = SEC2HOUR;
341 	hour = timeh/sec2;
342 	timeh -= hour*sec2;
343 
344 	sec2 = SEC2MIN;
345 	min = timeh/sec2;
346 	timeh -= min*sec2;
347 
348 	sec = timeh*2 + timel/ETIME_L_HZ;
349 
350 	DPRINTF(("cvt_timehl_ymdhms: hour %ld min %ld sec %ld\n", hour, min, sec));
351 
352 	if (dt) {
353 		dt->dt_year	= year - YBASE; /* base 1900 */
354 		dt->dt_mon	= month;
355 		dt->dt_day	= date;
356 		dt->dt_hour	= hour;
357 		dt->dt_min	= min;
358 		dt->dt_sec	= sec;
359 	}
360 }
361 
362 void
363 vrrtc_dump_regs(struct vrrtc_softc *sc)
364 {
365 	int timeh;
366 	int timel;
367 
368 	timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_H_REG_W);
369 	timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_M_REG_W);
370 	timel = (timel << 16)
371 	    | bus_space_read_2(sc->sc_iot, sc->sc_ioh, ETIME_L_REG_W);
372 	printf("clock_init()  Elapse Time %04x%04x\n", timeh, timel);
373 
374 	timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_H_REG_W);
375 	timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_M_REG_W);
376 	timel = (timel << 16)
377 	    | bus_space_read_2(sc->sc_iot, sc->sc_ioh, ECMP_L_REG_W);
378 	printf("clock_init()  Elapse Compare %04x%04x\n", timeh, timel);
379 
380 	timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_H_REG_W);
381 	timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_L_REG_W);
382 	printf("clock_init()  LONG1 %04x%04x\n", timeh, timel);
383 
384 	timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_CNT_H_REG_W);
385 	timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL1_CNT_L_REG_W);
386 	printf("clock_init()  LONG1 CNTL %04x%04x\n", timeh, timel);
387 
388 	timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_H_REG_W);
389 	timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_L_REG_W);
390 	printf("clock_init()  LONG2 %04x%04x\n", timeh, timel);
391 
392 	timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_CNT_H_REG_W);
393 	timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, RTCL2_CNT_L_REG_W);
394 	printf("clock_init()  LONG2 CNTL %04x%04x\n", timeh, timel);
395 
396 	if (TCLK_H_REG_W != RTC_NOREG_W) {
397 		timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_H_REG_W);
398 		timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_L_REG_W);
399 		printf("clock_init()  TCLK %04x%04x\n", timeh, timel);
400 
401 		timeh = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_CNT_H_REG_W);
402 		timel = bus_space_read_2(sc->sc_iot, sc->sc_ioh, TCLK_CNT_L_REG_W);
403 		printf("clock_init()  TCLK CNTL %04x%04x\n", timeh, timel);
404 	}
405 }
406