xref: /netbsd-src/sys/arch/hpcmips/vr/flash_vrip.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /* $NetBSD: flash_vrip.c,v 1.9 2014/03/16 05:20:24 dholland Exp $ */
2 
3 /*
4  * Copyright (c) 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Naoto Shimazaki of YOKOGAWA Electric Corporation.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Flash Memory Driver
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: flash_vrip.c,v 1.9 2014/03/16 05:20:24 dholland Exp $");
38 
39 #include <sys/param.h>
40 #include <sys/conf.h>
41 #include <sys/device.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 #include <sys/proc.h>
45 #include <sys/systm.h>
46 
47 #include <machine/bus.h>
48 
49 #include <hpcmips/vr/vripif.h>
50 #include <hpcmips/vr/cfireg.h>
51 #include <hpcmips/vr/flashreg.h>
52 #include <hpcmips/vr/flashvar.h>
53 
54 #ifdef FLASH_DEBUG
55 int	flash_debug = 0;
56 #define DPRINTF(x)	if (flash_debug) printf x
57 #else
58 #define DPRINTF(x)
59 #endif
60 
61 static int flash_probe(device_t, cfdata_t, void *);
62 static void flash_attach(device_t, device_t, void *);
63 
64 const static struct flashops * find_command_set(u_int8_t cmdset0,
65 						u_int8_t cmdset1);
66 static int i28f128_probe(bus_space_tag_t, bus_space_handle_t);
67 static int mbm29160_probe(bus_space_tag_t, bus_space_handle_t);
68 static int is_block_same(struct flash_softc *, bus_size_t, const void *);
69 static int probe_cfi(bus_space_tag_t iot, bus_space_handle_t ioh);
70 
71 static int intel_erase(struct flash_softc *, bus_size_t);
72 static int intel_write(struct flash_softc *, bus_size_t);
73 static int amd_erase(struct flash_softc *, bus_size_t);
74 static int amd_write(struct flash_softc *, bus_size_t);
75 
76 extern struct cfdriver flash_cd;
77 
78 CFATTACH_DECL_NEW(flash_vrip, sizeof(struct flash_softc),
79 	      flash_probe, flash_attach, NULL, NULL);
80 
81 dev_type_open(flashopen);
82 dev_type_close(flashclose);
83 dev_type_read(flashread);
84 dev_type_write(flashwrite);
85 
86 const struct cdevsw flash_cdevsw = {
87 	.d_open = flashopen,
88 	.d_close = flashclose,
89 	.d_read = flashread,
90 	.d_write = flashwrite,
91 	.d_ioctl = noioctl,
92 	.d_stop = nostop,
93 	.d_tty = notty,
94 	.d_poll = nopoll,
95 	.d_mmap = nommap,
96 	.d_kqfilter = nokqfilter,
97 	.d_flag = 0
98 };
99 
100 static const struct flash_command_set {
101 	u_int8_t	fc_set0;
102 	u_int8_t	fc_set1;
103 	struct flashops	fc_ops;
104 } flash_cmd[] = {
105 	{
106 		.fc_set0	= CFI_COMMSET_INTEL0,
107 		.fc_set1	= CFI_COMMSET_INTEL1,
108 		.fc_ops		= {
109 			.fo_name	= "Intel",
110 			.fo_erase	= intel_erase,
111 			.fo_write	= intel_write,
112 		}
113 	},
114 	{
115 		.fc_set0	= CFI_COMMSET_AMDFJITU0,
116 		.fc_set1	= CFI_COMMSET_AMDFJITU1,
117 		.fc_ops		= {
118 			.fo_name	= "AMD/Fujitsu",
119 			.fo_erase	= amd_erase,
120 			.fo_write	= amd_write,
121 		}
122 	},
123 	{
124 		.fc_set0	= 0,
125 		.fc_set1	= 0,
126 		.fc_ops		= {
127 			.fo_name	= NULL,
128 			.fo_erase	= NULL,
129 			.fo_write	= NULL,
130 		}
131 	}
132 };
133 
134 
135 const static struct flashops *
136 find_command_set(u_int8_t cmdset0, u_int8_t cmdset1)
137 {
138 	const struct flash_command_set	*fc;
139 
140 	for (fc = flash_cmd; fc->fc_ops.fo_name; fc++) {
141 		if (cmdset0 == fc->fc_set0 && cmdset1 == fc->fc_set1)
142 			return &fc->fc_ops;
143 	}
144 	return NULL;
145 }
146 
147 static int
148 probe_cfi(bus_space_tag_t iot, bus_space_handle_t ioh)
149 {
150 	const u_int8_t	*idstr = CFI_QUERY_ID_STR;
151 	int		i;
152 	u_int8_t	cmdset0;
153 	u_int8_t	cmdset1;
154 
155 	/* start Common Flash Interface Query */
156 	bus_space_write_2(iot, ioh, CFI_QUERY_OFFSET, CFI_READ_CFI_QUERY);
157 
158 	/* read CFI Query ID string */
159 	i = CFI_QUERY_ID_STR_REG << 1;
160 	do {
161 		if (bus_space_read_2(iot, ioh, i) != *idstr) {
162 			bus_space_write_2(iot, ioh, 0, FLASH_RESET);
163 			return 1;
164 		}
165 		i += 2;
166 		idstr++;
167 	} while (*idstr);
168 
169 	cmdset0 = bus_space_read_2(iot, ioh, CFI_PRIM_COMM_REG0 << 1);
170 	cmdset1 = bus_space_read_2(iot, ioh, CFI_PRIM_COMM_REG1 << 1);
171 
172 	/* switch flash to read mode */
173 	bus_space_write_2(iot, ioh, 0, FLASH_RESET);
174 
175 	if (!find_command_set(cmdset0, cmdset1))
176 		return 1;
177 
178 	return 0;
179 }
180 
181 static int
182 flash_probe(device_t parent, cfdata_t match, void *aux)
183 {
184 	struct vrip_attach_args	*va = aux;
185 	bus_space_handle_t	ioh;
186 
187 	if (bus_space_map(va->va_iot, va->va_addr, va->va_size, 0, &ioh))
188 		return 0;
189 	if (!probe_cfi(va->va_iot, ioh)) {
190 		DPRINTF("CFI ID str and command set recognized\n");
191 		goto detect;
192 	}
193 	if (!i28f128_probe(va->va_iot, ioh)) {
194 		DPRINTF("28F128 detected\n");
195 		goto detect;
196 	}
197 	if (!mbm29160_probe(va->va_iot, ioh)) {
198 		DPRINTF("29LV160 detected\n");
199 		goto detect;
200 	}
201 	return 0;
202 
203 detect:
204 	bus_space_unmap(va->va_iot, ioh, va->va_size);
205 	return 1;
206 }
207 
208 static void
209 flash_attach(device_t parent, device_t self, void *aux)
210 {
211 	struct flash_softc	*sc = device_private(self);
212 	struct vrip_attach_args	*va = aux;
213 	int			i;
214 	int			fence;
215 	bus_space_tag_t		iot = va->va_iot;
216 	bus_space_handle_t	ioh;
217 	size_t			block_size;
218 
219 	if (bus_space_map(iot, va->va_addr, va->va_size, 0, &ioh)) {
220 		printf(": can't map i/o space\n");
221                 return;
222   	}
223 
224 	sc->sc_iot = iot;
225 	sc->sc_ioh = ioh;
226 	sc->sc_size = va->va_size;
227 	sc->sc_status = 0;
228 
229 	/*
230 	 * Read entire CFI structure
231 	 */
232 	bus_space_write_2(iot, ioh, CFI_QUERY_OFFSET, CFI_READ_CFI_QUERY);
233 	for (i = 0; i < CFI_TOTAL_SIZE; i++) {
234 		sc->sc_cfi_raw[i] = bus_space_read_2(iot, ioh, i << 1);
235 	}
236 	bus_space_write_2(iot, ioh, 0, FLASH_RESET);
237 
238 	sc->sc_ops = find_command_set(sc->sc_cfi_raw[CFI_PRIM_COMM_REG0],
239 				      sc->sc_cfi_raw[CFI_PRIM_COMM_REG1]);
240 	if (sc->sc_ops) {
241 		printf(": using %s command set", sc->sc_ops->fo_name);
242 	} else {
243 		printf("opps sc->sc_ops is NULL\n");
244 	}
245 
246 	/*
247 	 * determine size of the largest block
248 	 */
249 	sc->sc_block_size = 0;
250 	i = CFI_EBLK1_INFO_REG;
251 	fence = sc->sc_cfi_raw[CFI_NUM_ERASE_BLK_REG] * CFI_EBLK_INFO_SIZE
252 		+ i;
253 	for (; i < fence; i += CFI_EBLK_INFO_SIZE) {
254 		if (sc->sc_cfi_raw[i + CFI_EBLK_INFO_NSECT0] == 0
255 		    && sc->sc_cfi_raw[i + CFI_EBLK_INFO_NSECT1] == 0)
256 			continue;
257 		block_size
258 			= (sc->sc_cfi_raw[i + CFI_EBLK_INFO_SECSIZE0] << 8)
259 			+ (sc->sc_cfi_raw[i + CFI_EBLK_INFO_SECSIZE1] << 16);
260 		if (sc->sc_block_size < block_size)
261 			sc->sc_block_size = block_size;
262 	}
263 
264 	if ((sc->sc_buf = malloc(sc->sc_block_size, M_DEVBUF, M_NOWAIT))
265 	    == NULL) {
266 		printf(": can't alloc buffer space\n");
267 		return;
268 	}
269 
270 	sc->sc_write_buffer_size
271 		= 1 << (sc->sc_cfi_raw[CFI_MAX_WBUF_SIZE_REG0]
272 			+ (sc->sc_cfi_raw[CFI_MAX_WBUF_SIZE_REG1] << 8));
273 	sc->sc_typ_word_prog_timo
274 		= 1 << sc->sc_cfi_raw[CFI_TYP_WORD_PROG_REG];
275 	sc->sc_max_word_prog_timo
276 		= 1 << sc->sc_cfi_raw[CFI_MAX_WORD_PROG_REG];
277 	sc->sc_typ_buffer_write_timo
278 		= 1 << sc->sc_cfi_raw[CFI_TYP_BUF_WRITE_REG];
279 	sc->sc_max_buffer_write_timo
280 		= 1 << sc->sc_cfi_raw[CFI_MAX_BUF_WRITE_REG];
281 	sc->sc_typ_block_erase_timo
282 		= 1 << sc->sc_cfi_raw[CFI_TYP_BLOCK_ERASE_REG];
283 	sc->sc_max_block_erase_timo
284 		= 1 << sc->sc_cfi_raw[CFI_MAX_BLOCK_ERASE_REG];
285 
286 	printf("\n");
287 
288 #ifdef FLASH_DEBUG
289 	printf("read_cfi: extract cfi\n");
290 	printf("max block size: %dbyte\n", sc->sc_block_size);
291 	printf("write buffer size: %dbyte\n", sc->sc_write_buffer_size);
292 	printf("typical word program timeout: %dusec\n",
293 	       sc->sc_typ_word_prog_timo);
294 	printf("maximam word program timeout: %dusec (%d time of typ)\n",
295 	       sc->sc_typ_word_prog_timo * sc->sc_max_word_prog_timo,
296 	       sc->sc_max_word_prog_timo);
297 	printf("typical buffer write timeout: %dusec\n",
298 	       sc->sc_typ_buffer_write_timo);
299 	printf("maximam buffer write timeout: %dusec (%d time of typ)\n",
300 	       sc->sc_typ_buffer_write_timo * sc->sc_max_buffer_write_timo,
301 	       sc->sc_max_buffer_write_timo);
302 	printf("typical block erase timeout: %dmsec\n",
303 	       sc->sc_typ_block_erase_timo);
304 	printf("maximam block erase timeout: %dmsec (%d time of typ)\n",
305 	       sc->sc_typ_block_erase_timo * sc->sc_max_block_erase_timo,
306 	       sc->sc_max_block_erase_timo);
307 
308 	printf("read_cfi: dump cfi\n");
309 	for (i = 0; i < CFI_TOTAL_SIZE;) {
310 		int	j;
311 		for (j = 0; j < 16; j++) {
312 			printf("%02x ", sc->sc_cfi_raw[i++]);
313 		}
314 		printf("\n");
315 	}
316 #endif
317 }
318 
319 int
320 flashopen(dev_t dev, int flag, int mode, struct lwp *l)
321 {
322 	struct flash_softc	*sc;
323 
324 	sc = device_lookup_private(&flash_cd, minor(dev));
325 	if (sc == NULL)
326 		return ENXIO;
327 	if (sc->sc_status & FLASH_ST_BUSY)
328 		return EBUSY;
329 	sc->sc_status |= FLASH_ST_BUSY;
330 	return 0;
331 }
332 
333 int
334 flashclose(dev_t dev, int flag, int mode, struct lwp *l)
335 {
336 	struct flash_softc	*sc;
337 
338 	sc = device_lookup_private(&flash_cd, minor(dev));
339 	sc->sc_status &= ~FLASH_ST_BUSY;
340 	return 0;
341 }
342 
343 int
344 flashread(dev_t dev, struct uio *uio, int flag)
345 {
346 	struct flash_softc	*sc;
347 	bus_space_tag_t		iot;
348 	bus_space_handle_t	ioh;
349 	bus_size_t		off;
350 	int			total;
351 	int			count;
352 	int			error;
353 
354 	sc = device_lookup_private(&flash_cd, minor(dev));
355 	iot = sc->sc_iot;
356 	ioh = sc->sc_ioh;
357 
358 	off = uio->uio_offset;
359 	total = min(sc->sc_size - off, uio->uio_resid);
360 
361 	while (total > 0) {
362 		count = min(sc->sc_block_size, uio->uio_resid);
363 		bus_space_read_region_1(iot, ioh, off, sc->sc_buf, count);
364 		if ((error = uiomove(sc->sc_buf, count, uio)) != 0)
365 			return error;
366 		off += count;
367 		total -= count;
368 	}
369 	return 0;
370 }
371 
372 
373 int
374 flashwrite(dev_t dev, struct uio *uio, int flag)
375 {
376 	struct flash_softc	*sc;
377 	bus_space_tag_t		iot;
378 	bus_space_handle_t	ioh;
379 	bus_size_t		off;
380 	int			stat;
381 	int			error;
382 
383 	sc = device_lookup_private(&flash_cd, minor(dev));
384 
385 	if (sc->sc_size < uio->uio_offset + uio->uio_resid)
386 		return ENOSPC;
387 	if (uio->uio_offset % sc->sc_block_size)
388 		return EINVAL;
389 	if (uio->uio_resid % sc->sc_block_size)
390 		return EINVAL;
391 
392 	iot = sc->sc_iot;
393 	ioh = sc->sc_ioh;
394 
395 	for (off = uio->uio_offset;
396 	     uio->uio_resid > 0;
397 	     off += sc->sc_block_size) {
398 		if ((error = uiomove(sc->sc_buf, sc->sc_block_size, uio)) != 0)
399 			return error;
400 		if (is_block_same(sc, off, sc->sc_buf))
401 			continue;
402 		if ((stat = flash_block_erase(sc, off)) != 0) {
403 			printf("block erase failed status = 0x%x\n", stat);
404 			return EIO;
405 		}
406 		if ((stat = flash_block_write(sc, off)) != 0) {
407 			printf("block write failed status = 0x%x\n", stat);
408 			return EIO;
409 		}
410 	}
411 	return 0;
412 }
413 
414 /*
415  * XXX
416  * this function is too much specific for the device.
417  */
418 static int
419 i28f128_probe(bus_space_tag_t iot, bus_space_handle_t ioh)
420 {
421 	static const u_int8_t	vendor_code[] = {
422 		0x89,	/* manufacturer code: 	intel */
423 		0x18,	/* device code:		28F128 */
424 	};
425 
426 	static const u_int8_t	idstr[] = {
427 		'Q', 'R', 'Y',
428 		0x01, 0x00,
429 		0x31, 0x00,
430 		0xff
431 	};
432 
433 	int	i;
434 
435 	/* start Common Flash Interface Query */
436 	bus_space_write_2(iot, ioh, 0, CFI_READ_CFI_QUERY);
437 	/* read CFI Query ID string */
438 	for (i = 0; idstr[i] != 0xff; i++) {
439 		if (bus_space_read_2(iot, ioh, (0x10 + i) << 1) != idstr[i])
440 			return 1;
441 	}
442 
443 	/* read manufacturer code and device code */
444 	if (bus_space_read_2(iot, ioh, 0x00) != vendor_code[0])
445 		return 1;
446 	if (bus_space_read_2(iot, ioh, 0x02) != vendor_code[1])
447 		return 1;
448 
449 	bus_space_write_2(iot, ioh, 0, I28F128_RESET);
450 	return 0;
451 }
452 
453 /*
454  * XXX
455  * this function is too much specific for the device.
456  */
457 static int
458 mbm29160_probe(bus_space_tag_t iot, bus_space_handle_t ioh)
459 {
460 	static const u_int16_t	vendor_code[] = {
461 		0x0004,	/* manufacturer code: 	intel */
462 		0x2249,	/* device code:		29LV160BE */
463 	};
464 
465 	static const u_int8_t	idstr[] = {
466 		'Q', 'R', 'Y',
467 		0x02, 0x00,
468 		0x40, 0x00,
469 		0xff
470 	};
471 
472 	int	i;
473 
474 	/* start Common Flash Interface Query */
475 	bus_space_write_2(iot, ioh, 0xaa, CFI_READ_CFI_QUERY);
476 	/* read CFI Query ID string */
477 	for (i = 0; idstr[i] != 0xff; i++) {
478 		if (bus_space_read_2(iot, ioh, (0x10 + i) << 1) != idstr[i])
479 			return 1;
480 	}
481 
482 	bus_space_write_2(iot, ioh, 0, 0xff);
483 
484 	/* read manufacturer code and device code */
485 	bus_space_write_2(iot, ioh, 0x555 << 1, 0xaa);
486 	bus_space_write_2(iot, ioh, 0x2aa << 1, 0x55);
487 	bus_space_write_2(iot, ioh, 0x555 << 1, 0x90);
488 	if (bus_space_read_2(iot, ioh, 0x00) != vendor_code[0])
489 		return 1;
490 	if (bus_space_read_2(iot, ioh, 0x02) != vendor_code[1])
491 		return 1;
492 
493 	bus_space_write_2(iot, ioh, 0, 0xff);
494 	return 0;
495 }
496 
497 static int
498 is_block_same(struct flash_softc *sc, bus_size_t offset, const void *bufp)
499 {
500 	bus_space_tag_t		iot = sc->sc_iot;
501 	bus_space_handle_t	ioh = sc->sc_ioh;
502 	const u_int8_t		*p = bufp;
503 	int			count = sc->sc_block_size;
504 
505 	while (count-- > 0) {
506 		if (bus_space_read_1(iot, ioh, offset++) != *p++)
507 			return 0;
508 	}
509 	return 1;
510 }
511 
512 static int
513 intel_erase(struct flash_softc *sc, bus_size_t offset)
514 {
515 	bus_space_tag_t		iot = sc->sc_iot;
516 	bus_space_handle_t	ioh = sc->sc_ioh;
517 	int			status;
518 	int			i;
519 
520 	bus_space_write_2(iot, ioh, offset, I28F128_BLK_ERASE_1ST);
521 	bus_space_write_2(iot, ioh, offset, I28F128_BLK_ERASE_2ND);
522 
523 	status = 0;
524 	for (i = sc->sc_max_block_erase_timo; i > 0; i--) {
525 		tsleep(sc, PRIBIO, "blockerase",
526 		       1 + (sc->sc_typ_block_erase_timo * hz) / 1000);
527 		if ((status = bus_space_read_2(iot, ioh, offset))
528 		    & I28F128_S_READY)
529 			break;
530 	}
531 	if (i == 0)
532 		status |= FLASH_TIMEOUT;
533 
534 	bus_space_write_2(iot, ioh, offset, I28F128_CLEAR_STATUS);
535 	bus_space_write_2(iot, ioh, offset, I28F128_RESET);
536 
537 	return status & (FLASH_TIMEOUT
538 			 | I28F128_S_ERASE_SUSPEND
539 			 | I28F128_S_COMSEQ_ERROR
540 			 | I28F128_S_ERASE_ERROR
541 			 | I28F128_S_BLOCK_LOCKED);
542 }
543 
544 static int
545 intel_write(struct flash_softc *sc, bus_size_t offset)
546 {
547 	bus_space_tag_t		iot = sc->sc_iot;
548 	bus_space_handle_t	ioh = sc->sc_ioh;
549 	int			wbuf_size;
550 	int			timo;
551 	int			status;
552 	bus_size_t		fence;
553 	int			i;
554 	const u_int16_t		*p;
555 
556 	/* wbuf_size = size in u_int16_t */
557 	wbuf_size = sc->sc_write_buffer_size >> 1;
558 
559 	p = (u_int16_t *) sc->sc_buf;
560 	fence = offset + sc->sc_block_size;
561 	do {
562 		status = 0;
563 		for (timo = sc->sc_max_buffer_write_timo; timo > 0; timo--) {
564 			bus_space_write_2(iot, ioh, offset,
565 					  I28F128_WRITE_BUFFER);
566 			status = bus_space_read_2(iot, ioh, offset);
567 			if (status & I28F128_XS_BUF_AVAIL)
568 				break;
569 			DELAY(sc->sc_typ_buffer_write_timo);
570 		}
571 		if (timo == 0) {
572 			status |= FLASH_TIMEOUT;
573 			goto errout;
574 		}
575 
576 		bus_space_write_2(iot, ioh, offset, wbuf_size - 1);
577 
578 		for (i = wbuf_size; i > 0; i--, p++, offset += 2)
579 			bus_space_write_2(iot, ioh, offset, *p);
580 
581 		bus_space_write_2(iot, ioh, offset, I28F128_WBUF_CONFIRM);
582 
583 		do {
584 			bus_space_write_2(iot, ioh, offset,
585 					  I28F128_READ_STATUS);
586 			status = bus_space_read_2(iot, ioh, offset);
587 		} while (!(status & I28F128_S_READY));
588 
589 	} while (offset < fence);
590 
591 	bus_space_write_2(iot, ioh, offset, I28F128_CLEAR_STATUS);
592 	bus_space_write_2(iot, ioh, offset, I28F128_RESET);
593 
594 	return 0;
595 
596 errout:
597 	bus_space_write_2(iot, ioh, offset, I28F128_CLEAR_STATUS);
598 	bus_space_write_2(iot, ioh, offset, I28F128_RESET);
599 
600 	status &= (FLASH_TIMEOUT
601 		   | I28F128_S_PROG_ERROR
602 		   | I28F128_S_COMSEQ_ERROR
603 		   | I28F128_S_LOW_VOLTAGE
604 		   | I28F128_S_PROG_SUSPEND
605 		   | I28F128_S_BLOCK_LOCKED);
606 	return status;
607 }
608 
609 static int
610 amd_erase_sector(struct flash_softc *sc, bus_size_t offset)
611 {
612 	bus_space_tag_t		iot = sc->sc_iot;
613 	bus_space_handle_t	ioh = sc->sc_ioh;
614 	int			i;
615 
616 	DPRINTF(("amd_erase_sector offset = %08lx\n", offset));
617 
618 	bus_space_write_2(iot, ioh,
619 			  MBM29LV160_COMM_ADDR0, MBM29LV160_COMM_CMD0);
620 	bus_space_write_2(iot, ioh,
621 			  MBM29LV160_COMM_ADDR1, MBM29LV160_COMM_CMD1);
622 	bus_space_write_2(iot, ioh,
623 			  MBM29LV160_COMM_ADDR2, MBM29LV160_ESECT_CMD2);
624 	bus_space_write_2(iot, ioh,
625 			  MBM29LV160_COMM_ADDR3, MBM29LV160_ESECT_CMD3);
626 	bus_space_write_2(iot, ioh,
627 			  MBM29LV160_COMM_ADDR4, MBM29LV160_ESECT_CMD4);
628 	bus_space_write_2(iot, ioh, offset, MBM29LV160_ESECT_CMD5);
629 
630 	for (i = sc->sc_max_block_erase_timo; i > 0; i--) {
631 		tsleep(sc, PRIBIO, "blockerase",
632 		       1 + (sc->sc_typ_block_erase_timo * hz) / 1000);
633 		if (bus_space_read_2(iot, ioh, offset) == 0xffff)
634 			return 0;
635 	}
636 
637 	return FLASH_TIMEOUT;
638 }
639 
640 static int
641 amd_erase(struct flash_softc *sc, bus_size_t offset)
642 {
643 	static const struct mbm29lv_subsect {
644 		u_int16_t	devcode;
645 		u_int32_t	subsect_mask;
646 		u_int32_t	subsect_addr;
647 	} subsect[] = {
648 		{
649 			MBM29LV160TE_DEVCODE,
650 			MBM29LV160_SUBSECT_MASK,
651 			MBM29LV160TE_SUBSECT_ADDR
652 		},
653 		{
654 			MBM29LV160BE_DEVCODE,
655 			MBM29LV160_SUBSECT_MASK,
656 			MBM29LV160BE_SUBSECT_ADDR
657 		},
658 		{ 0, 0, 0 }
659 	};
660 
661 	bus_space_tag_t			iot = sc->sc_iot;
662 	bus_space_handle_t		ioh = sc->sc_ioh;
663 	u_int16_t			devcode;
664 	const struct mbm29lv_subsect	*ss;
665 	bus_size_t			fence;
666 	int				step;
667 	int				status;
668 
669 	bus_space_write_2(iot, ioh,
670 			  MBM29LV160_COMM_ADDR0, MBM29LV160_COMM_CMD0);
671 	bus_space_write_2(iot, ioh,
672 			  MBM29LV160_COMM_ADDR1, MBM29LV160_COMM_CMD1);
673 	bus_space_write_2(iot, ioh,
674 			  MBM29LV160_COMM_ADDR2, MBM29LV160_SIGN_CMD2);
675 	devcode = bus_space_read_2(iot, ioh, MBM29LV160_DEVCODE_REG);
676 
677 	for (ss = subsect; ss->devcode; ss++) {
678 		if (ss->devcode == devcode)
679 			break;
680 	}
681 	if (ss->devcode == 0) {
682 		printf("flash: amd_erase(): unknown device code %04x\n",
683 		       devcode);
684 		return -1;
685 	}
686 
687 	DPRINTF(("flash: amd_erase(): devcode = %04x subsect = %08x\n",
688 		 devcode, ss->subsect_addr));
689 
690 	fence = offset + sc->sc_block_size;
691 	step = (offset & ss->subsect_mask) == ss->subsect_addr
692 		? MBM29LV160_SUBSECT_SIZE : MBM29LV160_SECT_SIZE;
693 	do {
694 		if ((status = amd_erase_sector(sc, offset)) != 0)
695 			return status;
696 		offset += step;
697 	} while (offset < fence);
698 
699 	return 0;
700 }
701 
702 static int
703 amd_write(struct flash_softc *sc, bus_size_t offset)
704 {
705 	bus_space_tag_t		iot = sc->sc_iot;
706 	bus_space_handle_t	ioh = sc->sc_ioh;
707 	int			timo;
708 	bus_size_t		fence;
709 	const u_int16_t		*p;
710 
711 	p = (u_int16_t *) sc->sc_buf;
712 	fence = offset + sc->sc_block_size;
713 	do {
714 		bus_space_write_2(iot, ioh,
715 				  MBM29LV160_COMM_ADDR0,
716 				  MBM29LV160_COMM_CMD0);
717 		bus_space_write_2(iot, ioh,
718 				  MBM29LV160_COMM_ADDR1,
719 				  MBM29LV160_COMM_CMD1);
720 		bus_space_write_2(iot, ioh,
721 				  MBM29LV160_COMM_ADDR2,
722 				  MBM29LV160_PROG_CMD2);
723 		bus_space_write_2(iot, ioh, offset, *p);
724 
725 		for (timo = sc->sc_max_word_prog_timo; timo > 0; timo--) {
726 			if (bus_space_read_2(iot, ioh, offset) == *p)
727 				break;
728 			DELAY(sc->sc_typ_word_prog_timo);
729 		}
730 		if (timo == 0)
731 			return FLASH_TIMEOUT;
732 
733 		p++;
734 		offset += 2;
735 	} while (offset < fence);
736 
737 	return 0;
738 }
739