xref: /netbsd-src/sys/arch/hpcmips/vr/flash_vrip.c (revision 6cf6fe02a981b55727c49c3d37b0d8191a98c0ee)
1 /* $NetBSD: flash_vrip.c,v 1.10 2014/07/25 08:10:33 dholland Exp $ */
2 
3 /*
4  * Copyright (c) 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Naoto Shimazaki of YOKOGAWA Electric Corporation.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Flash Memory Driver
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: flash_vrip.c,v 1.10 2014/07/25 08:10:33 dholland Exp $");
38 
39 #include <sys/param.h>
40 #include <sys/conf.h>
41 #include <sys/device.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 #include <sys/proc.h>
45 #include <sys/systm.h>
46 
47 #include <machine/bus.h>
48 
49 #include <hpcmips/vr/vripif.h>
50 #include <hpcmips/vr/cfireg.h>
51 #include <hpcmips/vr/flashreg.h>
52 #include <hpcmips/vr/flashvar.h>
53 
54 #ifdef FLASH_DEBUG
55 int	flash_debug = 0;
56 #define DPRINTF(x)	if (flash_debug) printf x
57 #else
58 #define DPRINTF(x)
59 #endif
60 
61 static int flash_probe(device_t, cfdata_t, void *);
62 static void flash_attach(device_t, device_t, void *);
63 
64 const static struct flashops * find_command_set(u_int8_t cmdset0,
65 						u_int8_t cmdset1);
66 static int i28f128_probe(bus_space_tag_t, bus_space_handle_t);
67 static int mbm29160_probe(bus_space_tag_t, bus_space_handle_t);
68 static int is_block_same(struct flash_softc *, bus_size_t, const void *);
69 static int probe_cfi(bus_space_tag_t iot, bus_space_handle_t ioh);
70 
71 static int intel_erase(struct flash_softc *, bus_size_t);
72 static int intel_write(struct flash_softc *, bus_size_t);
73 static int amd_erase(struct flash_softc *, bus_size_t);
74 static int amd_write(struct flash_softc *, bus_size_t);
75 
76 extern struct cfdriver flash_cd;
77 
78 CFATTACH_DECL_NEW(flash_vrip, sizeof(struct flash_softc),
79 	      flash_probe, flash_attach, NULL, NULL);
80 
81 dev_type_open(flashopen);
82 dev_type_close(flashclose);
83 dev_type_read(flashread);
84 dev_type_write(flashwrite);
85 
86 const struct cdevsw flash_cdevsw = {
87 	.d_open = flashopen,
88 	.d_close = flashclose,
89 	.d_read = flashread,
90 	.d_write = flashwrite,
91 	.d_ioctl = noioctl,
92 	.d_stop = nostop,
93 	.d_tty = notty,
94 	.d_poll = nopoll,
95 	.d_mmap = nommap,
96 	.d_kqfilter = nokqfilter,
97 	.d_discard = nodiscard,
98 	.d_flag = 0
99 };
100 
101 static const struct flash_command_set {
102 	u_int8_t	fc_set0;
103 	u_int8_t	fc_set1;
104 	struct flashops	fc_ops;
105 } flash_cmd[] = {
106 	{
107 		.fc_set0	= CFI_COMMSET_INTEL0,
108 		.fc_set1	= CFI_COMMSET_INTEL1,
109 		.fc_ops		= {
110 			.fo_name	= "Intel",
111 			.fo_erase	= intel_erase,
112 			.fo_write	= intel_write,
113 		}
114 	},
115 	{
116 		.fc_set0	= CFI_COMMSET_AMDFJITU0,
117 		.fc_set1	= CFI_COMMSET_AMDFJITU1,
118 		.fc_ops		= {
119 			.fo_name	= "AMD/Fujitsu",
120 			.fo_erase	= amd_erase,
121 			.fo_write	= amd_write,
122 		}
123 	},
124 	{
125 		.fc_set0	= 0,
126 		.fc_set1	= 0,
127 		.fc_ops		= {
128 			.fo_name	= NULL,
129 			.fo_erase	= NULL,
130 			.fo_write	= NULL,
131 		}
132 	}
133 };
134 
135 
136 const static struct flashops *
137 find_command_set(u_int8_t cmdset0, u_int8_t cmdset1)
138 {
139 	const struct flash_command_set	*fc;
140 
141 	for (fc = flash_cmd; fc->fc_ops.fo_name; fc++) {
142 		if (cmdset0 == fc->fc_set0 && cmdset1 == fc->fc_set1)
143 			return &fc->fc_ops;
144 	}
145 	return NULL;
146 }
147 
148 static int
149 probe_cfi(bus_space_tag_t iot, bus_space_handle_t ioh)
150 {
151 	const u_int8_t	*idstr = CFI_QUERY_ID_STR;
152 	int		i;
153 	u_int8_t	cmdset0;
154 	u_int8_t	cmdset1;
155 
156 	/* start Common Flash Interface Query */
157 	bus_space_write_2(iot, ioh, CFI_QUERY_OFFSET, CFI_READ_CFI_QUERY);
158 
159 	/* read CFI Query ID string */
160 	i = CFI_QUERY_ID_STR_REG << 1;
161 	do {
162 		if (bus_space_read_2(iot, ioh, i) != *idstr) {
163 			bus_space_write_2(iot, ioh, 0, FLASH_RESET);
164 			return 1;
165 		}
166 		i += 2;
167 		idstr++;
168 	} while (*idstr);
169 
170 	cmdset0 = bus_space_read_2(iot, ioh, CFI_PRIM_COMM_REG0 << 1);
171 	cmdset1 = bus_space_read_2(iot, ioh, CFI_PRIM_COMM_REG1 << 1);
172 
173 	/* switch flash to read mode */
174 	bus_space_write_2(iot, ioh, 0, FLASH_RESET);
175 
176 	if (!find_command_set(cmdset0, cmdset1))
177 		return 1;
178 
179 	return 0;
180 }
181 
182 static int
183 flash_probe(device_t parent, cfdata_t match, void *aux)
184 {
185 	struct vrip_attach_args	*va = aux;
186 	bus_space_handle_t	ioh;
187 
188 	if (bus_space_map(va->va_iot, va->va_addr, va->va_size, 0, &ioh))
189 		return 0;
190 	if (!probe_cfi(va->va_iot, ioh)) {
191 		DPRINTF("CFI ID str and command set recognized\n");
192 		goto detect;
193 	}
194 	if (!i28f128_probe(va->va_iot, ioh)) {
195 		DPRINTF("28F128 detected\n");
196 		goto detect;
197 	}
198 	if (!mbm29160_probe(va->va_iot, ioh)) {
199 		DPRINTF("29LV160 detected\n");
200 		goto detect;
201 	}
202 	return 0;
203 
204 detect:
205 	bus_space_unmap(va->va_iot, ioh, va->va_size);
206 	return 1;
207 }
208 
209 static void
210 flash_attach(device_t parent, device_t self, void *aux)
211 {
212 	struct flash_softc	*sc = device_private(self);
213 	struct vrip_attach_args	*va = aux;
214 	int			i;
215 	int			fence;
216 	bus_space_tag_t		iot = va->va_iot;
217 	bus_space_handle_t	ioh;
218 	size_t			block_size;
219 
220 	if (bus_space_map(iot, va->va_addr, va->va_size, 0, &ioh)) {
221 		printf(": can't map i/o space\n");
222                 return;
223   	}
224 
225 	sc->sc_iot = iot;
226 	sc->sc_ioh = ioh;
227 	sc->sc_size = va->va_size;
228 	sc->sc_status = 0;
229 
230 	/*
231 	 * Read entire CFI structure
232 	 */
233 	bus_space_write_2(iot, ioh, CFI_QUERY_OFFSET, CFI_READ_CFI_QUERY);
234 	for (i = 0; i < CFI_TOTAL_SIZE; i++) {
235 		sc->sc_cfi_raw[i] = bus_space_read_2(iot, ioh, i << 1);
236 	}
237 	bus_space_write_2(iot, ioh, 0, FLASH_RESET);
238 
239 	sc->sc_ops = find_command_set(sc->sc_cfi_raw[CFI_PRIM_COMM_REG0],
240 				      sc->sc_cfi_raw[CFI_PRIM_COMM_REG1]);
241 	if (sc->sc_ops) {
242 		printf(": using %s command set", sc->sc_ops->fo_name);
243 	} else {
244 		printf("opps sc->sc_ops is NULL\n");
245 	}
246 
247 	/*
248 	 * determine size of the largest block
249 	 */
250 	sc->sc_block_size = 0;
251 	i = CFI_EBLK1_INFO_REG;
252 	fence = sc->sc_cfi_raw[CFI_NUM_ERASE_BLK_REG] * CFI_EBLK_INFO_SIZE
253 		+ i;
254 	for (; i < fence; i += CFI_EBLK_INFO_SIZE) {
255 		if (sc->sc_cfi_raw[i + CFI_EBLK_INFO_NSECT0] == 0
256 		    && sc->sc_cfi_raw[i + CFI_EBLK_INFO_NSECT1] == 0)
257 			continue;
258 		block_size
259 			= (sc->sc_cfi_raw[i + CFI_EBLK_INFO_SECSIZE0] << 8)
260 			+ (sc->sc_cfi_raw[i + CFI_EBLK_INFO_SECSIZE1] << 16);
261 		if (sc->sc_block_size < block_size)
262 			sc->sc_block_size = block_size;
263 	}
264 
265 	if ((sc->sc_buf = malloc(sc->sc_block_size, M_DEVBUF, M_NOWAIT))
266 	    == NULL) {
267 		printf(": can't alloc buffer space\n");
268 		return;
269 	}
270 
271 	sc->sc_write_buffer_size
272 		= 1 << (sc->sc_cfi_raw[CFI_MAX_WBUF_SIZE_REG0]
273 			+ (sc->sc_cfi_raw[CFI_MAX_WBUF_SIZE_REG1] << 8));
274 	sc->sc_typ_word_prog_timo
275 		= 1 << sc->sc_cfi_raw[CFI_TYP_WORD_PROG_REG];
276 	sc->sc_max_word_prog_timo
277 		= 1 << sc->sc_cfi_raw[CFI_MAX_WORD_PROG_REG];
278 	sc->sc_typ_buffer_write_timo
279 		= 1 << sc->sc_cfi_raw[CFI_TYP_BUF_WRITE_REG];
280 	sc->sc_max_buffer_write_timo
281 		= 1 << sc->sc_cfi_raw[CFI_MAX_BUF_WRITE_REG];
282 	sc->sc_typ_block_erase_timo
283 		= 1 << sc->sc_cfi_raw[CFI_TYP_BLOCK_ERASE_REG];
284 	sc->sc_max_block_erase_timo
285 		= 1 << sc->sc_cfi_raw[CFI_MAX_BLOCK_ERASE_REG];
286 
287 	printf("\n");
288 
289 #ifdef FLASH_DEBUG
290 	printf("read_cfi: extract cfi\n");
291 	printf("max block size: %dbyte\n", sc->sc_block_size);
292 	printf("write buffer size: %dbyte\n", sc->sc_write_buffer_size);
293 	printf("typical word program timeout: %dusec\n",
294 	       sc->sc_typ_word_prog_timo);
295 	printf("maximam word program timeout: %dusec (%d time of typ)\n",
296 	       sc->sc_typ_word_prog_timo * sc->sc_max_word_prog_timo,
297 	       sc->sc_max_word_prog_timo);
298 	printf("typical buffer write timeout: %dusec\n",
299 	       sc->sc_typ_buffer_write_timo);
300 	printf("maximam buffer write timeout: %dusec (%d time of typ)\n",
301 	       sc->sc_typ_buffer_write_timo * sc->sc_max_buffer_write_timo,
302 	       sc->sc_max_buffer_write_timo);
303 	printf("typical block erase timeout: %dmsec\n",
304 	       sc->sc_typ_block_erase_timo);
305 	printf("maximam block erase timeout: %dmsec (%d time of typ)\n",
306 	       sc->sc_typ_block_erase_timo * sc->sc_max_block_erase_timo,
307 	       sc->sc_max_block_erase_timo);
308 
309 	printf("read_cfi: dump cfi\n");
310 	for (i = 0; i < CFI_TOTAL_SIZE;) {
311 		int	j;
312 		for (j = 0; j < 16; j++) {
313 			printf("%02x ", sc->sc_cfi_raw[i++]);
314 		}
315 		printf("\n");
316 	}
317 #endif
318 }
319 
320 int
321 flashopen(dev_t dev, int flag, int mode, struct lwp *l)
322 {
323 	struct flash_softc	*sc;
324 
325 	sc = device_lookup_private(&flash_cd, minor(dev));
326 	if (sc == NULL)
327 		return ENXIO;
328 	if (sc->sc_status & FLASH_ST_BUSY)
329 		return EBUSY;
330 	sc->sc_status |= FLASH_ST_BUSY;
331 	return 0;
332 }
333 
334 int
335 flashclose(dev_t dev, int flag, int mode, struct lwp *l)
336 {
337 	struct flash_softc	*sc;
338 
339 	sc = device_lookup_private(&flash_cd, minor(dev));
340 	sc->sc_status &= ~FLASH_ST_BUSY;
341 	return 0;
342 }
343 
344 int
345 flashread(dev_t dev, struct uio *uio, int flag)
346 {
347 	struct flash_softc	*sc;
348 	bus_space_tag_t		iot;
349 	bus_space_handle_t	ioh;
350 	bus_size_t		off;
351 	int			total;
352 	int			count;
353 	int			error;
354 
355 	sc = device_lookup_private(&flash_cd, minor(dev));
356 	iot = sc->sc_iot;
357 	ioh = sc->sc_ioh;
358 
359 	off = uio->uio_offset;
360 	total = min(sc->sc_size - off, uio->uio_resid);
361 
362 	while (total > 0) {
363 		count = min(sc->sc_block_size, uio->uio_resid);
364 		bus_space_read_region_1(iot, ioh, off, sc->sc_buf, count);
365 		if ((error = uiomove(sc->sc_buf, count, uio)) != 0)
366 			return error;
367 		off += count;
368 		total -= count;
369 	}
370 	return 0;
371 }
372 
373 
374 int
375 flashwrite(dev_t dev, struct uio *uio, int flag)
376 {
377 	struct flash_softc	*sc;
378 	bus_space_tag_t		iot;
379 	bus_space_handle_t	ioh;
380 	bus_size_t		off;
381 	int			stat;
382 	int			error;
383 
384 	sc = device_lookup_private(&flash_cd, minor(dev));
385 
386 	if (sc->sc_size < uio->uio_offset + uio->uio_resid)
387 		return ENOSPC;
388 	if (uio->uio_offset % sc->sc_block_size)
389 		return EINVAL;
390 	if (uio->uio_resid % sc->sc_block_size)
391 		return EINVAL;
392 
393 	iot = sc->sc_iot;
394 	ioh = sc->sc_ioh;
395 
396 	for (off = uio->uio_offset;
397 	     uio->uio_resid > 0;
398 	     off += sc->sc_block_size) {
399 		if ((error = uiomove(sc->sc_buf, sc->sc_block_size, uio)) != 0)
400 			return error;
401 		if (is_block_same(sc, off, sc->sc_buf))
402 			continue;
403 		if ((stat = flash_block_erase(sc, off)) != 0) {
404 			printf("block erase failed status = 0x%x\n", stat);
405 			return EIO;
406 		}
407 		if ((stat = flash_block_write(sc, off)) != 0) {
408 			printf("block write failed status = 0x%x\n", stat);
409 			return EIO;
410 		}
411 	}
412 	return 0;
413 }
414 
415 /*
416  * XXX
417  * this function is too much specific for the device.
418  */
419 static int
420 i28f128_probe(bus_space_tag_t iot, bus_space_handle_t ioh)
421 {
422 	static const u_int8_t	vendor_code[] = {
423 		0x89,	/* manufacturer code: 	intel */
424 		0x18,	/* device code:		28F128 */
425 	};
426 
427 	static const u_int8_t	idstr[] = {
428 		'Q', 'R', 'Y',
429 		0x01, 0x00,
430 		0x31, 0x00,
431 		0xff
432 	};
433 
434 	int	i;
435 
436 	/* start Common Flash Interface Query */
437 	bus_space_write_2(iot, ioh, 0, CFI_READ_CFI_QUERY);
438 	/* read CFI Query ID string */
439 	for (i = 0; idstr[i] != 0xff; i++) {
440 		if (bus_space_read_2(iot, ioh, (0x10 + i) << 1) != idstr[i])
441 			return 1;
442 	}
443 
444 	/* read manufacturer code and device code */
445 	if (bus_space_read_2(iot, ioh, 0x00) != vendor_code[0])
446 		return 1;
447 	if (bus_space_read_2(iot, ioh, 0x02) != vendor_code[1])
448 		return 1;
449 
450 	bus_space_write_2(iot, ioh, 0, I28F128_RESET);
451 	return 0;
452 }
453 
454 /*
455  * XXX
456  * this function is too much specific for the device.
457  */
458 static int
459 mbm29160_probe(bus_space_tag_t iot, bus_space_handle_t ioh)
460 {
461 	static const u_int16_t	vendor_code[] = {
462 		0x0004,	/* manufacturer code: 	intel */
463 		0x2249,	/* device code:		29LV160BE */
464 	};
465 
466 	static const u_int8_t	idstr[] = {
467 		'Q', 'R', 'Y',
468 		0x02, 0x00,
469 		0x40, 0x00,
470 		0xff
471 	};
472 
473 	int	i;
474 
475 	/* start Common Flash Interface Query */
476 	bus_space_write_2(iot, ioh, 0xaa, CFI_READ_CFI_QUERY);
477 	/* read CFI Query ID string */
478 	for (i = 0; idstr[i] != 0xff; i++) {
479 		if (bus_space_read_2(iot, ioh, (0x10 + i) << 1) != idstr[i])
480 			return 1;
481 	}
482 
483 	bus_space_write_2(iot, ioh, 0, 0xff);
484 
485 	/* read manufacturer code and device code */
486 	bus_space_write_2(iot, ioh, 0x555 << 1, 0xaa);
487 	bus_space_write_2(iot, ioh, 0x2aa << 1, 0x55);
488 	bus_space_write_2(iot, ioh, 0x555 << 1, 0x90);
489 	if (bus_space_read_2(iot, ioh, 0x00) != vendor_code[0])
490 		return 1;
491 	if (bus_space_read_2(iot, ioh, 0x02) != vendor_code[1])
492 		return 1;
493 
494 	bus_space_write_2(iot, ioh, 0, 0xff);
495 	return 0;
496 }
497 
498 static int
499 is_block_same(struct flash_softc *sc, bus_size_t offset, const void *bufp)
500 {
501 	bus_space_tag_t		iot = sc->sc_iot;
502 	bus_space_handle_t	ioh = sc->sc_ioh;
503 	const u_int8_t		*p = bufp;
504 	int			count = sc->sc_block_size;
505 
506 	while (count-- > 0) {
507 		if (bus_space_read_1(iot, ioh, offset++) != *p++)
508 			return 0;
509 	}
510 	return 1;
511 }
512 
513 static int
514 intel_erase(struct flash_softc *sc, bus_size_t offset)
515 {
516 	bus_space_tag_t		iot = sc->sc_iot;
517 	bus_space_handle_t	ioh = sc->sc_ioh;
518 	int			status;
519 	int			i;
520 
521 	bus_space_write_2(iot, ioh, offset, I28F128_BLK_ERASE_1ST);
522 	bus_space_write_2(iot, ioh, offset, I28F128_BLK_ERASE_2ND);
523 
524 	status = 0;
525 	for (i = sc->sc_max_block_erase_timo; i > 0; i--) {
526 		tsleep(sc, PRIBIO, "blockerase",
527 		       1 + (sc->sc_typ_block_erase_timo * hz) / 1000);
528 		if ((status = bus_space_read_2(iot, ioh, offset))
529 		    & I28F128_S_READY)
530 			break;
531 	}
532 	if (i == 0)
533 		status |= FLASH_TIMEOUT;
534 
535 	bus_space_write_2(iot, ioh, offset, I28F128_CLEAR_STATUS);
536 	bus_space_write_2(iot, ioh, offset, I28F128_RESET);
537 
538 	return status & (FLASH_TIMEOUT
539 			 | I28F128_S_ERASE_SUSPEND
540 			 | I28F128_S_COMSEQ_ERROR
541 			 | I28F128_S_ERASE_ERROR
542 			 | I28F128_S_BLOCK_LOCKED);
543 }
544 
545 static int
546 intel_write(struct flash_softc *sc, bus_size_t offset)
547 {
548 	bus_space_tag_t		iot = sc->sc_iot;
549 	bus_space_handle_t	ioh = sc->sc_ioh;
550 	int			wbuf_size;
551 	int			timo;
552 	int			status;
553 	bus_size_t		fence;
554 	int			i;
555 	const u_int16_t		*p;
556 
557 	/* wbuf_size = size in u_int16_t */
558 	wbuf_size = sc->sc_write_buffer_size >> 1;
559 
560 	p = (u_int16_t *) sc->sc_buf;
561 	fence = offset + sc->sc_block_size;
562 	do {
563 		status = 0;
564 		for (timo = sc->sc_max_buffer_write_timo; timo > 0; timo--) {
565 			bus_space_write_2(iot, ioh, offset,
566 					  I28F128_WRITE_BUFFER);
567 			status = bus_space_read_2(iot, ioh, offset);
568 			if (status & I28F128_XS_BUF_AVAIL)
569 				break;
570 			DELAY(sc->sc_typ_buffer_write_timo);
571 		}
572 		if (timo == 0) {
573 			status |= FLASH_TIMEOUT;
574 			goto errout;
575 		}
576 
577 		bus_space_write_2(iot, ioh, offset, wbuf_size - 1);
578 
579 		for (i = wbuf_size; i > 0; i--, p++, offset += 2)
580 			bus_space_write_2(iot, ioh, offset, *p);
581 
582 		bus_space_write_2(iot, ioh, offset, I28F128_WBUF_CONFIRM);
583 
584 		do {
585 			bus_space_write_2(iot, ioh, offset,
586 					  I28F128_READ_STATUS);
587 			status = bus_space_read_2(iot, ioh, offset);
588 		} while (!(status & I28F128_S_READY));
589 
590 	} while (offset < fence);
591 
592 	bus_space_write_2(iot, ioh, offset, I28F128_CLEAR_STATUS);
593 	bus_space_write_2(iot, ioh, offset, I28F128_RESET);
594 
595 	return 0;
596 
597 errout:
598 	bus_space_write_2(iot, ioh, offset, I28F128_CLEAR_STATUS);
599 	bus_space_write_2(iot, ioh, offset, I28F128_RESET);
600 
601 	status &= (FLASH_TIMEOUT
602 		   | I28F128_S_PROG_ERROR
603 		   | I28F128_S_COMSEQ_ERROR
604 		   | I28F128_S_LOW_VOLTAGE
605 		   | I28F128_S_PROG_SUSPEND
606 		   | I28F128_S_BLOCK_LOCKED);
607 	return status;
608 }
609 
610 static int
611 amd_erase_sector(struct flash_softc *sc, bus_size_t offset)
612 {
613 	bus_space_tag_t		iot = sc->sc_iot;
614 	bus_space_handle_t	ioh = sc->sc_ioh;
615 	int			i;
616 
617 	DPRINTF(("amd_erase_sector offset = %08lx\n", offset));
618 
619 	bus_space_write_2(iot, ioh,
620 			  MBM29LV160_COMM_ADDR0, MBM29LV160_COMM_CMD0);
621 	bus_space_write_2(iot, ioh,
622 			  MBM29LV160_COMM_ADDR1, MBM29LV160_COMM_CMD1);
623 	bus_space_write_2(iot, ioh,
624 			  MBM29LV160_COMM_ADDR2, MBM29LV160_ESECT_CMD2);
625 	bus_space_write_2(iot, ioh,
626 			  MBM29LV160_COMM_ADDR3, MBM29LV160_ESECT_CMD3);
627 	bus_space_write_2(iot, ioh,
628 			  MBM29LV160_COMM_ADDR4, MBM29LV160_ESECT_CMD4);
629 	bus_space_write_2(iot, ioh, offset, MBM29LV160_ESECT_CMD5);
630 
631 	for (i = sc->sc_max_block_erase_timo; i > 0; i--) {
632 		tsleep(sc, PRIBIO, "blockerase",
633 		       1 + (sc->sc_typ_block_erase_timo * hz) / 1000);
634 		if (bus_space_read_2(iot, ioh, offset) == 0xffff)
635 			return 0;
636 	}
637 
638 	return FLASH_TIMEOUT;
639 }
640 
641 static int
642 amd_erase(struct flash_softc *sc, bus_size_t offset)
643 {
644 	static const struct mbm29lv_subsect {
645 		u_int16_t	devcode;
646 		u_int32_t	subsect_mask;
647 		u_int32_t	subsect_addr;
648 	} subsect[] = {
649 		{
650 			MBM29LV160TE_DEVCODE,
651 			MBM29LV160_SUBSECT_MASK,
652 			MBM29LV160TE_SUBSECT_ADDR
653 		},
654 		{
655 			MBM29LV160BE_DEVCODE,
656 			MBM29LV160_SUBSECT_MASK,
657 			MBM29LV160BE_SUBSECT_ADDR
658 		},
659 		{ 0, 0, 0 }
660 	};
661 
662 	bus_space_tag_t			iot = sc->sc_iot;
663 	bus_space_handle_t		ioh = sc->sc_ioh;
664 	u_int16_t			devcode;
665 	const struct mbm29lv_subsect	*ss;
666 	bus_size_t			fence;
667 	int				step;
668 	int				status;
669 
670 	bus_space_write_2(iot, ioh,
671 			  MBM29LV160_COMM_ADDR0, MBM29LV160_COMM_CMD0);
672 	bus_space_write_2(iot, ioh,
673 			  MBM29LV160_COMM_ADDR1, MBM29LV160_COMM_CMD1);
674 	bus_space_write_2(iot, ioh,
675 			  MBM29LV160_COMM_ADDR2, MBM29LV160_SIGN_CMD2);
676 	devcode = bus_space_read_2(iot, ioh, MBM29LV160_DEVCODE_REG);
677 
678 	for (ss = subsect; ss->devcode; ss++) {
679 		if (ss->devcode == devcode)
680 			break;
681 	}
682 	if (ss->devcode == 0) {
683 		printf("flash: amd_erase(): unknown device code %04x\n",
684 		       devcode);
685 		return -1;
686 	}
687 
688 	DPRINTF(("flash: amd_erase(): devcode = %04x subsect = %08x\n",
689 		 devcode, ss->subsect_addr));
690 
691 	fence = offset + sc->sc_block_size;
692 	step = (offset & ss->subsect_mask) == ss->subsect_addr
693 		? MBM29LV160_SUBSECT_SIZE : MBM29LV160_SECT_SIZE;
694 	do {
695 		if ((status = amd_erase_sector(sc, offset)) != 0)
696 			return status;
697 		offset += step;
698 	} while (offset < fence);
699 
700 	return 0;
701 }
702 
703 static int
704 amd_write(struct flash_softc *sc, bus_size_t offset)
705 {
706 	bus_space_tag_t		iot = sc->sc_iot;
707 	bus_space_handle_t	ioh = sc->sc_ioh;
708 	int			timo;
709 	bus_size_t		fence;
710 	const u_int16_t		*p;
711 
712 	p = (u_int16_t *) sc->sc_buf;
713 	fence = offset + sc->sc_block_size;
714 	do {
715 		bus_space_write_2(iot, ioh,
716 				  MBM29LV160_COMM_ADDR0,
717 				  MBM29LV160_COMM_CMD0);
718 		bus_space_write_2(iot, ioh,
719 				  MBM29LV160_COMM_ADDR1,
720 				  MBM29LV160_COMM_CMD1);
721 		bus_space_write_2(iot, ioh,
722 				  MBM29LV160_COMM_ADDR2,
723 				  MBM29LV160_PROG_CMD2);
724 		bus_space_write_2(iot, ioh, offset, *p);
725 
726 		for (timo = sc->sc_max_word_prog_timo; timo > 0; timo--) {
727 			if (bus_space_read_2(iot, ioh, offset) == *p)
728 				break;
729 			DELAY(sc->sc_typ_word_prog_timo);
730 		}
731 		if (timo == 0)
732 			return FLASH_TIMEOUT;
733 
734 		p++;
735 		offset += 2;
736 	} while (offset < fence);
737 
738 	return 0;
739 }
740