xref: /netbsd-src/sys/arch/hp300/stand/common/if_le.c (revision d710132b4b8ce7f7cccaaf660cb16aa16b4077a0)
1 /*	$NetBSD: if_le.c,v 1.6 2003/03/13 13:37:15 drochner Exp $	*/
2 
3 /*
4  * Copyright (c) 1993 Adam Glass
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Adam Glass.
18  * 4. The name of the Author may not be used to endorse or promote products
19  *    derived from this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Adam Glass ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 #include <sys/param.h>
35 #include <sys/types.h>
36 
37 #include <net/if_ether.h>
38 #include <netinet/in.h>
39 #include <netinet/in_systm.h>
40 
41 #include <lib/libsa/netif.h>
42 
43 #include <hp300/stand/common/device.h>
44 #include <hp300/stand/common/if_lereg.h>
45 #include <hp300/stand/common/samachdep.h>
46 
47 #ifndef NLE
48 #define NLE 1
49 #endif
50 
51 #ifdef LE_DEBUG
52 int le_debug = 0;
53 #endif
54 
55 int le_probe();
56 int le_match();
57 void le_init();
58 int le_get();
59 int le_put();
60 void le_end();
61 
62 struct le_sel {
63         int	le_id;
64         int	le_regs;
65         int	le_mem;
66         int	le_nvram;
67         int	le_heat;
68         int	le_bonus;
69 } le0conf[] = {
70 /* offsets for:	   ID   REGS     MEM   NVRAM	le_heat	le_bonus*/
71 {		    0,	0x4000, 0x8000, 0xC008,	1,	10   }
72 };
73 #define NLE0CONF (sizeof(le0conf) / sizeof(le0conf[0]))
74 
75 extern struct netif_stats	le_stats[];
76 
77 struct netif_dif le_ifs[] = {
78 /*	dif_unit	dif_nsel	dif_stats	dif_private	*/
79 {	0,		NLE0CONF,	&le_stats[0],	le0conf,	},
80 };
81 #define NLE_IFS (sizeof(le_ifs) / sizeof(le_ifs[0]))
82 
83 struct netif_stats le_stats[NLE_IFS];
84 
85 struct netif_driver le_driver = {
86 	"le",			/* netif_bname */
87 	le_match,		/* netif_match */
88 	le_probe,		/* netif_probe */
89 	le_init,		/* netif_init */
90 	le_get,			/* netif_get */
91 	le_put,			/* netif_put */
92 	le_end,			/* netif_end */
93 	le_ifs,			/* netif_ifs */
94 	NLE_IFS			/* netif_nifs */
95 };
96 
97 struct le_softc {
98 	struct	lereg0 *sc_r0;	/* DIO registers */
99 	struct	lereg1 *sc_r1;	/* LANCE registers */
100 	void	*sc_mem;
101 	struct	init_block *sc_init;
102 	struct	mds *sc_rd, *sc_td;
103 	u_char	*sc_rbuf, *sc_tbuf;
104 	int	sc_next_rd, sc_next_td;
105 	u_char	sc_addr[ETHER_ADDR_LEN];
106 } le_softc[NLE];
107 
108 static inline void
109 lewrcsr(sc, port, val)
110 	struct le_softc *sc;
111 	register u_short port;
112 	register u_short val;
113 {
114 	register struct lereg0 *ler0 = sc->sc_r0;
115 	register struct lereg1 *ler1 = sc->sc_r1;
116 
117 	do {
118 		ler1->ler1_rap = port;
119 	} while ((ler0->ler0_status & LE_ACK) == 0);
120 	do {
121 		ler1->ler1_rdp = val;
122 	} while ((ler0->ler0_status & LE_ACK) == 0);
123 }
124 
125 static inline u_short
126 lerdcsr(sc, port)
127 	struct le_softc *sc;
128 	register u_short port;
129 {
130 	register struct lereg0 *ler0 = sc->sc_r0;
131 	register struct lereg1 *ler1 = sc->sc_r1;
132 	register u_short val;
133 
134 	do {
135 		ler1->ler1_rap = port;
136 	} while ((ler0->ler0_status & LE_ACK) == 0);
137 	do {
138 		val = ler1->ler1_rdp;
139 	} while ((ler0->ler0_status & LE_ACK) == 0);
140 	return (val);
141 }
142 
143 leinit()
144 {
145 	extern struct hp_hw sc_table[];
146 	register struct hp_hw *hw;
147 	struct le_softc *sc;
148 	struct le_sel *sels;
149 	register int i, n;
150 	char *cp;
151 
152 	i = 0;
153 
154 	for (hw = sc_table; i < NLE && hw < &sc_table[MAXCTLRS]; hw++) {
155 #ifdef LE_DEBUG
156 		if (le_debug)
157 			printf("found type %x\n", hw->hw_type);
158 #endif
159 
160 #if 0
161 		if (!HW_ISDEV(hw, D_LAN))
162 			continue;
163 #endif
164 
165                 sels = (struct le_sel *)le_ifs[i].dif_private;
166 
167 		sc = &le_softc[i];
168                 sc->sc_r0 = (struct lereg0 *)(sels->le_id + (int)hw->hw_kva);
169 
170                 if (sc->sc_r0->ler0_id != LEID)
171                         continue;
172 
173                 sc->sc_r1 = (struct lereg1 *)(sels->le_regs + (int)hw->hw_kva);
174                 sc->sc_mem = (struct lereg2 *)(sels->le_mem + (int)hw->hw_kva);
175 
176 #ifdef LE_DEBUG
177 		if (le_debug)
178 			printf("le%d: DIO=%x regs=%x mem=%x\n",
179 				i, sc->sc_r0, sc->sc_r1, sc->sc_mem);
180 #endif
181 
182 		/*
183 		 * Read the ethernet address off the board, one nibble at a time.
184 		 */
185 		cp = (char *)(sels->le_nvram + (int)hw->hw_kva);
186 		for (n = 0; n < sizeof(sc->sc_addr); n++) {
187 		    sc->sc_addr[n] = (*++cp & 0xF) << 4;
188 		    cp++;
189 		    sc->sc_addr[n] |= *++cp & 0xF;
190 		    cp++;
191 		}
192 #ifdef LE_DEBUG
193 		if (le_debug)
194 			printf("le%d at sc%d physical address %s\n",
195 				i, hw->hw_sc, ether_sprintf(sc->sc_addr));
196 #endif
197 		hw->hw_pa = (caddr_t) i;	/* XXX for autoconfig */
198 		i++;
199 	}
200 }
201 
202 int
203 le_match(nif, machdep_hint)
204 	struct netif *nif;
205 	void *machdep_hint;
206 {
207 	struct le_sel *sels;
208 	char *name = machdep_hint;
209 	int rv = 0;
210 
211 	if (nif->nif_sel < le_ifs[nif->nif_unit].dif_nsel) {
212 		sels = (struct le_sel *)le_ifs[nif->nif_unit].dif_private;
213 		rv = sels[nif->nif_sel].le_heat;
214 		if (name && !strncmp(le_driver.netif_bname, name, 2))
215 			rv += sels[nif->nif_sel].le_bonus;
216 	}
217 #ifdef LE_DEBUG
218 	if (le_debug)
219 		printf("le%d: sel %d --> %d\n", nif->nif_unit, nif->nif_sel,
220 		    rv);
221 #endif
222 	return rv;
223 }
224 
225 le_probe(nif, machdep_hint)
226 	struct netif *nif;
227 	void *machdep_hint;
228 {
229 	char *cp;
230 	int i;
231 
232 	/* the set unit is the current unit */
233 #ifdef LE_DEBUG
234 	if (le_debug)
235 		printf("le%d.%d: le_probe called\n", nif->nif_unit, nif->nif_sel);
236 #endif
237 	/* XXX reset controller */
238 	return 0;
239 }
240 
241 #ifdef MEM_SUMMARY
242 void le_mem_summary(unit)
243 {
244 	struct lereg1 *ler1 = le_softc.sc_r1;
245 	struct lereg2 *ler2 = le_softc.sc_r2;
246 	register int i;
247 
248 	printf("le%d: ler1 = %x\n", unit, ler1);
249 	printf("le%d: ler2 = %x\n", unit, ler2);
250 
251 #if 0
252 	ler1->ler1_rap = LE_CSR0;
253 	ler1->ler1_rdp = LE_STOP;
254 	printf("le%d: csr0 = %x\n", unit, ler1->ler1_rdp);
255 	ler1->ler1_rap = LE_CSR1;
256 	printf("le%d: csr1 = %x\n", unit, ler1->ler1_rdp);
257 	ler1->ler1_rap = LE_CSR2;
258 	printf("le%d: csr2 = %x\n", unit, ler1->ler1_rdp);
259 	ler1->ler1_rap = LE_CSR3;
260 	printf("le%d: csr3 = %x\n", unit, ler1->ler1_rdp);
261 #endif
262 	printf("le%d: ladrf[0] = %x\n", unit, ler2->ler2_ladrf[0]);
263 	printf("le%d: ladrf[1] = %x\n", unit, ler2->ler2_ladrf[1]);
264 	printf("le%d: ler2_rdra = %x\n", unit, ler2->ler2_rdra);
265 	printf("le%d: ler2_rlen = %x\n", unit, ler2->ler2_rlen);
266 	printf("le%d: ler2_tdra = %x\n", unit, ler2->ler2_tdra);
267 	printf("le%d: ler2_tlen = %x\n", unit, ler2->ler2_tlen);
268 
269 	for (i = 0; i < LERBUF; i++) {
270 		printf("le%d: ler2_rmd[%d].rmd0 (ladr) = %x\n", unit, i,
271 			ler2->ler2_rmd[i].rmd0);
272 		printf("le%d: ler2_rmd[%d].rmd1 = %x\n", unit, i,
273 			ler2->ler2_rmd[i].rmd1);
274 		printf("le%d: ler2_rmd[%d].rmd2 (-bcnt) = %x\n", unit, i,
275 			ler2->ler2_rmd[i].rmd2);
276 		printf("le%d: ler2_rmd[%d].rmd3 (mcnt) = %x\n", unit, i,
277 			ler2->ler2_rmd[i].rmd3);
278 		printf("le%d: ler2_rbuf[%d] addr = %x\n", unit, i,
279 			&ler2->ler2_rbuf[i]);
280 	}
281 	for (i = 0; i < LETBUF; i++) {
282 		printf("le%d: ler2_tmd[%d].tmd0 = %x\n", unit, i,
283 			ler2->ler2_tmd[i].tmd0);
284 		printf("le%d: ler2_tmd[%d].tmd1 = %x\n", unit, i,
285 			ler2->ler2_tmd[i].tmd1);
286 		printf("le%d: ler2_tmd[%d].tmd2 (bcnt) = %x\n", unit, i,
287 			ler2->ler2_tmd[i].tmd2);
288 		printf("le%d: ler2_tmd[%d].tmd3 = %x\n", unit, i,
289 			ler2->ler2_tmd[i].tmd3);
290 		printf("le%d: ler2_tbuf[%d] addr = %x\n", unit, i,
291 			&ler2->ler2_tbuf[i]);
292 	}
293 }
294 #else
295 #define le_mem_summary(u)
296 #endif
297 
298 void
299 le_error(unit, str, stat)
300 	int unit;
301 	char *str;
302 	u_short stat;
303 {
304 
305 	if (stat & LE_BABL)
306 		panic("le%d: been babbling, found by '%s'", unit, str);
307 	if (stat & LE_CERR)
308 		le_stats[unit].collision_error++;
309 	if (stat & LE_MISS)
310 		le_stats[unit].missed++;
311 	if (stat & LE_MERR) {
312 		printf("le%d: memory error in '%s'\n", unit, str);
313 		le_mem_summary(unit);
314 		panic("bye");
315 	}
316 }
317 
318 #define	LANCE_ADDR(sc, a) \
319 	((u_long)(a) - (u_long)sc->sc_mem)
320 
321 /* LANCE initialization block set up. */
322 void
323 lememinit(sc)
324 	register struct le_softc *sc;
325 {
326 	int i;
327 	void *mem;
328 	u_long a;
329 
330 	/*
331 	 * At this point we assume that the memory allocated to the Lance is
332 	 * quadword aligned.  If it isn't then the initialisation is going
333 	 * fail later on.
334 	 */
335 	mem = sc->sc_mem;
336 
337 	sc->sc_init = mem;
338 	sc->sc_init->mode = LE_NORMAL;
339 	for (i = 0; i < ETHER_ADDR_LEN; i++)
340 		sc->sc_init->padr[i] = sc->sc_addr[i^1];
341 	sc->sc_init->ladrf[0] = sc->sc_init->ladrf[1] = 0;
342 	mem += sizeof(struct init_block);
343 
344 	sc->sc_rd = mem;
345 	a = LANCE_ADDR(sc, mem);
346 	sc->sc_init->rdra = a;
347 	sc->sc_init->rlen = ((a >> 16) & 0xff) | (RLEN << 13);
348 	mem += NRBUF * sizeof(struct mds);
349 
350 	sc->sc_td = mem;
351 	a = LANCE_ADDR(sc, mem);
352 	sc->sc_init->tdra = a;
353 	sc->sc_init->tlen = ((a >> 16) & 0xff) | (TLEN << 13);
354 	mem += NTBUF * sizeof(struct mds);
355 
356 	/*
357 	 * Set up receive ring descriptors.
358 	 */
359 	sc->sc_rbuf = mem;
360 	for (i = 0; i < NRBUF; i++) {
361 		a = LANCE_ADDR(sc, mem);
362 		sc->sc_rd[i].addr = a;
363 		sc->sc_rd[i].flags = ((a >> 16) & 0xff) | LE_OWN;
364 		sc->sc_rd[i].bcnt = -BUFSIZE;
365 		sc->sc_rd[i].mcnt = 0;
366 		mem += BUFSIZE;
367 	}
368 
369 	/*
370 	 * Set up transmit ring descriptors.
371 	 */
372 	sc->sc_tbuf = mem;
373 	for (i = 0; i < NTBUF; i++) {
374 		a = LANCE_ADDR(sc, mem);
375 		sc->sc_td[i].addr = a;
376 		sc->sc_td[i].flags = ((a >> 16) & 0xff);
377 		sc->sc_td[i].bcnt = 0xf000;
378 		sc->sc_td[i].mcnt = 0;
379 		mem += BUFSIZE;
380 	}
381 }
382 
383 void
384 le_reset(unit, myea)
385 	int unit;
386 	u_char *myea;
387 {
388 	struct le_softc *sc = &le_softc[unit];
389 	u_long a;
390 	int timo = 100000, stat, i;
391 
392 #ifdef LE_DEBUG
393 	if (le_debug) {
394 		printf("le%d: le_reset called\n", unit);
395 		printf("     r0=%x, r1=%x, mem=%x, addr=%x:%x:%x:%x:%x:%x\n",
396 		       sc->sc_r0, sc->sc_r1, sc->sc_mem,
397 		       sc->sc_addr[0], sc->sc_addr[1], sc->sc_addr[2],
398 		       sc->sc_addr[3], sc->sc_addr[4], sc->sc_addr[5]);
399 	}
400 #endif
401 	lewrcsr(sc, 0, LE_STOP);
402 	for (timo = 1000; timo; timo--);
403 
404 	sc->sc_next_rd = sc->sc_next_td = 0;
405 
406 	/* Set up LANCE init block. */
407 	lememinit(sc);
408 
409 	if (myea)
410 		bcopy(sc->sc_addr, myea, ETHER_ADDR_LEN);
411 
412 	/* Turn on byte swapping. */
413 	lewrcsr(sc, 3, LE_BSWP);
414 
415 	/* Give LANCE the physical address of its init block. */
416 	a = LANCE_ADDR(sc, sc->sc_init);
417 	lewrcsr(sc, 1, a);
418 	lewrcsr(sc, 2, (a >> 16) & 0xff);
419 
420 #ifdef LE_DEBUG
421 	if (le_debug)
422 		printf("le%d: before init\n", unit);
423 #endif
424 
425 	/* Try to initialize the LANCE. */
426 	lewrcsr(sc, 0, LE_INIT);
427 
428 	/* Wait for initialization to finish. */
429 	for (timo = 100000; timo; timo--)
430 		if (lerdcsr(sc, 0) & LE_IDON)
431 			break;
432 
433 	if (lerdcsr(sc, 0) & LE_IDON) {
434 		/* Start the LANCE. */
435 		lewrcsr(sc, 0, LE_INEA | LE_STRT | LE_IDON);
436 	} else
437 		printf("le%d: card failed to initialize\n", unit);
438 
439 #ifdef LE_DEBUG
440 	if (le_debug)
441 		printf("le%d: after init\n", unit);
442 #endif
443 
444 	le_mem_summary(unit);
445 }
446 
447 int
448 le_poll(desc, pkt, len)
449 	struct iodesc *desc;
450 	void *pkt;
451 	int len;
452 {
453 	struct netif *nif = desc->io_netif;
454 	int unit = /*nif->nif_unit*/0;
455 	struct le_softc *sc = &le_softc[unit];
456 	volatile struct lereg0 *ler0 = sc->sc_r0;
457 	volatile struct lereg1 *ler1 = sc->sc_r1;
458 	int length;
459 	volatile struct mds *cdm;
460 	register int stat;
461 
462 #ifdef LE_DEBUG
463 	if (/*le_debug*/0)
464 		printf("le%d: le_poll called. next_rd=%d\n", unit, sc->sc_next_rd);
465 #endif
466 	stat = lerdcsr(sc, 0);
467 	lewrcsr(sc, 0, stat & (LE_BABL | LE_MISS | LE_MERR | LE_RINT));
468 	cdm = &sc->sc_rd[sc->sc_next_rd];
469 	if (cdm->flags & LE_OWN)
470 		return 0;
471 #ifdef LE_DEBUG
472 	if (le_debug) {
473 		printf("next_rd %d\n", sc->sc_next_rd);
474 		printf("cdm->flags %x\n", cdm->flags);
475 		printf("cdm->bcnt %x, cdm->mcnt %x\n", cdm->bcnt, cdm->mcnt);
476 		printf("cdm->rbuf msg %d buf %d\n", cdm->mcnt, -cdm->bcnt );
477 	}
478 #endif
479 	if (stat & (LE_BABL | LE_CERR | LE_MISS | LE_MERR))
480 		le_error(unit, "le_poll", stat);
481 	if (cdm->flags & (LE_FRAM | LE_OFLO | LE_CRC | LE_RBUFF)) {
482 		printf("le%d_poll: rmd status 0x%x\n", unit, cdm->flags);
483 		length = 0;
484 		goto cleanup;
485 	}
486 	if ((cdm->flags & (LE_STP|LE_ENP)) != (LE_STP|LE_ENP))
487 		panic("le_poll: chained packet");
488 
489 	length = cdm->mcnt;
490 #ifdef LE_DEBUG
491 	if (le_debug)
492 		printf("le_poll: length %d\n", length);
493 #endif
494 	if (length >= BUFSIZE) {
495 		length = 0;
496 		panic("csr0 when bad things happen: %x", stat);
497 		goto cleanup;
498 	}
499 	if (!length)
500 		goto cleanup;
501 	length -= 4;
502 
503 	if (length > 0) {
504 		/*
505 		 * If the length of the packet is greater than the size of the
506 		 * buffer, we have to truncate it, to avoid Bad Things.
507 		 * XXX Is this the right thing to do?
508 		 */
509 		if (length > len)
510 			length = len;
511 
512 		bcopy(sc->sc_rbuf + (BUFSIZE * sc->sc_next_rd), pkt, length);
513 	}
514 
515 cleanup:
516 	cdm->mcnt = 0;
517 	cdm->flags |= LE_OWN;
518 	if (++sc->sc_next_rd >= NRBUF)
519 		sc->sc_next_rd = 0;
520 #ifdef LE_DEBUG
521 	if (le_debug)
522 		printf("new next_rd %d\n", sc->sc_next_rd);
523 #endif
524 
525 	return length;
526 }
527 
528 int
529 le_put(desc, pkt, len)
530 	struct iodesc *desc;
531 	void *pkt;
532 	int len;
533 {
534 	struct netif *nif = desc->io_netif;
535 	int unit = /*nif->nif_unit*/0;
536 	struct le_softc *sc = &le_softc[unit];
537 	volatile struct lereg0 *ler0 = sc->sc_r0;
538 	volatile struct lereg1 *ler1 = sc->sc_r1;
539 	volatile struct mds *cdm;
540 	int timo, i, stat;
541 
542  le_put_loop:
543 	timo = 100000;
544 
545 #ifdef LE_DEBUG
546 	if (le_debug)
547 		printf("le%d: le_put called. next_td=%d\n", unit, sc->sc_next_td);
548 #endif
549 	stat = lerdcsr(sc, 0);
550 	lewrcsr(sc, 0, stat & (LE_BABL | LE_MISS | LE_MERR | LE_TINT));
551 	if (stat & (LE_BABL | LE_CERR | LE_MISS | LE_MERR))
552 		le_error(unit, "le_put(way before xmit)", stat);
553 	cdm = &sc->sc_td[sc->sc_next_td];
554         i = 0;
555 #if 0
556 	while (cdm->flags & LE_OWN) {
557 		if ((i % 100) == 0)
558 			printf("le%d: output buffer busy - flags=%x\n",
559 				unit, cdm->flags);
560 		if (i++ > 500) break;
561 	}
562 	if (cdm->flags & LE_OWN)
563 		getchar();
564 #else
565 	while (cdm->flags & LE_OWN);
566 #endif
567 	bcopy(pkt, sc->sc_tbuf + (BUFSIZE * sc->sc_next_td), len);
568 	if (len < ETHER_MIN_LEN)
569 		cdm->bcnt = -ETHER_MIN_LEN;
570 	else
571 		cdm->bcnt = -len;
572 	cdm->mcnt = 0;
573 	cdm->flags |= LE_OWN | LE_STP | LE_ENP;
574 	stat = lerdcsr(sc, 0);
575 	if (stat & (LE_BABL | LE_CERR | LE_MISS | LE_MERR))
576 		le_error(unit, "le_put(before xmit)", stat);
577 	lewrcsr(sc, 0, LE_TDMD);
578 	stat = lerdcsr(sc, 0);
579 	if (stat & (LE_BABL | LE_CERR | LE_MISS | LE_MERR))
580 		le_error(unit, "le_put(after xmit)", stat);
581 	do {
582 		if (--timo == 0) {
583 			printf("le%d: transmit timeout, stat = 0x%x\n",
584 				unit, stat);
585 			if (stat & LE_SERR)
586 				le_error(unit, "le_put(timeout)", stat);
587 			if (stat & LE_INIT) {
588 				printf("le%d: reset and retry packet\n");
589 				lewrcsr(sc, 0, LE_TINT);	/* sanity */
590 				le_init();
591 				goto le_put_loop;
592 			}
593 			break;
594 		}
595 		stat = lerdcsr(sc, 0);
596 	} while ((stat & LE_TINT) == 0);
597 	lewrcsr(sc, 0, LE_TINT);
598 	if (stat & (LE_BABL |/* LE_CERR |*/ LE_MISS | LE_MERR)) {
599 		printf("le_put: xmit error, buf %d\n", sc->sc_next_td);
600 		le_error(unit, "le_put(xmit error)", stat);
601 	}
602 	if (++sc->sc_next_td >= NTBUF)
603 		sc->sc_next_td = 0;
604 	if (cdm->flags & LE_DEF)
605 		le_stats[unit].deferred++;
606 	if (cdm->flags & LE_ONE)
607 		le_stats[unit].collisions++;
608 	if (cdm->flags & LE_MORE)
609 		le_stats[unit].collisions += 2;
610 	if (cdm->flags & LE_ERR) {
611 		if (cdm->mcnt & LE_UFLO)
612 			printf("le%d: transmit underflow\n", unit);
613 		if (cdm->mcnt & LE_LCOL)
614 			le_stats[unit].collisions++;
615 		if (cdm->mcnt & LE_LCAR)
616 			printf("le%d: lost carrier\n", unit);
617 		if (cdm->mcnt & LE_RTRY)
618 			le_stats[unit].collisions += 16;
619 		return -1;
620 	}
621 #ifdef LE_DEBUG
622 	if (le_debug) {
623 		printf("le%d: le_put() successful: sent %d\n", unit, len);
624 		printf("le%d: le_put(): flags: %x mcnt: %x\n", unit,
625 			(unsigned int) cdm->flags,
626 			(unsigned int) cdm->mcnt);
627 	}
628 #endif
629 	return len;
630 }
631 
632 
633 int
634 le_get(desc, pkt, len, timeout)
635 	struct iodesc *desc;
636 	void *pkt;
637 	int len;
638 	time_t timeout;
639 {
640 	time_t t;
641 	int cc;
642 
643 	t = getsecs();
644 	cc = 0;
645 	while (((getsecs() - t) < timeout) && !cc) {
646 		cc = le_poll(desc, pkt, len);
647 	}
648 	return cc;
649 }
650 
651 void
652 le_init(desc, machdep_hint)
653 	struct iodesc *desc;
654 	void *machdep_hint;
655 {
656 	struct netif *nif = desc->io_netif;
657 	int unit = nif->nif_unit;
658 
659 	/* Get machine's common ethernet interface. This is done in leinit() */
660 	/* machdep_common_ether(myea); */
661 	leinit();
662 
663 #ifdef LE_DEBUG
664 	if (le_debug)
665 		printf("le%d: le_init called\n", unit);
666 #endif
667 	unit = 0;
668 	le_reset(unit, desc->myea);
669 }
670 
671 void
672 le_end(nif)
673 	struct netif *nif;
674 {
675 	int unit = nif->nif_unit;
676 
677 #ifdef LE_DEBUG
678 	if (le_debug)
679 		printf("le%d: le_end called\n", unit);
680 #endif
681 
682 	lewrcsr(&le_softc[unit], 0, LE_STOP);
683 }
684