1 /* 2 * Copyright (c) 1988 University of Utah. 3 * Copyright (c) 1982, 1990 The Regents of the University of California. 4 * All rights reserved. 5 * 6 * This code is derived from software contributed to Berkeley by 7 * the Systems Programming Group of the University of Utah Computer 8 * Science Department. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * from: Utah $Hdr: rd.c 1.38 90/10/12$ 39 * 40 * from: @(#)rd.c 7.9 (Berkeley) 5/7/91 41 * $Id: rd.c,v 1.2 1993/05/22 07:56:45 cgd Exp $ 42 */ 43 44 /* 45 * CS80/SS80 disk driver 46 */ 47 #include "rd.h" 48 #if NRD > 0 49 50 #include "sys/param.h" 51 #include "sys/systm.h" 52 #include "sys/errno.h" 53 #include "sys/dkstat.h" 54 #include "sys/disklabel.h" 55 #include "sys/buf.h" 56 #include "sys/uio.h" 57 58 #include "device.h" 59 #include "rdreg.h" 60 61 #include "vm/vm_param.h" 62 #include "vm/lock.h" 63 #include "vm/vm_statistics.h" 64 #include "vm/pmap.h" 65 #include "vm/vm_prot.h" 66 67 int rdinit(), rdstart(), rdgo(), rdintr(); 68 struct driver rddriver = { 69 rdinit, "rd", rdstart, rdgo, rdintr, 70 }; 71 72 struct rd_softc { 73 struct hp_device *sc_hd; 74 int sc_flags; 75 short sc_type; 76 short sc_punit; 77 char *sc_addr; 78 int sc_resid; 79 u_int sc_wpms; 80 struct rdinfo *sc_info; 81 struct devqueue sc_dq; 82 struct rd_iocmd sc_ioc; 83 struct rd_rscmd sc_rsc; 84 struct rd_stat sc_stat; 85 struct rd_ssmcmd sc_ssmc; 86 struct rd_srcmd sc_src; 87 struct rd_clearcmd sc_clear; 88 } rd_softc[NRD]; 89 90 /* sc_flags values */ 91 #define RDF_ALIVE 0x1 92 #define RDF_SEEK 0x2 93 #define RDF_SWAIT 0x4 94 95 struct size { 96 daddr_t nblocks; 97 int cyloff; 98 }; 99 100 #ifdef DEBUG 101 int rddebug = 0x80; 102 #define RDB_FOLLOW 0x01 103 #define RDB_STATUS 0x02 104 #define RDB_IDENT 0x04 105 #define RDB_IO 0x08 106 #define RDB_ASYNC 0x10 107 #define RDB_ERROR 0x80 108 #define RDB_DUMP 0x80000000 109 110 struct rdstats { 111 long rdretries; 112 long rdresets; 113 long rdtimeouts; 114 long rdpolltries; 115 long rdpollwaits; 116 } rdstats[NRD]; 117 118 /* error message tables */ 119 char *err_reject[] = { 120 0, 0, 121 "channel parity error", /* 0x2000 */ 122 0, 0, 123 "illegal opcode", /* 0x0400 */ 124 "module addressing", /* 0x0200 */ 125 "address bounds", /* 0x0100 */ 126 "parameter bounds", /* 0x0080 */ 127 "illegal parameter", /* 0x0040 */ 128 "message sequence", /* 0x0020 */ 129 0, 130 "message length", /* 0x0008 */ 131 0, 0, 0 132 }; 133 134 char *err_fault[] = { 135 0, 136 "cross unit", /* 0x4000 */ 137 0, 138 "controller fault", /* 0x1000 */ 139 0, 0, 140 "unit fault", /* 0x0200 */ 141 0, 142 "diagnostic result", /* 0x0080 */ 143 0, 144 "operator release request", /* 0x0020 */ 145 "diagnostic release request", /* 0x0010 */ 146 "internal maintenance release request", /* 0x0008 */ 147 0, 148 "power fail", /* 0x0002 */ 149 "retransmit" /* 0x0001 */ 150 }; 151 152 char *err_access[] = { 153 "illegal parallel operation", /* 0x8000 */ 154 "uninitialized media", /* 0x4000 */ 155 "no spares available", /* 0x2000 */ 156 "not ready", /* 0x1000 */ 157 "write protect", /* 0x0800 */ 158 "no data found", /* 0x0400 */ 159 0, 0, 160 "unrecoverable data overflow", /* 0x0080 */ 161 "unrecoverable data", /* 0x0040 */ 162 0, 163 "end of file", /* 0x0010 */ 164 "end of volume", /* 0x0008 */ 165 0, 0, 0 166 }; 167 168 char *err_info[] = { 169 "operator release request", /* 0x8000 */ 170 "diagnostic release request", /* 0x4000 */ 171 "internal maintenance release request", /* 0x2000 */ 172 "media wear", /* 0x1000 */ 173 "latency induced", /* 0x0800 */ 174 0, 0, 175 "auto sparing invoked", /* 0x0100 */ 176 0, 177 "recoverable data overflow", /* 0x0040 */ 178 "marginal data", /* 0x0020 */ 179 "recoverable data", /* 0x0010 */ 180 0, 181 "maintenance track overflow", /* 0x0004 */ 182 0, 0 183 }; 184 #endif 185 186 /* 187 * CS/80 partitions. We reserve the first cylinder for a LIF 188 * style boot directory (the 8k allowed in the BSD filesystem 189 * is just way too small). This boot area is outside of all but 190 * the C partition. This implies that you cannot use the C 191 * partition on a bootable disk since the filesystem would overlay 192 * the boot area. You must use the A partition. 193 * 194 * These maps support four basic layouts: 195 * 196 * A/B/G: This is the "traditional" setup for a bootable disk. 197 * A is the root partition, B the swap, and G a user partition. 198 * A/D/H: This is a setup for bootable systems requiring more swap 199 * (e.g. those who use HPCL). It has A as the root, D as a 200 * larger swap, and H as a smaller user partition. 201 * A/D/E/F: Similar to A/D/H with E and F breaking H into two partitions. 202 * E could be used for /usr and F for users. 203 * C: This gives a single, non-bootable, large user filesystem. 204 * Good for second drives on a machine (e.g. /usr/src). 205 */ 206 struct size rd7945A_sizes[8] = { 207 RDSZ(15904), 1, /* A=cyl 1 thru 142 */ 208 RDSZ(20160), 143, /* B=cyl 143 thru 322 */ 209 RDSZ(108416), 0, /* C=cyl 0 thru 967 */ 210 RDSZ(40320), 143, /* D=cyl 143 thru 502 */ 211 RDSZ(0), 0, /* E=<undefined> */ 212 RDSZ(0), 0, /* F=<undefined> */ 213 RDSZ(72240), 323, /* G=cyl 323 thru 967 */ 214 RDSZ(52080), 503, /* H=cyl 503 thru 967 */ 215 }, rd9134D_sizes[8] = { 216 RDSZ(15936), 1, /* A=cyl 1 thru 166 */ 217 RDSZ(13056), 167, /* B=cyl 167 thru 302 */ 218 RDSZ(29088), 0, /* C=cyl 0 thru 302 */ 219 RDSZ(0), 0, /* D=<undefined> */ 220 RDSZ(0), 0, /* E=<undefined> */ 221 RDSZ(0), 0, /* F=<undefined> */ 222 RDSZ(0), 0, /* G=<undefined> */ 223 RDSZ(0), 0, /* H=<undefined> */ 224 }, rd9122S_sizes[8] = { 225 RDSZ(0), 0, /* A=<undefined> */ 226 RDSZ(0), 0, /* B=<undefined> */ 227 RDSZ(1232), 0, /* C=cyl 0 thru 76 */ 228 RDSZ(0), 0, /* D=<undefined> */ 229 RDSZ(0), 0, /* E=<undefined> */ 230 RDSZ(0), 0, /* F=<undefined> */ 231 RDSZ(0), 0, /* G=<undefined> */ 232 RDSZ(0), 0, /* H=<undefined> */ 233 }, rd7912P_sizes[8] = { 234 RDSZ(15904), 0, /* A=cyl 1 thru 71 */ 235 RDSZ(22400), 72, /* B=cyl 72 thru 171 */ 236 RDSZ(128128), 0, /* C=cyl 0 thru 571 */ 237 RDSZ(42560), 72, /* D=cyl 72 thru 261 */ 238 RDSZ(0), 292, /* E=<undefined> */ 239 RDSZ(0), 542, /* F=<undefined> */ 240 RDSZ(89600), 172, /* G=cyl 221 thru 571 */ 241 RDSZ(69440), 262, /* H=cyl 262 thru 571 */ 242 }, rd7914P_sizes[8] = { 243 RDSZ(15904), 1, /* A=cyl 1 thru 71 */ 244 RDSZ(40320), 72, /* B=cyl 72 thru 251 */ 245 RDSZ(258048), 0, /* C=cyl 0 thru 1151 */ 246 RDSZ(64960), 72, /* D=cyl 72 thru 361 */ 247 RDSZ(98560), 362, /* E=cyl 362 thru 801 */ 248 RDSZ(78400), 802, /* F=cyl 802 thru 1151 */ 249 RDSZ(201600), 252, /* G=cyl 221 thru 1151 */ 250 RDSZ(176960), 362, /* H=cyl 362 thru 1151 */ 251 }, rd7933H_sizes[8] = { 252 RDSZ(16146), 1, /* A=cyl 1 thru 27 */ 253 RDSZ(66976), 28, /* B=cyl 28 thru 139 */ 254 RDSZ(789958), 0, /* C=cyl 0 thru 1320 */ 255 RDSZ(16146), 140, /* D=cyl 140 thru 166 */ 256 RDSZ(165646), 167, /* E=cyl 167 thru 443 */ 257 RDSZ(165646), 444, /* F=cyl 444 thru 720 */ 258 RDSZ(706238), 140, /* G=cyl 140 thru 1320 */ 259 RDSZ(358800), 721, /* H=cyl 721 thru 1320 */ 260 }, rd9134L_sizes[8] = { 261 RDSZ(15920), 1, /* A=cyl 1 thru 199 */ 262 RDSZ(20000), 200, /* B=cyl 200 thru 449 */ 263 RDSZ(77840), 0, /* C=cyl 0 thru 972 */ 264 RDSZ(32000), 200, /* D=cyl 200 thru 599 */ 265 RDSZ(0), 0, /* E=<undefined> */ 266 RDSZ(0), 0, /* F=<undefined> */ 267 RDSZ(41840), 450, /* G=cyl 450 thru 972 */ 268 RDSZ(29840), 600, /* H=cyl 600 thru 972 */ 269 }, rd7957A_sizes[8] = { 270 RDSZ(16016), 1, /* A=cyl 1 thru 104 */ 271 RDSZ(24640), 105, /* B=cyl 105 thru 264 */ 272 RDSZ(159544), 0, /* C=cyl 0 thru 1035 */ 273 RDSZ(42350), 105, /* D=cyl 105 thru 379 */ 274 RDSZ(54824), 380, /* E=cyl 380 thru 735 */ 275 RDSZ(46200), 736, /* F=cyl 736 thru 1035 */ 276 RDSZ(118734), 265, /* G=cyl 265 thru 1035 */ 277 RDSZ(101024), 380, /* H=cyl 380 thru 1035 */ 278 }, rd7958A_sizes[8] = { 279 RDSZ(16128), 1, /* A=cyl 1 thru 64 */ 280 RDSZ(32256), 65, /* B=cyl 65 thru 192 */ 281 RDSZ(255276), 0, /* C=cyl 0 thru 1012 */ 282 RDSZ(48384), 65, /* D=cyl 65 thru 256 */ 283 RDSZ(100800), 257, /* E=cyl 257 thru 656 */ 284 RDSZ(89712), 657, /* F=cyl 657 thru 1012 */ 285 RDSZ(206640), 193, /* G=cyl 193 thru 1012 */ 286 RDSZ(190512), 257, /* H=cyl 257 thru 1012 */ 287 }, rd7957B_sizes[8] = { 288 RDSZ(16002), 1, /* A=cyl 1 thru 127 */ 289 RDSZ(32760), 128, /* B=cyl 128 thru 387 */ 290 RDSZ(159894), 0, /* C=cyl 0 thru 1268 */ 291 RDSZ(49140), 128, /* D=cyl 128 thru 517 */ 292 RDSZ(50400), 518, /* E=cyl 518 thru 917 */ 293 RDSZ(44226), 918, /* F=cyl 918 thru 1268 */ 294 RDSZ(111006), 388, /* G=cyl 388 thru 1268 */ 295 RDSZ(94626), 518, /* H=cyl 518 thru 1268 */ 296 }, rd7958B_sizes[8] = { 297 RDSZ(16254), 1, /* A=cyl 1 thru 43 */ 298 RDSZ(32886), 44, /* B=cyl 44 thru 130 */ 299 RDSZ(297108), 0, /* C=cyl 0 thru 785 */ 300 RDSZ(49140), 44, /* D=cyl 44 thru 173 */ 301 RDSZ(121716), 174, /* E=cyl 174 thru 495 */ 302 RDSZ(109620), 496, /* F=cyl 496 thru 785 */ 303 RDSZ(247590), 131, /* G=cyl 131 thru 785 */ 304 RDSZ(231336), 174, /* H=cyl 174 thru 785 */ 305 }, rd7959B_sizes[8] = { 306 RDSZ(16254), 1, /* A=cyl 1 thru 43 */ 307 RDSZ(49140), 44, /* B=cyl 44 thru 173 */ 308 RDSZ(594216), 0, /* C=cyl 0 thru 1571 */ 309 RDSZ(65772), 44, /* D=cyl 44 thru 217 */ 310 RDSZ(303912), 218, /* E=cyl 218 thru 1021 */ 311 RDSZ(207900), 1022, /* F=cyl 1022 thru 1571 */ 312 RDSZ(528444), 174, /* G=cyl 174 thru 1571 */ 313 RDSZ(511812), 218, /* H=cyl 218 thru 1571 */ 314 }, rd2200A_sizes[8] = { 315 RDSZ(16272), 1, /* A=cyl 1 thru 36 */ 316 RDSZ(49720), 37, /* B=cyl 37 thru 146 */ 317 RDSZ(654948), 0, /* C=cyl 0 thru 1448 */ 318 RDSZ(65992), 37, /* D=cyl 37 thru 182 */ 319 RDSZ(304648), 183, /* E=cyl 183 thru 856 */ 320 RDSZ(267584), 857, /* F=cyl 857 thru 1448 */ 321 RDSZ(588504), 147, /* G=cyl 147 thru 1448 */ 322 RDSZ(572232), 183, /* H=cyl 183 thru 1448 */ 323 }, rd2203A_sizes[8] = { 324 /* modelled after the 7937; i.e. bogus */ 325 RDSZ(16272), 1, /* A=cyl 1 thru 18 */ 326 RDSZ(67800), 19, /* B=cyl 19 thru 93 */ 327 RDSZ(1309896), 0, /* C=cyl 0 thru 1448 */ 328 RDSZ(16272), 94, /* D=cyl 19 thru 111 */ 329 RDSZ(305552), 112, /* E=cyl 112 thru 449 */ 330 RDSZ(305552), 450, /* F=cyl 450 thru 787 */ 331 RDSZ(1224920), 94, /* G=cyl 94 thru 1448 */ 332 RDSZ(597544), 788, /* H=cyl 788 thru 1448 */ 333 334 #if DEV_BSIZE == 512 335 /* 336 * These values would not work for 1k, 337 * since the number of cylinders would be different. 338 */ 339 }, rd7936H_sizes[8] = { 340 RDSZ(16359), 1, /* A=cyl 1 thru 19 */ 341 RDSZ(67158), 20, /* B=cyl 20 thru 97 */ 342 RDSZ(600978), 0, /* C=cyl 0 thru 697 */ 343 RDSZ(16359), 98, /* D=cyl 98 thru 116 */ 344 RDSZ(120540), 117, /* E=cyl 117 thru 256 */ 345 RDSZ(120540), 256, /* F=cyl 256 thru 396 */ 346 RDSZ(516600), 98, /* G=cyl 98 thru 697 */ 347 RDSZ(259161), 397, /* H=cyl 397 thru 697 */ 348 }, rd7937H_sizes[8] = { 349 #ifdef UTAH 350 RDSZ(15990), 1, /* A=cyl 1 thru 10 */ 351 RDSZ(67158), 11, /* B=cyl 11 thru 52 */ 352 RDSZ(1116102), 0, /* C=cyl 0 thru 697 */ 353 RDSZ(124722), 53, /* D=cyl 53 thru 130 */ 354 RDSZ(163098), 131, /* E=cyl 131 thru 232 */ 355 RDSZ(287820), 233, /* F=cyl 233 thru 412 */ 356 RDSZ(1031355), 53, /* G=cyl 53 thru 697 */ 357 RDSZ(455715), 413, /* H=cyl 413 thru 697 */ 358 #else 359 RDSZ(15990), 1, /* A=cyl 1 thru 10 */ 360 RDSZ(67158), 11, /* B=cyl 11 thru 52 */ 361 RDSZ(1116102), 0, /* C=cyl 0 thru 697 */ 362 RDSZ(15990), 53, /* D=cyl 53 thru 62 */ 363 RDSZ(246246), 63, /* E=cyl 63 thru 216 */ 364 RDSZ(246246), 217, /* F=cyl 217 thru 370 */ 365 RDSZ(1031355), 53, /* G=cyl 53 thru 697 */ 366 RDSZ(522873), 371, /* H=cyl 371 thru 697 */ 367 #endif 368 #endif 369 }; 370 371 struct rdinfo { 372 int nbpt; /* DEV_BSIZE blocks per track */ 373 int ntpc; /* tracks per cylinder */ 374 int nbpc; /* blocks per cylinder */ 375 struct size *sizes; /* default partition info (if no disklabel) */ 376 short hwid; /* 2 byte HW id */ 377 short maxunum; /* maximum allowed unit number */ 378 char *desc; /* drive type description */ 379 }; 380 381 struct rdinfo rdinfo[] = { 382 NRD7945ABPT, NRD7945ATRK, NRD7945ABPT * NRD7945ATRK, 383 rd7945A_sizes, RD7946AID, 0, "7945A", 384 NRD9134DBPT, NRD9134DTRK, NRD9134DBPT * NRD9134DTRK, 385 rd9134D_sizes, RD9134DID, 1, "9134D", 386 NRD9122SBPT, NRD9122STRK, NRD9122SBPT * NRD9122STRK, 387 rd9122S_sizes, RD9134LID, 1, "9122S", 388 NRD7912PBPT, NRD7912PTRK, NRD7912PBPT * NRD7912PTRK, 389 rd7912P_sizes, RD7912PID, 0, "7912P", 390 NRD7914PBPT, NRD7914PTRK, NRD7914PBPT * NRD7914PTRK, 391 rd7914P_sizes, RD7914PID, 0, "7914P", 392 NRD7958ABPT, NRD7958ATRK, NRD7958ABPT * NRD7958ATRK, 393 rd7958A_sizes, RD7958AID, 0, "7958A", 394 NRD7957ABPT, NRD7957ATRK, NRD7957ABPT * NRD7957ATRK, 395 rd7957A_sizes, RD7957AID, 0, "7957A", 396 NRD7933HBPT, NRD7933HTRK, NRD7933HBPT * NRD7933HTRK, 397 rd7933H_sizes, RD7933HID, 0, "7933H", 398 NRD9134LBPT, NRD9134LTRK, NRD9134LBPT * NRD9134LTRK, 399 rd9134L_sizes, RD9134LID, 1, "9134L", 400 NRD7936HBPT, NRD7936HTRK, NRD7936HBPT * NRD7936HTRK, 401 rd7936H_sizes, RD7936HID, 0, "7936H", 402 NRD7937HBPT, NRD7937HTRK, NRD7937HBPT * NRD7937HTRK, 403 rd7937H_sizes, RD7937HID, 0, "7937H", 404 NRD7914PBPT, NRD7914PTRK, NRD7914PBPT * NRD7914PTRK, 405 rd7914P_sizes, RD7914CTID, 0, "7914CT", 406 NRD7945ABPT, NRD7945ATRK, NRD7945ABPT * NRD7945ATRK, 407 rd7945A_sizes, RD7946AID, 0, "7946A", 408 NRD9122SBPT, NRD9122STRK, NRD9122SBPT * NRD9122STRK, 409 rd9122S_sizes, RD9134LID, 1, "9122D", 410 NRD7957BBPT, NRD7957BTRK, NRD7957BBPT * NRD7957BTRK, 411 rd7957B_sizes, RD7957BID, 0, "7957B", 412 NRD7958BBPT, NRD7958BTRK, NRD7958BBPT * NRD7958BTRK, 413 rd7958B_sizes, RD7958BID, 0, "7958B", 414 NRD7959BBPT, NRD7959BTRK, NRD7959BBPT * NRD7959BTRK, 415 rd7959B_sizes, RD7959BID, 0, "7959B", 416 NRD2200ABPT, NRD2200ATRK, NRD2200ABPT * NRD2200ATRK, 417 rd2200A_sizes, RD2200AID, 0, "2200A", 418 NRD2203ABPT, NRD2203ATRK, NRD2203ABPT * NRD2203ATRK, 419 rd2203A_sizes, RD2203AID, 0, "2203A", 420 }; 421 int nrdinfo = sizeof(rdinfo) / sizeof(rdinfo[0]); 422 423 struct buf rdtab[NRD]; 424 425 #define rdunit(x) (minor(x) >> 3) 426 #define rdpart(x) (minor(x) & 0x7) 427 #define rdpunit(x) ((x) & 7) 428 #define b_cylin b_resid 429 #define RDRETRY 5 430 #define RDWAITC 1 /* min time for timeout in seconds */ 431 432 int rderrthresh = RDRETRY-1; /* when to start reporting errors */ 433 434 rdinit(hd) 435 register struct hp_device *hd; 436 { 437 register struct rd_softc *rs = &rd_softc[hd->hp_unit]; 438 439 rs->sc_hd = hd; 440 rs->sc_punit = rdpunit(hd->hp_flags); 441 rs->sc_type = rdident(rs, hd); 442 if (rs->sc_type < 0) 443 return(0); 444 rs->sc_dq.dq_ctlr = hd->hp_ctlr; 445 rs->sc_dq.dq_unit = hd->hp_unit; 446 rs->sc_dq.dq_slave = hd->hp_slave; 447 rs->sc_dq.dq_driver = &rddriver; 448 rs->sc_info = &rdinfo[rs->sc_type]; 449 rs->sc_flags = RDF_ALIVE; 450 #ifdef DEBUG 451 /* always report errors */ 452 if (rddebug & RDB_ERROR) 453 rderrthresh = 0; 454 #endif 455 return(1); 456 } 457 458 rdident(rs, hd) 459 struct rd_softc *rs; 460 struct hp_device *hd; 461 { 462 struct rd_describe desc; 463 u_char stat, cmd[3]; 464 int unit, lunit; 465 char name[7]; 466 register int ctlr, slave, id, i; 467 468 ctlr = hd->hp_ctlr; 469 slave = hd->hp_slave; 470 unit = rs->sc_punit; 471 lunit = hd->hp_unit; 472 473 /* 474 * Grab device id and make sure: 475 * 1. It is a CS80 device. 476 * 2. It is one of the types we support. 477 * 3. If it is a 7946, we are accessing the disk unit (0) 478 */ 479 id = hpibid(ctlr, slave); 480 #ifdef DEBUG 481 if (rddebug & RDB_IDENT) 482 printf("hpibid(%d, %d) -> %x\n", ctlr, slave, id); 483 #endif 484 if ((id & 0x200) == 0) 485 return(-1); 486 for (i = 0; i < nrdinfo; i++) 487 if (id == rdinfo[i].hwid) 488 break; 489 if (i == nrdinfo || unit > rdinfo[i].maxunum) 490 return(-1); 491 id = i; 492 493 /* 494 * Reset drive and collect device description. 495 * Don't really use the description info right now but 496 * might come in handy in the future (for disk labels). 497 */ 498 rdreset(rs, hd); 499 cmd[0] = C_SUNIT(unit); 500 cmd[1] = C_SVOL(0); 501 cmd[2] = C_DESC; 502 hpibsend(ctlr, slave, C_CMD, cmd, sizeof(cmd)); 503 hpibrecv(ctlr, slave, C_EXEC, &desc, 37); 504 hpibrecv(ctlr, slave, C_QSTAT, &stat, sizeof(stat)); 505 bzero(name, sizeof(name)); 506 if (!stat) { 507 register int n = desc.d_name; 508 for (i = 5; i >= 0; i--) { 509 name[i] = (n & 0xf) + '0'; 510 n >>= 4; 511 } 512 /* use drive characteristics to calculate xfer rate */ 513 rs->sc_wpms = 1000000 * (desc.d_sectsize/2) / desc.d_blocktime; 514 } 515 #ifdef DEBUG 516 if (rddebug & RDB_IDENT) { 517 printf("rd%d: name: %x ('%s')\n", 518 lunit, desc.d_name, name); 519 printf(" iuw %x, maxxfr %d, ctype %d\n", 520 desc.d_iuw, desc.d_cmaxxfr, desc.d_ctype); 521 printf(" utype %d, bps %d, blkbuf %d, burst %d, blktime %d\n", 522 desc.d_utype, desc.d_sectsize, 523 desc.d_blkbuf, desc.d_burstsize, desc.d_blocktime); 524 printf(" avxfr %d, ort %d, atp %d, maxint %d, fv %x, rv %x\n", 525 desc.d_uavexfr, desc.d_retry, desc.d_access, 526 desc.d_maxint, desc.d_fvbyte, desc.d_rvbyte); 527 printf(" maxcyl/head/sect %d/%d/%d, maxvsect %d, inter %d\n", 528 desc.d_maxcyl, desc.d_maxhead, desc.d_maxsect, 529 desc.d_maxvsectl, desc.d_interleave); 530 } 531 #endif 532 /* 533 * Take care of a couple of anomolies: 534 * 1. 7945A and 7946A both return same HW id 535 * 2. 9122S and 9134D both return same HW id 536 * 3. 9122D and 9134L both return same HW id 537 */ 538 switch (rdinfo[id].hwid) { 539 case RD7946AID: 540 if (bcmp(name, "079450", 6) == 0) 541 id = RD7945A; 542 else 543 id = RD7946A; 544 break; 545 546 case RD9134LID: 547 if (bcmp(name, "091340", 6) == 0) 548 id = RD9134L; 549 else 550 id = RD9122D; 551 break; 552 553 case RD9134DID: 554 if (bcmp(name, "091220", 6) == 0) 555 id = RD9122S; 556 else 557 id = RD9134D; 558 break; 559 } 560 printf("rd%d: %s\n", lunit, rdinfo[id].desc); 561 return(id); 562 } 563 564 rdreset(rs, hd) 565 register struct rd_softc *rs; 566 register struct hp_device *hd; 567 { 568 u_char stat; 569 570 rs->sc_clear.c_unit = C_SUNIT(rs->sc_punit); 571 rs->sc_clear.c_cmd = C_CLEAR; 572 hpibsend(hd->hp_ctlr, hd->hp_slave, C_TCMD, &rs->sc_clear, 573 sizeof(rs->sc_clear)); 574 hpibswait(hd->hp_ctlr, hd->hp_slave); 575 hpibrecv(hd->hp_ctlr, hd->hp_slave, C_QSTAT, &stat, sizeof(stat)); 576 rs->sc_src.c_unit = C_SUNIT(RDCTLR); 577 rs->sc_src.c_nop = C_NOP; 578 rs->sc_src.c_cmd = C_SREL; 579 rs->sc_src.c_param = C_REL; 580 hpibsend(hd->hp_ctlr, hd->hp_slave, C_CMD, &rs->sc_src, 581 sizeof(rs->sc_src)); 582 hpibswait(hd->hp_ctlr, hd->hp_slave); 583 hpibrecv(hd->hp_ctlr, hd->hp_slave, C_QSTAT, &stat, sizeof(stat)); 584 rs->sc_ssmc.c_unit = C_SUNIT(rs->sc_punit); 585 rs->sc_ssmc.c_cmd = C_SSM; 586 rs->sc_ssmc.c_refm = REF_MASK; 587 rs->sc_ssmc.c_fefm = FEF_MASK; 588 rs->sc_ssmc.c_aefm = AEF_MASK; 589 rs->sc_ssmc.c_iefm = IEF_MASK; 590 hpibsend(hd->hp_ctlr, hd->hp_slave, C_CMD, &rs->sc_ssmc, 591 sizeof(rs->sc_ssmc)); 592 hpibswait(hd->hp_ctlr, hd->hp_slave); 593 hpibrecv(hd->hp_ctlr, hd->hp_slave, C_QSTAT, &stat, sizeof(stat)); 594 #ifdef DEBUG 595 rdstats[hd->hp_unit].rdresets++; 596 #endif 597 } 598 599 int 600 rdopen(dev, flags, mode, p) 601 dev_t dev; 602 int flags, mode; 603 struct proc *p; 604 { 605 register int unit = rdunit(dev); 606 register struct rd_softc *rs = &rd_softc[unit]; 607 608 if (unit >= NRD || (rs->sc_flags & RDF_ALIVE) == 0) 609 return(ENXIO); 610 if (rs->sc_hd->hp_dk >= 0) { 611 /* guess at xfer rate based on 3600 rpm (60 rps) */ 612 if (rs->sc_wpms == 0) 613 rs->sc_wpms = 60 * rs->sc_info->nbpt * DEV_BSIZE / 2; 614 dk_wpms[rs->sc_hd->hp_dk] = rs->sc_wpms; 615 } 616 return(0); 617 } 618 619 rdstrategy(bp) 620 register struct buf *bp; 621 { 622 register int unit = rdunit(bp->b_dev); 623 register struct rd_softc *rs = &rd_softc[unit]; 624 register struct size *pinfo = &rs->sc_info->sizes[rdpart(bp->b_dev)]; 625 register struct buf *dp = &rdtab[unit]; 626 register daddr_t bn; 627 register int sz, s; 628 629 #ifdef DEBUG 630 if (rddebug & RDB_FOLLOW) 631 printf("rdstrategy(%x): dev %x, bn %x, bcount %x, %c\n", 632 bp, bp->b_dev, bp->b_blkno, bp->b_bcount, 633 (bp->b_flags & B_READ) ? 'R' : 'W'); 634 #endif 635 bn = bp->b_blkno; 636 sz = howmany(bp->b_bcount, DEV_BSIZE); 637 if (bn < 0 || bn + sz > pinfo->nblocks) { 638 sz = pinfo->nblocks - bn; 639 if (sz == 0) { 640 bp->b_resid = bp->b_bcount; 641 goto done; 642 } 643 if (sz < 0) { 644 bp->b_error = EINVAL; 645 bp->b_flags |= B_ERROR; 646 goto done; 647 } 648 bp->b_bcount = dbtob(sz); 649 } 650 bp->b_cylin = bn / rs->sc_info->nbpc + pinfo->cyloff; 651 s = splbio(); 652 disksort(dp, bp); 653 if (dp->b_active == 0) { 654 dp->b_active = 1; 655 rdustart(unit); 656 } 657 splx(s); 658 return; 659 done: 660 biodone(bp); 661 } 662 663 /* 664 * Called from timeout() when handling maintenance releases 665 */ 666 rdrestart(unit) 667 int unit; 668 { 669 int s = splbio(); 670 rdustart(unit); 671 splx(s); 672 } 673 674 rdustart(unit) 675 register int unit; 676 { 677 register struct buf *bp; 678 register struct rd_softc *rs = &rd_softc[unit]; 679 680 bp = rdtab[unit].b_actf; 681 rs->sc_addr = bp->b_un.b_addr; 682 rs->sc_resid = bp->b_bcount; 683 if (hpibreq(&rs->sc_dq)) 684 rdstart(unit); 685 } 686 687 rdstart(unit) 688 register int unit; 689 { 690 register struct rd_softc *rs = &rd_softc[unit]; 691 register struct buf *bp = rdtab[unit].b_actf; 692 register struct hp_device *hp = rs->sc_hd; 693 register int part; 694 695 again: 696 #ifdef DEBUG 697 if (rddebug & RDB_FOLLOW) 698 printf("rdstart(%d): bp %x, %c\n", unit, bp, 699 (bp->b_flags & B_READ) ? 'R' : 'W'); 700 #endif 701 part = rdpart(bp->b_dev); 702 rs->sc_flags |= RDF_SEEK; 703 rs->sc_ioc.c_unit = C_SUNIT(rs->sc_punit); 704 rs->sc_ioc.c_volume = C_SVOL(0); 705 rs->sc_ioc.c_saddr = C_SADDR; 706 rs->sc_ioc.c_hiaddr = 0; 707 rs->sc_ioc.c_addr = RDBTOS(bp->b_blkno + rs->sc_info->nbpc * 708 rs->sc_info->sizes[part].cyloff); 709 rs->sc_ioc.c_nop2 = C_NOP; 710 rs->sc_ioc.c_slen = C_SLEN; 711 rs->sc_ioc.c_len = rs->sc_resid; 712 rs->sc_ioc.c_cmd = bp->b_flags & B_READ ? C_READ : C_WRITE; 713 #ifdef DEBUG 714 if (rddebug & RDB_IO) 715 printf("rdstart: hpibsend(%x, %x, %x, %x, %x)\n", 716 hp->hp_ctlr, hp->hp_slave, C_CMD, 717 &rs->sc_ioc.c_unit, sizeof(rs->sc_ioc)-2); 718 #endif 719 if (hpibsend(hp->hp_ctlr, hp->hp_slave, C_CMD, &rs->sc_ioc.c_unit, 720 sizeof(rs->sc_ioc)-2) == sizeof(rs->sc_ioc)-2) { 721 if (hp->hp_dk >= 0) { 722 dk_busy |= 1 << hp->hp_dk; 723 dk_seek[hp->hp_dk]++; 724 } 725 #ifdef DEBUG 726 if (rddebug & RDB_IO) 727 printf("rdstart: hpibawait(%x)\n", hp->hp_ctlr); 728 #endif 729 hpibawait(hp->hp_ctlr); 730 return; 731 } 732 /* 733 * Experience has shown that the hpibwait in this hpibsend will 734 * occasionally timeout. It appears to occur mostly on old 7914 735 * drives with full maintenance tracks. We should probably 736 * integrate this with the backoff code in rderror. 737 */ 738 #ifdef DEBUG 739 if (rddebug & RDB_ERROR) 740 printf("rd%d: rdstart: cmd %x adr %d blk %d len %d ecnt %d\n", 741 unit, rs->sc_ioc.c_cmd, rs->sc_ioc.c_addr, 742 bp->b_blkno, rs->sc_resid, rdtab[unit].b_errcnt); 743 rdstats[unit].rdretries++; 744 #endif 745 rs->sc_flags &= ~RDF_SEEK; 746 rdreset(rs, hp); 747 if (rdtab[unit].b_errcnt++ < RDRETRY) 748 goto again; 749 printf("rd%d: rdstart err: cmd 0x%x sect %d blk %d len %d\n", 750 unit, rs->sc_ioc.c_cmd, rs->sc_ioc.c_addr, 751 bp->b_blkno, rs->sc_resid); 752 rdtab[unit].b_errcnt = 0; 753 rdtab[unit].b_actf = bp->b_actf; 754 bp->b_flags |= B_ERROR; 755 bp->b_error = EIO; 756 bp->b_resid = 0; 757 biodone(bp); 758 hpibfree(&rs->sc_dq); 759 bp = rdtab[unit].b_actf; 760 if (bp == NULL) { 761 rdtab[unit].b_active = 0; 762 return; 763 } 764 rs->sc_addr = bp->b_un.b_addr; 765 rs->sc_resid = bp->b_bcount; 766 if (hpibreq(&rs->sc_dq)) 767 goto again; 768 } 769 770 rdgo(unit) 771 register int unit; 772 { 773 register struct rd_softc *rs = &rd_softc[unit]; 774 register struct hp_device *hp = rs->sc_hd; 775 struct buf *bp = rdtab[unit].b_actf; 776 777 if (hp->hp_dk >= 0) { 778 dk_busy |= 1 << hp->hp_dk; 779 dk_xfer[hp->hp_dk]++; 780 dk_wds[hp->hp_dk] += rs->sc_resid >> 6; 781 } 782 hpibgo(hp->hp_ctlr, hp->hp_slave, C_EXEC, 783 rs->sc_addr, rs->sc_resid, bp->b_flags & B_READ); 784 } 785 786 rdintr(unit) 787 register int unit; 788 { 789 register struct rd_softc *rs = &rd_softc[unit]; 790 register struct buf *bp = rdtab[unit].b_actf; 791 register struct hp_device *hp = rs->sc_hd; 792 u_char stat = 13; /* in case hpibrecv fails */ 793 int rv, restart; 794 795 #ifdef DEBUG 796 if (rddebug & RDB_FOLLOW) 797 printf("rdintr(%d): bp %x, %c, flags %x\n", unit, bp, 798 (bp->b_flags & B_READ) ? 'R' : 'W', rs->sc_flags); 799 if (bp == NULL) { 800 printf("rd%d: bp == NULL\n", unit); 801 return; 802 } 803 #endif 804 if (hp->hp_dk >= 0) 805 dk_busy &= ~(1 << hp->hp_dk); 806 if (rs->sc_flags & RDF_SEEK) { 807 rs->sc_flags &= ~RDF_SEEK; 808 if (hpibustart(hp->hp_ctlr)) 809 rdgo(unit); 810 return; 811 } 812 if ((rs->sc_flags & RDF_SWAIT) == 0) { 813 #ifdef DEBUG 814 rdstats[unit].rdpolltries++; 815 #endif 816 if (hpibpptest(hp->hp_ctlr, hp->hp_slave) == 0) { 817 #ifdef DEBUG 818 rdstats[unit].rdpollwaits++; 819 #endif 820 if (hp->hp_dk >= 0) 821 dk_busy |= 1 << hp->hp_dk; 822 rs->sc_flags |= RDF_SWAIT; 823 hpibawait(hp->hp_ctlr); 824 return; 825 } 826 } else 827 rs->sc_flags &= ~RDF_SWAIT; 828 rv = hpibrecv(hp->hp_ctlr, hp->hp_slave, C_QSTAT, &stat, 1); 829 if (rv != 1 || stat) { 830 #ifdef DEBUG 831 if (rddebug & RDB_ERROR) 832 printf("rdintr: recv failed or bad stat %d\n", stat); 833 #endif 834 restart = rderror(unit); 835 #ifdef DEBUG 836 rdstats[unit].rdretries++; 837 #endif 838 if (rdtab[unit].b_errcnt++ < RDRETRY) { 839 if (restart) 840 rdstart(unit); 841 return; 842 } 843 bp->b_flags |= B_ERROR; 844 bp->b_error = EIO; 845 } 846 rdtab[unit].b_errcnt = 0; 847 rdtab[unit].b_actf = bp->b_actf; 848 bp->b_resid = 0; 849 biodone(bp); 850 hpibfree(&rs->sc_dq); 851 if (rdtab[unit].b_actf) 852 rdustart(unit); 853 else 854 rdtab[unit].b_active = 0; 855 } 856 857 rdstatus(rs) 858 register struct rd_softc *rs; 859 { 860 register int c, s; 861 u_char stat; 862 int rv; 863 864 c = rs->sc_hd->hp_ctlr; 865 s = rs->sc_hd->hp_slave; 866 rs->sc_rsc.c_unit = C_SUNIT(rs->sc_punit); 867 rs->sc_rsc.c_sram = C_SRAM; 868 rs->sc_rsc.c_ram = C_RAM; 869 rs->sc_rsc.c_cmd = C_STATUS; 870 bzero((caddr_t)&rs->sc_stat, sizeof(rs->sc_stat)); 871 rv = hpibsend(c, s, C_CMD, &rs->sc_rsc, sizeof(rs->sc_rsc)); 872 if (rv != sizeof(rs->sc_rsc)) { 873 #ifdef DEBUG 874 if (rddebug & RDB_STATUS) 875 printf("rdstatus: send C_CMD failed %d != %d\n", 876 rv, sizeof(rs->sc_rsc)); 877 #endif 878 return(1); 879 } 880 rv = hpibrecv(c, s, C_EXEC, &rs->sc_stat, sizeof(rs->sc_stat)); 881 if (rv != sizeof(rs->sc_stat)) { 882 #ifdef DEBUG 883 if (rddebug & RDB_STATUS) 884 printf("rdstatus: send C_EXEC failed %d != %d\n", 885 rv, sizeof(rs->sc_stat)); 886 #endif 887 return(1); 888 } 889 rv = hpibrecv(c, s, C_QSTAT, &stat, 1); 890 if (rv != 1 || stat) { 891 #ifdef DEBUG 892 if (rddebug & RDB_STATUS) 893 printf("rdstatus: recv failed %d or bad stat %d\n", 894 rv, stat); 895 #endif 896 return(1); 897 } 898 return(0); 899 } 900 901 /* 902 * Deal with errors. 903 * Returns 1 if request should be restarted, 904 * 0 if we should just quietly give up. 905 */ 906 rderror(unit) 907 int unit; 908 { 909 struct rd_softc *rs = &rd_softc[unit]; 910 register struct rd_stat *sp; 911 struct buf *bp; 912 daddr_t hwbn, pbn; 913 914 if (rdstatus(rs)) { 915 #ifdef DEBUG 916 printf("rd%d: couldn't get status\n", unit); 917 #endif 918 rdreset(rs, rs->sc_hd); 919 return(1); 920 } 921 sp = &rs->sc_stat; 922 if (sp->c_fef & FEF_REXMT) 923 return(1); 924 if (sp->c_fef & FEF_PF) { 925 rdreset(rs, rs->sc_hd); 926 return(1); 927 } 928 /* 929 * Unit requests release for internal maintenance. 930 * We just delay awhile and try again later. Use expontially 931 * increasing backoff ala ethernet drivers since we don't really 932 * know how long the maintenance will take. With RDWAITC and 933 * RDRETRY as defined, the range is 1 to 32 seconds. 934 */ 935 if (sp->c_fef & FEF_IMR) { 936 extern int hz; 937 int rdtimo = RDWAITC << rdtab[unit].b_errcnt; 938 #ifdef DEBUG 939 printf("rd%d: internal maintenance, %d second timeout\n", 940 unit, rdtimo); 941 rdstats[unit].rdtimeouts++; 942 #endif 943 hpibfree(&rs->sc_dq); 944 timeout(rdrestart, unit, rdtimo*hz); 945 return(0); 946 } 947 /* 948 * Only report error if we have reached the error reporting 949 * threshhold. By default, this will only report after the 950 * retry limit has been exceeded. 951 */ 952 if (rdtab[unit].b_errcnt < rderrthresh) 953 return(1); 954 955 /* 956 * First conjure up the block number at which the error occured. 957 * Note that not all errors report a block number, in that case 958 * we just use b_blkno. 959 */ 960 bp = rdtab[unit].b_actf; 961 pbn = rs->sc_info->nbpc * 962 rs->sc_info->sizes[rdpart(bp->b_dev)].cyloff; 963 if ((sp->c_fef & FEF_CU) || (sp->c_fef & FEF_DR) || 964 (sp->c_ief & IEF_RRMASK)) { 965 hwbn = RDBTOS(pbn + bp->b_blkno); 966 pbn = bp->b_blkno; 967 } else { 968 hwbn = sp->c_blk; 969 pbn = RDSTOB(hwbn) - pbn; 970 } 971 /* 972 * Now output a generic message suitable for badsect. 973 * Note that we don't use harderr cuz it just prints 974 * out b_blkno which is just the beginning block number 975 * of the transfer, not necessary where the error occured. 976 */ 977 printf("rd%d%c: hard error sn%d\n", 978 rdunit(bp->b_dev), 'a'+rdpart(bp->b_dev), pbn); 979 /* 980 * Now report the status as returned by the hardware with 981 * attempt at interpretation (unless debugging). 982 */ 983 printf("rd%d %s error:", 984 unit, (bp->b_flags & B_READ) ? "read" : "write"); 985 #ifdef DEBUG 986 if (rddebug & RDB_ERROR) { 987 /* status info */ 988 printf("\n volume: %d, unit: %d\n", 989 (sp->c_vu>>4)&0xF, sp->c_vu&0xF); 990 rdprinterr("reject", sp->c_ref, err_reject); 991 rdprinterr("fault", sp->c_fef, err_fault); 992 rdprinterr("access", sp->c_aef, err_access); 993 rdprinterr("info", sp->c_ief, err_info); 994 printf(" block: %d, P1-P10: ", hwbn); 995 printf("%s", hexstr(*(u_int *)&sp->c_raw[0], 8)); 996 printf("%s", hexstr(*(u_int *)&sp->c_raw[4], 8)); 997 printf("%s\n", hexstr(*(u_short *)&sp->c_raw[8], 4)); 998 /* command */ 999 printf(" ioc: "); 1000 printf("%s", hexstr(*(u_int *)&rs->sc_ioc.c_pad, 8)); 1001 printf("%s", hexstr(*(u_short *)&rs->sc_ioc.c_hiaddr, 4)); 1002 printf("%s", hexstr(*(u_int *)&rs->sc_ioc.c_addr, 8)); 1003 printf("%s", hexstr(*(u_short *)&rs->sc_ioc.c_nop2, 4)); 1004 printf("%s", hexstr(*(u_int *)&rs->sc_ioc.c_len, 8)); 1005 printf("%s\n", hexstr(*(u_short *)&rs->sc_ioc.c_cmd, 4)); 1006 return(1); 1007 } 1008 #endif 1009 printf(" v%d u%d, R0x%x F0x%x A0x%x I0x%x\n", 1010 (sp->c_vu>>4)&0xF, sp->c_vu&0xF, 1011 sp->c_ref, sp->c_fef, sp->c_aef, sp->c_ief); 1012 printf("P1-P10: "); 1013 printf("%s", hexstr(*(u_int *)&sp->c_raw[0], 8)); 1014 printf("%s", hexstr(*(u_int *)&sp->c_raw[4], 8)); 1015 printf("%s\n", hexstr(*(u_short *)&sp->c_raw[8], 4)); 1016 return(1); 1017 } 1018 1019 int 1020 rdread(dev, uio, flags) 1021 dev_t dev; 1022 struct uio *uio; 1023 int flags; 1024 { 1025 register int unit = rdunit(dev); 1026 1027 return (physio(rdstrategy, NULL, dev, B_READ, minphys, uio)); 1028 } 1029 1030 int 1031 rdwrite(dev, uio, flags) 1032 dev_t dev; 1033 struct uio *uio; 1034 int flags; 1035 { 1036 register int unit = rdunit(dev); 1037 1038 return (physio(rdstrategy, NULL, dev, B_WRITE, minphys, uio)); 1039 } 1040 1041 int 1042 rdioctl(dev, cmd, data, flag, p) 1043 dev_t dev; 1044 int cmd; 1045 caddr_t data; 1046 int flag; 1047 struct proc *p; 1048 { 1049 return(EINVAL); 1050 } 1051 1052 int 1053 rdsize(dev) 1054 dev_t dev; 1055 { 1056 register int unit = rdunit(dev); 1057 register struct rd_softc *rs = &rd_softc[unit]; 1058 1059 if (unit >= NRD || (rs->sc_flags & RDF_ALIVE) == 0) 1060 return(-1); 1061 return(rs->sc_info->sizes[rdpart(dev)].nblocks); 1062 } 1063 1064 #ifdef DEBUG 1065 rdprinterr(str, err, tab) 1066 char *str; 1067 short err; 1068 char *tab[]; 1069 { 1070 register int i; 1071 int printed; 1072 1073 if (err == 0) 1074 return; 1075 printf(" %s error field:", str, err); 1076 printed = 0; 1077 for (i = 0; i < 16; i++) 1078 if (err & (0x8000 >> i)) 1079 printf("%s%s", printed++ ? " + " : " ", tab[i]); 1080 printf("\n"); 1081 } 1082 #endif 1083 1084 /* 1085 * Non-interrupt driven, non-dma dump routine. 1086 */ 1087 int 1088 rddump(dev) 1089 dev_t dev; 1090 { 1091 int part = rdpart(dev); 1092 int unit = rdunit(dev); 1093 register struct rd_softc *rs = &rd_softc[unit]; 1094 register struct hp_device *hp = rs->sc_hd; 1095 register daddr_t baddr; 1096 register int maddr, pages, i; 1097 char stat; 1098 extern int lowram, dumpsize; 1099 #ifdef DEBUG 1100 extern int pmapdebug; 1101 pmapdebug = 0; 1102 #endif 1103 1104 pages = dumpsize; 1105 #ifdef DEBUG 1106 if (rddebug & RDB_DUMP) 1107 printf("rddump(%x): u %d p %d dumplo %d ram %x pmem %d\n", 1108 dev, unit, part, dumplo, lowram, ctod(pages)); 1109 #endif 1110 /* is drive ok? */ 1111 if (unit >= NRD || (rs->sc_flags & RDF_ALIVE) == 0) 1112 return (ENXIO); 1113 /* HPIB idle? */ 1114 if (!hpibreq(&rs->sc_dq)) { 1115 #ifdef DEBUG 1116 /* is this a safe thing to do?? */ 1117 hpibreset(hp->hp_ctlr); 1118 rdreset(rs, rs->sc_hd); 1119 printf("[ drive %d reset ] ", unit); 1120 #else 1121 return (EFAULT); 1122 #endif 1123 } 1124 /* dump parameters in range? */ 1125 if (dumplo < 0 || dumplo >= rs->sc_info->sizes[part].nblocks) 1126 return (EINVAL); 1127 if (dumplo + ctod(pages) > rs->sc_info->sizes[part].nblocks) 1128 pages = dtoc(rs->sc_info->sizes[part].nblocks - dumplo); 1129 maddr = lowram; 1130 baddr = dumplo + rs->sc_info->nbpc * rs->sc_info->sizes[part].cyloff; 1131 #ifdef DEBUG 1132 if (rddebug & RDB_DUMP) 1133 printf("rddump: dumping %d pages from %x to disk block %d\n", 1134 pages, maddr, baddr); 1135 #endif 1136 for (i = 0; i < pages; i++) { 1137 #ifdef DEBUG 1138 #define NPGMB (1024*1024/NBPG) 1139 /* print out how many Mbs we have dumped */ 1140 if (i && (i % NPGMB) == 0) 1141 printf("%d ", i / NPGMB); 1142 #undef NPBMG 1143 #endif 1144 rs->sc_ioc.c_unit = C_SUNIT(rs->sc_punit); 1145 rs->sc_ioc.c_volume = C_SVOL(0); 1146 rs->sc_ioc.c_saddr = C_SADDR; 1147 rs->sc_ioc.c_hiaddr = 0; 1148 rs->sc_ioc.c_addr = RDBTOS(baddr); 1149 rs->sc_ioc.c_nop2 = C_NOP; 1150 rs->sc_ioc.c_slen = C_SLEN; 1151 rs->sc_ioc.c_len = NBPG; 1152 rs->sc_ioc.c_cmd = C_WRITE; 1153 hpibsend(hp->hp_ctlr, hp->hp_slave, C_CMD, 1154 &rs->sc_ioc.c_unit, sizeof(rs->sc_ioc)-2); 1155 if (hpibswait(hp->hp_ctlr, hp->hp_slave)) { 1156 #ifdef DEBUG 1157 if (rddebug & RDB_DUMP) 1158 printf("rddump: IOC wait timeout\n"); 1159 #endif 1160 return (EIO); 1161 } 1162 pmap_enter(pmap_kernel(), vmmap, maddr, VM_PROT_READ, TRUE); 1163 hpibsend(hp->hp_ctlr, hp->hp_slave, C_EXEC, vmmap, NBPG); 1164 if (hpibswait(hp->hp_ctlr, hp->hp_slave)) { 1165 #ifdef DEBUG 1166 if (rddebug & RDB_DUMP) 1167 printf("rddump: write wait timeout\n"); 1168 #endif 1169 } 1170 hpibrecv(hp->hp_ctlr, hp->hp_slave, C_QSTAT, &stat, 1); 1171 if (stat) { 1172 #ifdef DEBUG 1173 if (rddebug & RDB_DUMP) 1174 printf("rddump: write failed, status %x\n", 1175 stat); 1176 #endif 1177 return (EIO); 1178 } 1179 maddr += NBPG; 1180 baddr += ctod(1); 1181 } 1182 return (0); 1183 } 1184 #endif 1185