xref: /netbsd-src/sys/arch/hpcmips/vr/flash_vrip.c (revision d710132b4b8ce7f7cccaaf660cb16aa16b4077a0)
1 /* $NetBSD: flash_vrip.c,v 1.1 2003/05/01 07:02:03 igy Exp $ */
2 
3 /*
4  * Copyright (c) 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Naoto Shimazaki of YOKOGAWA Electric Corporation.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Flash Memory Driver
41  */
42 
43 #include <sys/param.h>
44 #include <sys/conf.h>
45 #include <sys/device.h>
46 #include <sys/kernel.h>
47 #include <sys/malloc.h>
48 #include <sys/proc.h>
49 #include <sys/systm.h>
50 
51 #include <machine/bus.h>
52 
53 #include <hpcmips/vr/vripif.h>
54 #include <hpcmips/vr/cfireg.h>
55 #include <hpcmips/vr/flashreg.h>
56 #include <hpcmips/vr/flashvar.h>
57 
58 #ifdef FLASH_DEBUG
59 int	flash_debug = 0;
60 #define DPRINTF(x)	if (flash_debug) printf x
61 #else
62 #define DPRINTF(x)
63 #endif
64 
65 static int flash_probe(struct device *, struct cfdata *, void *);
66 static void flash_attach(struct device *, struct device *, void *);
67 
68 const static struct flashops * find_command_set(u_int8_t cmdset0,
69 						u_int8_t cmdset1);
70 static int i28f128_probe(bus_space_tag_t, bus_space_handle_t);
71 static int mbm29160_probe(bus_space_tag_t, bus_space_handle_t);
72 static int is_block_same(struct flash_softc *, bus_size_t, const void *);
73 static int probe_cfi(bus_space_tag_t iot, bus_space_handle_t ioh);
74 
75 static int intel_erase(struct flash_softc *, bus_size_t);
76 static int intel_write(struct flash_softc *, bus_size_t);
77 static int amd_erase(struct flash_softc *, bus_size_t);
78 static int amd_write(struct flash_softc *, bus_size_t);
79 
80 extern struct cfdriver flash_cd;
81 
82 CFATTACH_DECL(flash_vrip, sizeof(struct flash_softc),
83 	      flash_probe, flash_attach, NULL, NULL);
84 
85 dev_type_open(flashopen);
86 dev_type_close(flashclose);
87 dev_type_read(flashread);
88 dev_type_write(flashwrite);
89 
90 const struct cdevsw flash_cdevsw = {
91 	flashopen, flashclose, flashread, flashwrite, noioctl,
92 	nostop, notty, nopoll, nommap, nokqfilter,
93 };
94 
95 static const struct flash_command_set {
96 	u_int8_t	fc_set0;
97 	u_int8_t	fc_set1;
98 	struct flashops	fc_ops;
99 } flash_cmd[] = {
100 	{
101 		.fc_set0	= CFI_COMMSET_INTEL0,
102 		.fc_set1	= CFI_COMMSET_INTEL1,
103 		.fc_ops		= {
104 			.fo_name	= "Intel",
105 			.fo_erase	= intel_erase,
106 			.fo_write	= intel_write,
107 		}
108 	},
109 	{
110 		.fc_set0	= CFI_COMMSET_AMDFJITU0,
111 		.fc_set1	= CFI_COMMSET_AMDFJITU1,
112 		.fc_ops		= {
113 			.fo_name	= "AMD/Fujitsu",
114 			.fo_erase	= amd_erase,
115 			.fo_write	= amd_write,
116 		}
117 	},
118 	{
119 		.fc_set0	= 0,
120 		.fc_set1	= 0,
121 		.fc_ops		= {
122 			.fo_name	= NULL,
123 			.fo_erase	= NULL,
124 			.fo_write	= NULL,
125 		}
126 	}
127 };
128 
129 
130 const static struct flashops *
131 find_command_set(u_int8_t cmdset0, u_int8_t cmdset1)
132 {
133 	const struct flash_command_set	*fc;
134 
135 	for (fc = flash_cmd; fc->fc_ops.fo_name; fc++) {
136 		if (cmdset0 == fc->fc_set0 && cmdset1 == fc->fc_set1)
137 			return &fc->fc_ops;
138 	}
139 	return NULL;
140 }
141 
142 static int
143 probe_cfi(bus_space_tag_t iot, bus_space_handle_t ioh)
144 {
145 	const u_int8_t	*idstr = CFI_QUERY_ID_STR;
146 	int		i;
147 	u_int8_t	cmdset0;
148 	u_int8_t	cmdset1;
149 
150 	/* start Common Flash Interface Query */
151 	bus_space_write_2(iot, ioh, CFI_QUERY_OFFSET, CFI_READ_CFI_QUERY);
152 
153 	/* read CFI Query ID string */
154 	i = CFI_QUERY_ID_STR_REG << 1;
155 	do {
156 		if (bus_space_read_2(iot, ioh, i) != *idstr) {
157 			bus_space_write_2(iot, ioh, 0, FLASH_RESET);
158 			return 1;
159 		}
160 		i += 2;
161 		idstr++;
162 	} while (*idstr);
163 
164 	cmdset0 = bus_space_read_2(iot, ioh, CFI_PRIM_COMM_REG0 << 1);
165 	cmdset1 = bus_space_read_2(iot, ioh, CFI_PRIM_COMM_REG1 << 1);
166 
167 	/* switch flash to read mode */
168 	bus_space_write_2(iot, ioh, 0, FLASH_RESET);
169 
170 	if (!find_command_set(cmdset0, cmdset1))
171 		return 1;
172 
173 	return 0;
174 }
175 
176 static int
177 flash_probe(struct device *parent, struct cfdata *match, void *aux)
178 {
179 	struct vrip_attach_args	*va = aux;
180 	bus_space_handle_t	ioh;
181 
182 	if (bus_space_map(va->va_iot, va->va_addr, va->va_size, 0, &ioh))
183 		return 0;
184 	if (!probe_cfi(va->va_iot, ioh)) {
185 		DPRINTF("CFI ID str and command set recognized\n");
186 		goto detect;
187 	}
188 	if (!i28f128_probe(va->va_iot, ioh)) {
189 		DPRINTF("28F128 detected\n");
190 		goto detect;
191 	}
192 	if (!mbm29160_probe(va->va_iot, ioh)) {
193 		DPRINTF("29LV160 detected\n");
194 		goto detect;
195 	}
196 	return 0;
197 
198 detect:
199 	bus_space_unmap(va->va_iot, ioh, va->va_size);
200 	return 1;
201 }
202 
203 static void
204 flash_attach(struct device *parent, struct device *self, void *aux)
205 {
206 	struct flash_softc	*sc = (void *) self;
207 	struct vrip_attach_args	*va = aux;
208 	int			i;
209 	int			fence;
210 	bus_space_tag_t		iot = va->va_iot;
211 	bus_space_handle_t	ioh;
212 	size_t			block_size;
213 
214 	if (bus_space_map(iot, va->va_addr, va->va_size, 0, &ioh)) {
215 		printf(": can't map i/o space\n");
216                 return;
217   	}
218 
219 	sc->sc_iot = iot;
220 	sc->sc_ioh = ioh;
221 	sc->sc_size = va->va_size;
222 	sc->sc_status = 0;
223 
224 	/*
225 	 * Read entire CFI structure
226 	 */
227 	bus_space_write_2(iot, ioh, CFI_QUERY_OFFSET, CFI_READ_CFI_QUERY);
228 	for (i = 0; i < CFI_TOTAL_SIZE; i++) {
229 		sc->sc_cfi_raw[i] = bus_space_read_2(iot, ioh, i << 1);
230 	}
231 	bus_space_write_2(iot, ioh, 0, FLASH_RESET);
232 
233 	sc->sc_ops = find_command_set(sc->sc_cfi_raw[CFI_PRIM_COMM_REG0],
234 				      sc->sc_cfi_raw[CFI_PRIM_COMM_REG1]);
235 	if (sc->sc_ops) {
236 		printf(": using %s command set", sc->sc_ops->fo_name);
237 	} else {
238 		printf("opps sc->sc_ops is NULL\n");
239 	}
240 
241 	/*
242 	 * determine size of the largest block
243 	 */
244 	sc->sc_block_size = 0;
245 	i = CFI_EBLK1_INFO_REG;
246 	fence = sc->sc_cfi_raw[CFI_NUM_ERASE_BLK_REG] * CFI_EBLK_INFO_SIZE
247 		+ i;
248 	for (; i < fence; i += CFI_EBLK_INFO_SIZE) {
249 		if (sc->sc_cfi_raw[i + CFI_EBLK_INFO_NSECT0] == 0
250 		    && sc->sc_cfi_raw[i + CFI_EBLK_INFO_NSECT1] == 0)
251 			continue;
252 		block_size
253 			= (sc->sc_cfi_raw[i + CFI_EBLK_INFO_SECSIZE0] << 8)
254 			+ (sc->sc_cfi_raw[i + CFI_EBLK_INFO_SECSIZE1] << 16);
255 		if (sc->sc_block_size < block_size)
256 			sc->sc_block_size = block_size;
257 	}
258 
259 	if ((sc->sc_buf = malloc(sc->sc_block_size, M_DEVBUF, M_NOWAIT))
260 	    == NULL) {
261 		printf(": can't alloc buffer space\n");
262 		return;
263 	}
264 
265 	sc->sc_write_buffer_size
266 		= 1 << (sc->sc_cfi_raw[CFI_MAX_WBUF_SIZE_REG0]
267 			+ (sc->sc_cfi_raw[CFI_MAX_WBUF_SIZE_REG1] << 8));
268 	sc->sc_typ_word_prog_timo
269 		= 1 << sc->sc_cfi_raw[CFI_TYP_WORD_PROG_REG];
270 	sc->sc_max_word_prog_timo
271 		= 1 << sc->sc_cfi_raw[CFI_MAX_WORD_PROG_REG];
272 	sc->sc_typ_buffer_write_timo
273 		= 1 << sc->sc_cfi_raw[CFI_TYP_BUF_WRITE_REG];
274 	sc->sc_max_buffer_write_timo
275 		= 1 << sc->sc_cfi_raw[CFI_MAX_BUF_WRITE_REG];
276 	sc->sc_typ_block_erase_timo
277 		= 1 << sc->sc_cfi_raw[CFI_TYP_BLOCK_ERASE_REG];
278 	sc->sc_max_block_erase_timo
279 		= 1 << sc->sc_cfi_raw[CFI_MAX_BLOCK_ERASE_REG];
280 
281 	printf("\n");
282 
283 #ifdef FLASH_DEBUG
284 	printf("read_cfi: extract cfi\n");
285 	printf("max block size: %dbyte\n", sc->sc_block_size);
286 	printf("write buffer size: %dbyte\n", sc->sc_write_buffer_size);
287 	printf("typical word program timeout: %dusec\n",
288 	       sc->sc_typ_word_prog_timo);
289 	printf("maximam word program timeout: %dusec (%d time of typ)\n",
290 	       sc->sc_typ_word_prog_timo * sc->sc_max_word_prog_timo,
291 	       sc->sc_max_word_prog_timo);
292 	printf("typical buffer write timeout: %dusec\n",
293 	       sc->sc_typ_buffer_write_timo);
294 	printf("maximam buffer write timeout: %dusec (%d time of typ)\n",
295 	       sc->sc_typ_buffer_write_timo * sc->sc_max_buffer_write_timo,
296 	       sc->sc_max_buffer_write_timo);
297 	printf("typical block erase timeout: %dmsec\n",
298 	       sc->sc_typ_block_erase_timo);
299 	printf("maximam block erase timeout: %dmsec (%d time of typ)\n",
300 	       sc->sc_typ_block_erase_timo * sc->sc_max_block_erase_timo,
301 	       sc->sc_max_block_erase_timo);
302 
303 	printf("read_cfi: dump cfi\n");
304 	for (i = 0; i < CFI_TOTAL_SIZE;) {
305 		int	j;
306 		for (j = 0; j < 16; j++) {
307 			printf("%02x ", sc->sc_cfi_raw[i++]);
308 		}
309 		printf("\n");
310 	}
311 #endif
312 }
313 
314 int
315 flashopen(dev_t dev, int flag, int mode, struct proc *p)
316 {
317 	struct flash_softc	*sc;
318 
319 	if ((sc = device_lookup(&flash_cd, minor(dev))) == NULL)
320 		return ENXIO;
321 	if (sc->sc_status & FLASH_ST_BUSY)
322 		return EBUSY;
323 	sc->sc_status |= FLASH_ST_BUSY;
324 	return 0;
325 }
326 
327 int
328 flashclose(dev_t dev, int flag, int mode, struct proc *p)
329 {
330 	struct flash_softc	*sc;
331 
332 	sc = device_lookup(&flash_cd, minor(dev));
333 	sc->sc_status &= ~FLASH_ST_BUSY;
334 	return 0;
335 }
336 
337 int
338 flashread(dev_t dev, struct uio *uio, int flag)
339 {
340 	struct flash_softc	*sc;
341 	bus_space_tag_t		iot;
342 	bus_space_handle_t	ioh;
343 	bus_size_t		off;
344 	int			total;
345 	int			count;
346 	int			error;
347 
348 	sc = device_lookup(&flash_cd, minor(dev));
349 	iot = sc->sc_iot;
350 	ioh = sc->sc_ioh;
351 
352 	off = uio->uio_offset;
353 	total = min(sc->sc_size - off, uio->uio_resid);
354 
355 	while (total > 0) {
356 		count = min(sc->sc_block_size, uio->uio_resid);
357 		bus_space_read_region_1(iot, ioh, off, sc->sc_buf, count);
358 		if ((error = uiomove(sc->sc_buf, count, uio)) != 0)
359 			return error;
360 		off += count;
361 		total -= count;
362 	}
363 	return 0;
364 }
365 
366 
367 int
368 flashwrite(dev_t dev, struct uio *uio, int flag)
369 {
370 	struct flash_softc	*sc;
371 	bus_space_tag_t		iot;
372 	bus_space_handle_t	ioh;
373 	bus_size_t		off;
374 	int			stat;
375 	int			error;
376 
377 	sc = device_lookup(&flash_cd, minor(dev));
378 
379 	if (sc->sc_size < uio->uio_offset + uio->uio_resid)
380 		return ENOSPC;
381 	if (uio->uio_offset % sc->sc_block_size)
382 		return EINVAL;
383 	if (uio->uio_resid % sc->sc_block_size)
384 		return EINVAL;
385 
386 	iot = sc->sc_iot;
387 	ioh = sc->sc_ioh;
388 
389 	for (off = uio->uio_offset;
390 	     uio->uio_resid > 0;
391 	     off += sc->sc_block_size) {
392 		if ((error = uiomove(sc->sc_buf, sc->sc_block_size, uio)) != 0)
393 			return error;
394 		if (is_block_same(sc, off, sc->sc_buf))
395 			continue;
396 		if ((stat = flash_block_erase(sc, off)) != 0) {
397 			printf("block erase failed status = 0x%x\n", stat);
398 			return EIO;
399 		}
400 		if ((stat = flash_block_write(sc, off)) != 0) {
401 			printf("block write failed status = 0x%x\n", stat);
402 			return EIO;
403 		}
404 	}
405 	return 0;
406 }
407 
408 /*
409  * XXX
410  * this function is too much specific for the device.
411  */
412 static int
413 i28f128_probe(bus_space_tag_t iot, bus_space_handle_t ioh)
414 {
415 	static const u_int8_t	vendor_code[] = {
416 		0x89,	/* manufacturer code: 	intel */
417 		0x18,	/* device code:		28F128 */
418 	};
419 
420 	static const u_int8_t	idstr[] = {
421 		'Q', 'R', 'Y',
422 		0x01, 0x00,
423 		0x31, 0x00,
424 		0xff
425 	};
426 
427 	int	i;
428 
429 	/* start Common Flash Interface Query */
430 	bus_space_write_2(iot, ioh, 0, CFI_READ_CFI_QUERY);
431 	/* read CFI Query ID string */
432 	for (i = 0; idstr[i] != 0xff; i++) {
433 		if (bus_space_read_2(iot, ioh, (0x10 + i) << 1) != idstr[i])
434 			return 1;
435 	}
436 
437 	/* read manufacturer code and device code */
438 	if (bus_space_read_2(iot, ioh, 0x00) != vendor_code[0])
439 		return 1;
440 	if (bus_space_read_2(iot, ioh, 0x02) != vendor_code[1])
441 		return 1;
442 
443 	bus_space_write_2(iot, ioh, 0, I28F128_RESET);
444 	return 0;
445 }
446 
447 /*
448  * XXX
449  * this function is too much specific for the device.
450  */
451 static int
452 mbm29160_probe(bus_space_tag_t iot, bus_space_handle_t ioh)
453 {
454 	static const u_int16_t	vendor_code[] = {
455 		0x0004,	/* manufacturer code: 	intel */
456 		0x2249,	/* device code:		29LV160BE */
457 	};
458 
459 	static const u_int8_t	idstr[] = {
460 		'Q', 'R', 'Y',
461 		0x02, 0x00,
462 		0x40, 0x00,
463 		0xff
464 	};
465 
466 	int	i;
467 
468 	/* start Common Flash Interface Query */
469 	bus_space_write_2(iot, ioh, 0xaa, CFI_READ_CFI_QUERY);
470 	/* read CFI Query ID string */
471 	for (i = 0; idstr[i] != 0xff; i++) {
472 		if (bus_space_read_2(iot, ioh, (0x10 + i) << 1) != idstr[i])
473 			return 1;
474 	}
475 
476 	bus_space_write_2(iot, ioh, 0, 0xff);
477 
478 	/* read manufacturer code and device code */
479 	bus_space_write_2(iot, ioh, 0x555 << 1, 0xaa);
480 	bus_space_write_2(iot, ioh, 0x2aa << 1, 0x55);
481 	bus_space_write_2(iot, ioh, 0x555 << 1, 0x90);
482 	if (bus_space_read_2(iot, ioh, 0x00) != vendor_code[0])
483 		return 1;
484 	if (bus_space_read_2(iot, ioh, 0x02) != vendor_code[1])
485 		return 1;
486 
487 	bus_space_write_2(iot, ioh, 0, 0xff);
488 	return 0;
489 }
490 
491 static int
492 is_block_same(struct flash_softc *sc, bus_size_t offset, const void *bufp)
493 {
494 	bus_space_tag_t		iot = sc->sc_iot;
495 	bus_space_handle_t	ioh = sc->sc_ioh;
496 	const u_int8_t		*p = bufp;
497 	int			count = sc->sc_block_size;
498 
499 	while (count-- > 0) {
500 		if (bus_space_read_1(iot, ioh, offset++) != *p++)
501 			return 0;
502 	}
503 	return 1;
504 }
505 
506 static int
507 intel_erase(struct flash_softc *sc, bus_size_t offset)
508 {
509 	bus_space_tag_t		iot = sc->sc_iot;
510 	bus_space_handle_t	ioh = sc->sc_ioh;
511 	int			status;
512 	int			i;
513 
514 	bus_space_write_2(iot, ioh, offset, I28F128_BLK_ERASE_1ST);
515 	bus_space_write_2(iot, ioh, offset, I28F128_BLK_ERASE_2ND);
516 
517 	for (i = sc->sc_max_block_erase_timo; i > 0; i--) {
518 		tsleep(sc, PRIBIO, "blockerase",
519 		       1 + (sc->sc_typ_block_erase_timo * hz) / 1000);
520 		if ((status = bus_space_read_2(iot, ioh, offset))
521 		    & I28F128_S_READY)
522 			break;
523 	}
524 
525 	bus_space_write_2(iot, ioh, offset, I28F128_CLEAR_STATUS);
526 	bus_space_write_2(iot, ioh, offset, I28F128_RESET);
527 
528 	return status & (I28F128_S_ERASE_SUSPEND
529 			 | I28F128_S_COMSEQ_ERROR
530 			 | I28F128_S_ERASE_ERROR
531 			 | I28F128_S_BLOCK_LOCKED);
532 }
533 
534 static int
535 intel_write(struct flash_softc *sc, bus_size_t offset)
536 {
537 	bus_space_tag_t		iot = sc->sc_iot;
538 	bus_space_handle_t	ioh = sc->sc_ioh;
539 	int			wbuf_size;
540 	int			timo;
541 	int			status;
542 	bus_size_t		fence;
543 	int			i;
544 	const u_int16_t		*p;
545 
546 	/* wbuf_size = size in u_int16_t */
547 	wbuf_size = sc->sc_write_buffer_size >> 1;
548 
549 	p = (u_int16_t *) sc->sc_buf;
550 	fence = offset + sc->sc_block_size;
551 	do {
552 		for (timo = sc->sc_max_buffer_write_timo; timo > 0; timo--) {
553 			bus_space_write_2(iot, ioh, offset,
554 					  I28F128_WRITE_BUFFER);
555 			status = bus_space_read_2(iot, ioh, offset);
556 			if (status & I28F128_XS_BUF_AVAIL)
557 				break;
558 			DELAY(sc->sc_typ_buffer_write_timo);
559 		}
560 		if (timo == 0) {
561 			status |= FLASH_TIMEOUT;
562 			goto errout;
563 		}
564 
565 		bus_space_write_2(iot, ioh, offset, wbuf_size - 1);
566 
567 		for (i = wbuf_size; i > 0; i--, p++, offset += 2)
568 			bus_space_write_2(iot, ioh, offset, *p);
569 
570 		bus_space_write_2(iot, ioh, offset, I28F128_WBUF_CONFIRM);
571 
572 		do {
573 			bus_space_write_2(iot, ioh, offset,
574 					  I28F128_READ_STATUS);
575 			status = bus_space_read_2(iot, ioh, offset);
576 		} while (!(status & I28F128_S_READY));
577 
578 	} while (offset < fence);
579 
580 	bus_space_write_2(iot, ioh, offset, I28F128_CLEAR_STATUS);
581 	bus_space_write_2(iot, ioh, offset, I28F128_RESET);
582 
583 	return 0;
584 
585 errout:
586 	bus_space_write_2(iot, ioh, offset, I28F128_CLEAR_STATUS);
587 	bus_space_write_2(iot, ioh, offset, I28F128_RESET);
588 
589 	status &= (FLASH_TIMEOUT
590 		   | I28F128_S_PROG_ERROR
591 		   | I28F128_S_COMSEQ_ERROR
592 		   | I28F128_S_LOW_VOLTAGE
593 		   | I28F128_S_PROG_SUSPEND
594 		   | I28F128_S_BLOCK_LOCKED);
595 	return status;
596 }
597 
598 static int
599 amd_erase_sector(struct flash_softc *sc, bus_size_t offset)
600 {
601 	bus_space_tag_t		iot = sc->sc_iot;
602 	bus_space_handle_t	ioh = sc->sc_ioh;
603 	int			i;
604 
605 	DPRINTF(("amd_erase_sector offset = %08lx\n", offset));
606 
607 	bus_space_write_2(iot, ioh,
608 			  MBM29LV160_COMM_ADDR0, MBM29LV160_COMM_CMD0);
609 	bus_space_write_2(iot, ioh,
610 			  MBM29LV160_COMM_ADDR1, MBM29LV160_COMM_CMD1);
611 	bus_space_write_2(iot, ioh,
612 			  MBM29LV160_COMM_ADDR2, MBM29LV160_ESECT_CMD2);
613 	bus_space_write_2(iot, ioh,
614 			  MBM29LV160_COMM_ADDR3, MBM29LV160_ESECT_CMD3);
615 	bus_space_write_2(iot, ioh,
616 			  MBM29LV160_COMM_ADDR4, MBM29LV160_ESECT_CMD4);
617 	bus_space_write_2(iot, ioh, offset, MBM29LV160_ESECT_CMD5);
618 
619 	for (i = sc->sc_max_block_erase_timo; i > 0; i--) {
620 		tsleep(sc, PRIBIO, "blockerase",
621 		       1 + (sc->sc_typ_block_erase_timo * hz) / 1000);
622 		if (bus_space_read_2(iot, ioh, offset) == 0xffff)
623 			return 0;
624 	}
625 
626 	return FLASH_TIMEOUT;
627 }
628 
629 static int
630 amd_erase(struct flash_softc *sc, bus_size_t offset)
631 {
632 	static const struct mbm29lv_subsect {
633 		u_int16_t	devcode;
634 		u_int32_t	subsect_mask;
635 		u_int32_t	subsect_addr;
636 	} subsect[] = {
637 		{
638 			MBM29LV160TE_DEVCODE,
639 			MBM29LV160_SUBSECT_MASK,
640 			MBM29LV160TE_SUBSECT_ADDR
641 		},
642 		{
643 			MBM29LV160BE_DEVCODE,
644 			MBM29LV160_SUBSECT_MASK,
645 			MBM29LV160BE_SUBSECT_ADDR
646 		},
647 		{ 0, 0, 0 }
648 	};
649 
650 	bus_space_tag_t			iot = sc->sc_iot;
651 	bus_space_handle_t		ioh = sc->sc_ioh;
652 	u_int16_t			devcode;
653 	const struct mbm29lv_subsect	*ss;
654 	bus_size_t			fence;
655 	int				step;
656 	int				status;
657 
658 	bus_space_write_2(iot, ioh,
659 			  MBM29LV160_COMM_ADDR0, MBM29LV160_COMM_CMD0);
660 	bus_space_write_2(iot, ioh,
661 			  MBM29LV160_COMM_ADDR1, MBM29LV160_COMM_CMD1);
662 	bus_space_write_2(iot, ioh,
663 			  MBM29LV160_COMM_ADDR2, MBM29LV160_SIGN_CMD2);
664 	devcode = bus_space_read_2(iot, ioh, MBM29LV160_DEVCODE_REG);
665 
666 	for (ss = subsect; ss->devcode; ss++) {
667 		if (ss->devcode == devcode)
668 			break;
669 	}
670 	if (ss->devcode == 0) {
671 		printf("flash: amd_erase(): unknown device code %04x\n",
672 		       devcode);
673 		return -1;
674 	}
675 
676 	DPRINTF(("flash: amd_erase(): devcode = %04x subsect = %08x\n",
677 		 devcode, ss->subsect_addr));
678 
679 	fence = offset + sc->sc_block_size;
680 	step = (offset & ss->subsect_mask) == ss->subsect_addr
681 		? MBM29LV160_SUBSECT_SIZE : MBM29LV160_SECT_SIZE;
682 	do {
683 		if ((status = amd_erase_sector(sc, offset)) != 0)
684 			return status;
685 		offset += step;
686 	} while (offset < fence);
687 
688 	return 0;
689 }
690 
691 static int
692 amd_write(struct flash_softc *sc, bus_size_t offset)
693 {
694 	bus_space_tag_t		iot = sc->sc_iot;
695 	bus_space_handle_t	ioh = sc->sc_ioh;
696 	int			timo;
697 	bus_size_t		fence;
698 	const u_int16_t		*p;
699 
700 	p = (u_int16_t *) sc->sc_buf;
701 	fence = offset + sc->sc_block_size;
702 	do {
703 		bus_space_write_2(iot, ioh,
704 				  MBM29LV160_COMM_ADDR0,
705 				  MBM29LV160_COMM_CMD0);
706 		bus_space_write_2(iot, ioh,
707 				  MBM29LV160_COMM_ADDR1,
708 				  MBM29LV160_COMM_CMD1);
709 		bus_space_write_2(iot, ioh,
710 				  MBM29LV160_COMM_ADDR2,
711 				  MBM29LV160_PROG_CMD2);
712 		bus_space_write_2(iot, ioh, offset, *p);
713 
714 		for (timo = sc->sc_max_word_prog_timo; timo > 0; timo--) {
715 			if (bus_space_read_2(iot, ioh, offset) == *p)
716 				break;
717 			DELAY(sc->sc_typ_word_prog_timo);
718 		}
719 		if (timo == 0)
720 			return FLASH_TIMEOUT;
721 
722 		p++;
723 		offset += 2;
724 	} while (offset < fence);
725 
726 	return 0;
727 }
728