xref: /netbsd-src/sys/arch/hp300/dev/rd.c (revision cda4f8f6ee55684e8d311b86c99ea59191e6b74f)
1 /*
2  * Copyright (c) 1988 University of Utah.
3  * Copyright (c) 1982, 1990 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * the Systems Programming Group of the University of Utah Computer
8  * Science Department.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * from: Utah $Hdr: rd.c 1.38 90/10/12$
39  *
40  *	from: @(#)rd.c	7.9 (Berkeley) 5/7/91
41  *	$Id: rd.c,v 1.2 1993/05/22 07:56:45 cgd Exp $
42  */
43 
44 /*
45  * CS80/SS80 disk driver
46  */
47 #include "rd.h"
48 #if NRD > 0
49 
50 #include "sys/param.h"
51 #include "sys/systm.h"
52 #include "sys/errno.h"
53 #include "sys/dkstat.h"
54 #include "sys/disklabel.h"
55 #include "sys/buf.h"
56 #include "sys/uio.h"
57 
58 #include "device.h"
59 #include "rdreg.h"
60 
61 #include "vm/vm_param.h"
62 #include "vm/lock.h"
63 #include "vm/vm_statistics.h"
64 #include "vm/pmap.h"
65 #include "vm/vm_prot.h"
66 
67 int	rdinit(), rdstart(), rdgo(), rdintr();
68 struct	driver rddriver = {
69 	rdinit, "rd", rdstart, rdgo, rdintr,
70 };
71 
72 struct	rd_softc {
73 	struct	hp_device *sc_hd;
74 	int	sc_flags;
75 	short	sc_type;
76 	short	sc_punit;
77 	char	*sc_addr;
78 	int	sc_resid;
79 	u_int	sc_wpms;
80 	struct	rdinfo *sc_info;
81 	struct	devqueue sc_dq;
82 	struct	rd_iocmd sc_ioc;
83 	struct	rd_rscmd sc_rsc;
84 	struct	rd_stat sc_stat;
85 	struct	rd_ssmcmd sc_ssmc;
86 	struct	rd_srcmd sc_src;
87 	struct	rd_clearcmd sc_clear;
88 } rd_softc[NRD];
89 
90 /* sc_flags values */
91 #define	RDF_ALIVE	0x1
92 #define	RDF_SEEK	0x2
93 #define RDF_SWAIT	0x4
94 
95 struct	size {
96 	daddr_t	nblocks;
97 	int	cyloff;
98 };
99 
100 #ifdef DEBUG
101 int rddebug = 0x80;
102 #define RDB_FOLLOW	0x01
103 #define RDB_STATUS	0x02
104 #define RDB_IDENT	0x04
105 #define RDB_IO		0x08
106 #define RDB_ASYNC	0x10
107 #define RDB_ERROR	0x80
108 #define RDB_DUMP	0x80000000
109 
110 struct rdstats {
111 	long	rdretries;
112 	long	rdresets;
113 	long	rdtimeouts;
114 	long	rdpolltries;
115 	long	rdpollwaits;
116 } rdstats[NRD];
117 
118 /* error message tables */
119 char *err_reject[] = {
120 	0, 0,
121 	"channel parity error",		/* 0x2000 */
122 	0, 0,
123 	"illegal opcode",		/* 0x0400 */
124 	"module addressing",		/* 0x0200 */
125 	"address bounds",		/* 0x0100 */
126 	"parameter bounds",		/* 0x0080 */
127 	"illegal parameter",		/* 0x0040 */
128 	"message sequence",		/* 0x0020 */
129 	0,
130 	"message length",		/* 0x0008 */
131 	0, 0, 0
132 };
133 
134 char *err_fault[] = {
135 	0,
136 	"cross unit",			/* 0x4000 */
137 	0,
138 	"controller fault",		/* 0x1000 */
139 	0, 0,
140 	"unit fault",			/* 0x0200 */
141 	0,
142 	"diagnostic result",		/* 0x0080 */
143 	0,
144 	"operator release request",	/* 0x0020 */
145 	"diagnostic release request",	/* 0x0010 */
146 	"internal maintenance release request",	/* 0x0008 */
147 	0,
148 	"power fail",			/* 0x0002 */
149 	"retransmit"			/* 0x0001 */
150 };
151 
152 char *err_access[] = {
153 	"illegal parallel operation",	/* 0x8000 */
154 	"uninitialized media",		/* 0x4000 */
155 	"no spares available",		/* 0x2000 */
156 	"not ready",			/* 0x1000 */
157 	"write protect",		/* 0x0800 */
158 	"no data found",		/* 0x0400 */
159 	0, 0,
160 	"unrecoverable data overflow",	/* 0x0080 */
161 	"unrecoverable data",		/* 0x0040 */
162 	0,
163 	"end of file",			/* 0x0010 */
164 	"end of volume",		/* 0x0008 */
165 	0, 0, 0
166 };
167 
168 char *err_info[] = {
169 	"operator release request",	/* 0x8000 */
170 	"diagnostic release request",	/* 0x4000 */
171 	"internal maintenance release request",	/* 0x2000 */
172 	"media wear",			/* 0x1000 */
173 	"latency induced",		/* 0x0800 */
174 	0, 0,
175 	"auto sparing invoked",		/* 0x0100 */
176 	0,
177 	"recoverable data overflow",	/* 0x0040 */
178 	"marginal data",		/* 0x0020 */
179 	"recoverable data",		/* 0x0010 */
180 	0,
181 	"maintenance track overflow",	/* 0x0004 */
182 	0, 0
183 };
184 #endif
185 
186 /*
187  * CS/80 partitions.  We reserve the first cylinder for a LIF
188  * style boot directory (the 8k allowed in the BSD filesystem
189  * is just way too small).  This boot area is outside of all but
190  * the C partition.  This implies that you cannot use the C
191  * partition on a bootable disk since the filesystem would overlay
192  * the boot area.  You must use the A partition.
193  *
194  * These maps support four basic layouts:
195  *
196  *	A/B/G:   This is the "traditional" setup for a bootable disk.
197  *	         A is the root partition, B the swap, and G a user partition.
198  *	A/D/H:   This is a setup for bootable systems requiring more swap
199  *		 (e.g. those who use HPCL).  It has A as the root, D as a
200  *		 larger swap, and H as a smaller user partition.
201  *	A/D/E/F: Similar to A/D/H with E and F breaking H into two partitions.
202  *		 E could be used for /usr and F for users.
203  *	C:       This gives a single, non-bootable, large user filesystem.
204  *	         Good for second drives on a machine (e.g. /usr/src).
205  */
206 struct size rd7945A_sizes[8] = {
207 	RDSZ(15904),	1,		/* A=cyl 1 thru 142 */
208 	RDSZ(20160),	143,		/* B=cyl 143 thru 322 */
209 	RDSZ(108416),	0,		/* C=cyl 0 thru 967 */
210 	RDSZ(40320),	143,		/* D=cyl 143 thru 502 */
211 	RDSZ(0),	0,		/* E=<undefined> */
212 	RDSZ(0),	0,		/* F=<undefined> */
213 	RDSZ(72240),	323,		/* G=cyl 323 thru 967 */
214 	RDSZ(52080),	503,		/* H=cyl 503 thru 967 */
215 }, rd9134D_sizes[8] = {
216 	RDSZ(15936),	1,		/* A=cyl 1 thru 166 */
217 	RDSZ(13056),	167,		/* B=cyl 167 thru 302 */
218 	RDSZ(29088),	0,		/* C=cyl 0 thru 302 */
219 	RDSZ(0),	0,		/* D=<undefined> */
220 	RDSZ(0),	0,		/* E=<undefined> */
221 	RDSZ(0),	0,		/* F=<undefined> */
222 	RDSZ(0),	0,		/* G=<undefined> */
223 	RDSZ(0),	0,		/* H=<undefined> */
224 }, rd9122S_sizes[8] = {
225 	RDSZ(0),	0,		/* A=<undefined> */
226 	RDSZ(0),	0,		/* B=<undefined> */
227 	RDSZ(1232),	0,		/* C=cyl 0 thru 76 */
228 	RDSZ(0),	0,		/* D=<undefined> */
229 	RDSZ(0),	0,		/* E=<undefined> */
230 	RDSZ(0),	0,		/* F=<undefined> */
231 	RDSZ(0),	0,		/* G=<undefined> */
232 	RDSZ(0),	0,		/* H=<undefined> */
233 }, rd7912P_sizes[8] = {
234 	RDSZ(15904),	0,		/* A=cyl 1 thru 71 */
235 	RDSZ(22400),	72,		/* B=cyl 72 thru 171 */
236 	RDSZ(128128),	0,		/* C=cyl 0 thru 571 */
237 	RDSZ(42560),	72,		/* D=cyl 72 thru 261 */
238 	RDSZ(0),	292,		/* E=<undefined> */
239 	RDSZ(0),	542,		/* F=<undefined> */
240 	RDSZ(89600),	172,		/* G=cyl 221 thru 571 */
241 	RDSZ(69440),	262,		/* H=cyl 262 thru 571 */
242 }, rd7914P_sizes[8] = {
243 	RDSZ(15904),	1,		/* A=cyl 1 thru 71 */
244 	RDSZ(40320),	72,		/* B=cyl 72 thru 251 */
245 	RDSZ(258048),	0,		/* C=cyl 0 thru 1151 */
246 	RDSZ(64960),	72,		/* D=cyl 72 thru 361 */
247 	RDSZ(98560),	362,		/* E=cyl 362 thru 801 */
248 	RDSZ(78400),	802,		/* F=cyl 802 thru 1151 */
249 	RDSZ(201600),	252,		/* G=cyl 221 thru 1151 */
250 	RDSZ(176960),	362,		/* H=cyl 362 thru 1151 */
251 }, rd7933H_sizes[8] = {
252 	RDSZ(16146),	1,		/* A=cyl 1 thru 27 */
253 	RDSZ(66976),	28,		/* B=cyl 28 thru 139 */
254 	RDSZ(789958),	0,		/* C=cyl 0 thru 1320 */
255 	RDSZ(16146),	140,		/* D=cyl 140 thru 166 */
256 	RDSZ(165646),	167,		/* E=cyl 167 thru 443 */
257 	RDSZ(165646),	444,		/* F=cyl 444 thru 720 */
258 	RDSZ(706238),	140,		/* G=cyl 140 thru 1320 */
259 	RDSZ(358800),	721,		/* H=cyl 721 thru 1320 */
260 }, rd9134L_sizes[8] = {
261 	RDSZ(15920),	1,		/* A=cyl 1 thru 199 */
262 	RDSZ(20000),	200,		/* B=cyl 200 thru 449 */
263 	RDSZ(77840),	0,		/* C=cyl 0 thru 972 */
264 	RDSZ(32000),	200,		/* D=cyl 200 thru 599 */
265 	RDSZ(0),	0,		/* E=<undefined> */
266 	RDSZ(0),	0,		/* F=<undefined> */
267 	RDSZ(41840),	450,		/* G=cyl 450 thru 972 */
268 	RDSZ(29840),	600,		/* H=cyl 600 thru 972 */
269 }, rd7957A_sizes[8] = {
270 	RDSZ(16016),	1,		/* A=cyl 1 thru 104 */
271 	RDSZ(24640),	105,		/* B=cyl 105 thru 264 */
272 	RDSZ(159544),	0,		/* C=cyl 0 thru 1035 */
273 	RDSZ(42350),	105,		/* D=cyl 105 thru 379 */
274 	RDSZ(54824),	380,		/* E=cyl 380 thru 735 */
275 	RDSZ(46200),	736,		/* F=cyl 736 thru 1035 */
276 	RDSZ(118734),	265,		/* G=cyl 265 thru 1035 */
277 	RDSZ(101024),	380,		/* H=cyl 380 thru 1035 */
278 }, rd7958A_sizes[8] = {
279 	RDSZ(16128),	1,		/* A=cyl 1 thru 64 */
280 	RDSZ(32256),	65,		/* B=cyl 65 thru 192 */
281 	RDSZ(255276),	0,		/* C=cyl 0 thru 1012 */
282 	RDSZ(48384),	65,		/* D=cyl 65 thru 256 */
283 	RDSZ(100800),	257,		/* E=cyl 257 thru 656 */
284 	RDSZ(89712),	657,		/* F=cyl 657 thru 1012 */
285 	RDSZ(206640),	193,		/* G=cyl 193 thru 1012 */
286 	RDSZ(190512),	257,		/* H=cyl 257 thru 1012 */
287 }, rd7957B_sizes[8] = {
288 	RDSZ(16002),	1,		/* A=cyl 1 thru 127 */
289 	RDSZ(32760),	128,		/* B=cyl 128 thru 387 */
290 	RDSZ(159894),	0,		/* C=cyl 0 thru 1268 */
291 	RDSZ(49140),	128,		/* D=cyl 128 thru 517 */
292 	RDSZ(50400),	518,		/* E=cyl 518 thru 917 */
293 	RDSZ(44226),	918,		/* F=cyl 918 thru 1268 */
294 	RDSZ(111006),	388,		/* G=cyl 388 thru 1268 */
295 	RDSZ(94626),	518,		/* H=cyl 518 thru 1268 */
296 }, rd7958B_sizes[8] = {
297 	RDSZ(16254),	1,		/* A=cyl 1 thru 43 */
298 	RDSZ(32886),	44,		/* B=cyl 44 thru 130 */
299 	RDSZ(297108),	0,		/* C=cyl 0 thru 785 */
300 	RDSZ(49140),	44,		/* D=cyl 44 thru 173 */
301 	RDSZ(121716),	174,		/* E=cyl 174 thru 495 */
302 	RDSZ(109620),	496,		/* F=cyl 496 thru 785 */
303 	RDSZ(247590),	131,		/* G=cyl 131 thru 785 */
304 	RDSZ(231336),	174,		/* H=cyl 174 thru 785 */
305 }, rd7959B_sizes[8] = {
306 	RDSZ(16254),	1,		/* A=cyl 1 thru 43 */
307 	RDSZ(49140),	44,		/* B=cyl 44 thru 173 */
308 	RDSZ(594216),	0,		/* C=cyl 0 thru 1571 */
309 	RDSZ(65772),	44,		/* D=cyl 44 thru 217 */
310 	RDSZ(303912),	218,		/* E=cyl 218 thru 1021 */
311 	RDSZ(207900),	1022,		/* F=cyl 1022 thru 1571 */
312 	RDSZ(528444),	174,		/* G=cyl 174 thru 1571 */
313 	RDSZ(511812),	218,		/* H=cyl 218 thru 1571 */
314 }, rd2200A_sizes[8] = {
315 	RDSZ(16272),	1,		/* A=cyl 1 thru 36 */
316 	RDSZ(49720),	37,		/* B=cyl 37 thru 146 */
317 	RDSZ(654948),	0,		/* C=cyl 0 thru 1448 */
318 	RDSZ(65992),	37,		/* D=cyl 37 thru 182 */
319 	RDSZ(304648),	183,		/* E=cyl 183 thru 856 */
320 	RDSZ(267584),	857,		/* F=cyl 857 thru 1448 */
321 	RDSZ(588504),	147,		/* G=cyl 147 thru 1448 */
322 	RDSZ(572232),	183,		/* H=cyl 183 thru 1448 */
323 }, rd2203A_sizes[8] = {
324 	/* modelled after the 7937; i.e. bogus */
325 	RDSZ(16272),	1,		/* A=cyl 1 thru 18 */
326 	RDSZ(67800),	19,		/* B=cyl 19 thru 93 */
327 	RDSZ(1309896),	0,		/* C=cyl 0 thru 1448 */
328 	RDSZ(16272),	94,		/* D=cyl 19 thru 111 */
329 	RDSZ(305552),	112,		/* E=cyl 112 thru 449 */
330 	RDSZ(305552),	450,		/* F=cyl 450 thru 787 */
331 	RDSZ(1224920),	94,		/* G=cyl 94 thru 1448 */
332 	RDSZ(597544),	788,		/* H=cyl 788 thru 1448 */
333 
334 #if DEV_BSIZE == 512
335 /*
336  * These values would not work for 1k,
337  * since the number of cylinders would be different.
338  */
339 }, rd7936H_sizes[8] = {
340 	RDSZ(16359),	1,		/* A=cyl 1 thru 19 */
341 	RDSZ(67158),	20,		/* B=cyl 20 thru 97 */
342 	RDSZ(600978),	0,		/* C=cyl 0 thru 697 */
343 	RDSZ(16359),	98,		/* D=cyl 98 thru 116 */
344 	RDSZ(120540),	117,		/* E=cyl 117 thru 256 */
345 	RDSZ(120540),	256,		/* F=cyl 256 thru 396 */
346 	RDSZ(516600),	98,		/* G=cyl 98 thru 697 */
347 	RDSZ(259161),	397,		/* H=cyl 397 thru 697 */
348 }, rd7937H_sizes[8] = {
349 #ifdef UTAH
350 	RDSZ(15990),	1,		/* A=cyl 1 thru 10 */
351 	RDSZ(67158),	11,		/* B=cyl 11 thru 52 */
352 	RDSZ(1116102),	0,		/* C=cyl 0 thru 697 */
353 	RDSZ(124722),	53,		/* D=cyl 53 thru 130 */
354 	RDSZ(163098),	131,		/* E=cyl 131 thru 232 */
355 	RDSZ(287820),	233,		/* F=cyl 233 thru 412 */
356 	RDSZ(1031355),	53,		/* G=cyl 53 thru 697 */
357 	RDSZ(455715),	413,		/* H=cyl 413 thru 697 */
358 #else
359 	RDSZ(15990),	1,		/* A=cyl 1 thru 10 */
360 	RDSZ(67158),	11,		/* B=cyl 11 thru 52 */
361 	RDSZ(1116102),	0,		/* C=cyl 0 thru 697 */
362 	RDSZ(15990),	53,		/* D=cyl 53 thru 62 */
363 	RDSZ(246246),	63,		/* E=cyl 63 thru 216 */
364 	RDSZ(246246),	217,		/* F=cyl 217 thru 370 */
365 	RDSZ(1031355),	53,		/* G=cyl 53 thru 697 */
366 	RDSZ(522873),	371,		/* H=cyl 371 thru 697 */
367 #endif
368 #endif
369 };
370 
371 struct	rdinfo {
372 	int	nbpt;		/* DEV_BSIZE blocks per track */
373 	int	ntpc;		/* tracks per cylinder */
374 	int	nbpc;		/* blocks per cylinder */
375 	struct	size *sizes;	/* default partition info (if no disklabel) */
376 	short	hwid;		/* 2 byte HW id */
377 	short	maxunum;	/* maximum allowed unit number */
378 	char	*desc;		/* drive type description */
379 };
380 
381 struct rdinfo rdinfo[] = {
382 	NRD7945ABPT,	NRD7945ATRK,	NRD7945ABPT * NRD7945ATRK,
383 	rd7945A_sizes,	RD7946AID,	0,	"7945A",
384 	NRD9134DBPT,	NRD9134DTRK,	NRD9134DBPT * NRD9134DTRK,
385 	rd9134D_sizes,	RD9134DID,	1,	"9134D",
386 	NRD9122SBPT,	NRD9122STRK,	NRD9122SBPT * NRD9122STRK,
387 	rd9122S_sizes,	RD9134LID,	1,	"9122S",
388 	NRD7912PBPT,	NRD7912PTRK,	NRD7912PBPT * NRD7912PTRK,
389 	rd7912P_sizes,	RD7912PID,	0,	"7912P",
390 	NRD7914PBPT,	NRD7914PTRK,	NRD7914PBPT * NRD7914PTRK,
391 	rd7914P_sizes,	RD7914PID,	0,	"7914P",
392 	NRD7958ABPT,	NRD7958ATRK,	NRD7958ABPT * NRD7958ATRK,
393 	rd7958A_sizes,	RD7958AID,	0,	"7958A",
394 	NRD7957ABPT,	NRD7957ATRK,	NRD7957ABPT * NRD7957ATRK,
395 	rd7957A_sizes,	RD7957AID,	0,	"7957A",
396 	NRD7933HBPT,	NRD7933HTRK,	NRD7933HBPT * NRD7933HTRK,
397 	rd7933H_sizes,	RD7933HID,	0,	"7933H",
398 	NRD9134LBPT,	NRD9134LTRK,	NRD9134LBPT * NRD9134LTRK,
399 	rd9134L_sizes,	RD9134LID,	1,	"9134L",
400 	NRD7936HBPT,	NRD7936HTRK,	NRD7936HBPT * NRD7936HTRK,
401 	rd7936H_sizes,	RD7936HID,	0,	"7936H",
402 	NRD7937HBPT,	NRD7937HTRK,	NRD7937HBPT * NRD7937HTRK,
403 	rd7937H_sizes,	RD7937HID,	0,	"7937H",
404 	NRD7914PBPT,	NRD7914PTRK,	NRD7914PBPT * NRD7914PTRK,
405 	rd7914P_sizes,	RD7914CTID,	0,	"7914CT",
406 	NRD7945ABPT,	NRD7945ATRK,	NRD7945ABPT * NRD7945ATRK,
407 	rd7945A_sizes,	RD7946AID,	0,	"7946A",
408 	NRD9122SBPT,	NRD9122STRK,	NRD9122SBPT * NRD9122STRK,
409 	rd9122S_sizes,	RD9134LID,	1,	"9122D",
410 	NRD7957BBPT,	NRD7957BTRK,	NRD7957BBPT * NRD7957BTRK,
411 	rd7957B_sizes,	RD7957BID,	0,	"7957B",
412 	NRD7958BBPT,	NRD7958BTRK,	NRD7958BBPT * NRD7958BTRK,
413 	rd7958B_sizes,	RD7958BID,	0,	"7958B",
414 	NRD7959BBPT,	NRD7959BTRK,	NRD7959BBPT * NRD7959BTRK,
415 	rd7959B_sizes,	RD7959BID,	0,	"7959B",
416 	NRD2200ABPT,	NRD2200ATRK,	NRD2200ABPT * NRD2200ATRK,
417 	rd2200A_sizes,	RD2200AID,	0,	"2200A",
418 	NRD2203ABPT,	NRD2203ATRK,	NRD2203ABPT * NRD2203ATRK,
419 	rd2203A_sizes,	RD2203AID,	0,	"2203A",
420 };
421 int nrdinfo = sizeof(rdinfo) / sizeof(rdinfo[0]);
422 
423 struct	buf rdtab[NRD];
424 
425 #define	rdunit(x)	(minor(x) >> 3)
426 #define rdpart(x)	(minor(x) & 0x7)
427 #define	rdpunit(x)	((x) & 7)
428 #define	b_cylin		b_resid
429 #define	RDRETRY		5
430 #define RDWAITC		1	/* min time for timeout in seconds */
431 
432 int rderrthresh = RDRETRY-1;	/* when to start reporting errors */
433 
434 rdinit(hd)
435 	register struct hp_device *hd;
436 {
437 	register struct rd_softc *rs = &rd_softc[hd->hp_unit];
438 
439 	rs->sc_hd = hd;
440 	rs->sc_punit = rdpunit(hd->hp_flags);
441 	rs->sc_type = rdident(rs, hd);
442 	if (rs->sc_type < 0)
443 		return(0);
444 	rs->sc_dq.dq_ctlr = hd->hp_ctlr;
445 	rs->sc_dq.dq_unit = hd->hp_unit;
446 	rs->sc_dq.dq_slave = hd->hp_slave;
447 	rs->sc_dq.dq_driver = &rddriver;
448 	rs->sc_info = &rdinfo[rs->sc_type];
449 	rs->sc_flags = RDF_ALIVE;
450 #ifdef DEBUG
451 	/* always report errors */
452 	if (rddebug & RDB_ERROR)
453 		rderrthresh = 0;
454 #endif
455 	return(1);
456 }
457 
458 rdident(rs, hd)
459 	struct rd_softc *rs;
460 	struct hp_device *hd;
461 {
462 	struct rd_describe desc;
463 	u_char stat, cmd[3];
464 	int unit, lunit;
465 	char name[7];
466 	register int ctlr, slave, id, i;
467 
468 	ctlr = hd->hp_ctlr;
469 	slave = hd->hp_slave;
470 	unit = rs->sc_punit;
471 	lunit = hd->hp_unit;
472 
473 	/*
474 	 * Grab device id and make sure:
475 	 * 1. It is a CS80 device.
476 	 * 2. It is one of the types we support.
477 	 * 3. If it is a 7946, we are accessing the disk unit (0)
478 	 */
479 	id = hpibid(ctlr, slave);
480 #ifdef DEBUG
481 	if (rddebug & RDB_IDENT)
482 		printf("hpibid(%d, %d) -> %x\n", ctlr, slave, id);
483 #endif
484 	if ((id & 0x200) == 0)
485 		return(-1);
486 	for (i = 0; i < nrdinfo; i++)
487 		if (id == rdinfo[i].hwid)
488 			break;
489 	if (i == nrdinfo || unit > rdinfo[i].maxunum)
490 		return(-1);
491 	id = i;
492 
493 	/*
494 	 * Reset drive and collect device description.
495 	 * Don't really use the description info right now but
496 	 * might come in handy in the future (for disk labels).
497 	 */
498 	rdreset(rs, hd);
499 	cmd[0] = C_SUNIT(unit);
500 	cmd[1] = C_SVOL(0);
501 	cmd[2] = C_DESC;
502 	hpibsend(ctlr, slave, C_CMD, cmd, sizeof(cmd));
503 	hpibrecv(ctlr, slave, C_EXEC, &desc, 37);
504 	hpibrecv(ctlr, slave, C_QSTAT, &stat, sizeof(stat));
505 	bzero(name, sizeof(name));
506 	if (!stat) {
507 		register int n = desc.d_name;
508 		for (i = 5; i >= 0; i--) {
509 			name[i] = (n & 0xf) + '0';
510 			n >>= 4;
511 		}
512 		/* use drive characteristics to calculate xfer rate */
513 		rs->sc_wpms = 1000000 * (desc.d_sectsize/2) / desc.d_blocktime;
514 	}
515 #ifdef DEBUG
516 	if (rddebug & RDB_IDENT) {
517 		printf("rd%d: name: %x ('%s')\n",
518 		       lunit, desc.d_name, name);
519 		printf("  iuw %x, maxxfr %d, ctype %d\n",
520 		       desc.d_iuw, desc.d_cmaxxfr, desc.d_ctype);
521 		printf("  utype %d, bps %d, blkbuf %d, burst %d, blktime %d\n",
522 		       desc.d_utype, desc.d_sectsize,
523 		       desc.d_blkbuf, desc.d_burstsize, desc.d_blocktime);
524 		printf("  avxfr %d, ort %d, atp %d, maxint %d, fv %x, rv %x\n",
525 		       desc.d_uavexfr, desc.d_retry, desc.d_access,
526 		       desc.d_maxint, desc.d_fvbyte, desc.d_rvbyte);
527 		printf("  maxcyl/head/sect %d/%d/%d, maxvsect %d, inter %d\n",
528 		       desc.d_maxcyl, desc.d_maxhead, desc.d_maxsect,
529 		       desc.d_maxvsectl, desc.d_interleave);
530 	}
531 #endif
532 	/*
533 	 * Take care of a couple of anomolies:
534 	 * 1. 7945A and 7946A both return same HW id
535 	 * 2. 9122S and 9134D both return same HW id
536 	 * 3. 9122D and 9134L both return same HW id
537 	 */
538 	switch (rdinfo[id].hwid) {
539 	case RD7946AID:
540 		if (bcmp(name, "079450", 6) == 0)
541 			id = RD7945A;
542 		else
543 			id = RD7946A;
544 		break;
545 
546 	case RD9134LID:
547 		if (bcmp(name, "091340", 6) == 0)
548 			id = RD9134L;
549 		else
550 			id = RD9122D;
551 		break;
552 
553 	case RD9134DID:
554 		if (bcmp(name, "091220", 6) == 0)
555 			id = RD9122S;
556 		else
557 			id = RD9134D;
558 		break;
559 	}
560 	printf("rd%d: %s\n", lunit, rdinfo[id].desc);
561 	return(id);
562 }
563 
564 rdreset(rs, hd)
565 	register struct rd_softc *rs;
566 	register struct hp_device *hd;
567 {
568 	u_char stat;
569 
570 	rs->sc_clear.c_unit = C_SUNIT(rs->sc_punit);
571 	rs->sc_clear.c_cmd = C_CLEAR;
572 	hpibsend(hd->hp_ctlr, hd->hp_slave, C_TCMD, &rs->sc_clear,
573 		sizeof(rs->sc_clear));
574 	hpibswait(hd->hp_ctlr, hd->hp_slave);
575 	hpibrecv(hd->hp_ctlr, hd->hp_slave, C_QSTAT, &stat, sizeof(stat));
576 	rs->sc_src.c_unit = C_SUNIT(RDCTLR);
577 	rs->sc_src.c_nop = C_NOP;
578 	rs->sc_src.c_cmd = C_SREL;
579 	rs->sc_src.c_param = C_REL;
580 	hpibsend(hd->hp_ctlr, hd->hp_slave, C_CMD, &rs->sc_src,
581 		sizeof(rs->sc_src));
582 	hpibswait(hd->hp_ctlr, hd->hp_slave);
583 	hpibrecv(hd->hp_ctlr, hd->hp_slave, C_QSTAT, &stat, sizeof(stat));
584 	rs->sc_ssmc.c_unit = C_SUNIT(rs->sc_punit);
585 	rs->sc_ssmc.c_cmd = C_SSM;
586 	rs->sc_ssmc.c_refm = REF_MASK;
587 	rs->sc_ssmc.c_fefm = FEF_MASK;
588 	rs->sc_ssmc.c_aefm = AEF_MASK;
589 	rs->sc_ssmc.c_iefm = IEF_MASK;
590 	hpibsend(hd->hp_ctlr, hd->hp_slave, C_CMD, &rs->sc_ssmc,
591 		sizeof(rs->sc_ssmc));
592 	hpibswait(hd->hp_ctlr, hd->hp_slave);
593 	hpibrecv(hd->hp_ctlr, hd->hp_slave, C_QSTAT, &stat, sizeof(stat));
594 #ifdef DEBUG
595 	rdstats[hd->hp_unit].rdresets++;
596 #endif
597 }
598 
599 int
600 rdopen(dev, flags, mode, p)
601 	dev_t dev;
602 	int flags, mode;
603 	struct proc *p;
604 {
605 	register int unit = rdunit(dev);
606 	register struct rd_softc *rs = &rd_softc[unit];
607 
608 	if (unit >= NRD || (rs->sc_flags & RDF_ALIVE) == 0)
609 		return(ENXIO);
610 	if (rs->sc_hd->hp_dk >= 0) {
611 		/* guess at xfer rate based on 3600 rpm (60 rps) */
612 		if (rs->sc_wpms == 0)
613 			rs->sc_wpms = 60 * rs->sc_info->nbpt * DEV_BSIZE / 2;
614 		dk_wpms[rs->sc_hd->hp_dk] = rs->sc_wpms;
615 	}
616 	return(0);
617 }
618 
619 rdstrategy(bp)
620 	register struct buf *bp;
621 {
622 	register int unit = rdunit(bp->b_dev);
623 	register struct rd_softc *rs = &rd_softc[unit];
624 	register struct size *pinfo = &rs->sc_info->sizes[rdpart(bp->b_dev)];
625 	register struct buf *dp = &rdtab[unit];
626 	register daddr_t bn;
627 	register int sz, s;
628 
629 #ifdef DEBUG
630 	if (rddebug & RDB_FOLLOW)
631 		printf("rdstrategy(%x): dev %x, bn %x, bcount %x, %c\n",
632 		       bp, bp->b_dev, bp->b_blkno, bp->b_bcount,
633 		       (bp->b_flags & B_READ) ? 'R' : 'W');
634 #endif
635 	bn = bp->b_blkno;
636 	sz = howmany(bp->b_bcount, DEV_BSIZE);
637 	if (bn < 0 || bn + sz > pinfo->nblocks) {
638 		sz = pinfo->nblocks - bn;
639 		if (sz == 0) {
640 			bp->b_resid = bp->b_bcount;
641 			goto done;
642 		}
643 		if (sz < 0) {
644 			bp->b_error = EINVAL;
645 			bp->b_flags |= B_ERROR;
646 			goto done;
647 		}
648 		bp->b_bcount = dbtob(sz);
649 	}
650 	bp->b_cylin = bn / rs->sc_info->nbpc + pinfo->cyloff;
651 	s = splbio();
652 	disksort(dp, bp);
653 	if (dp->b_active == 0) {
654 		dp->b_active = 1;
655 		rdustart(unit);
656 	}
657 	splx(s);
658 	return;
659 done:
660 	biodone(bp);
661 }
662 
663 /*
664  * Called from timeout() when handling maintenance releases
665  */
666 rdrestart(unit)
667 	int unit;
668 {
669 	int s = splbio();
670 	rdustart(unit);
671 	splx(s);
672 }
673 
674 rdustart(unit)
675 	register int unit;
676 {
677 	register struct buf *bp;
678 	register struct rd_softc *rs = &rd_softc[unit];
679 
680 	bp = rdtab[unit].b_actf;
681 	rs->sc_addr = bp->b_un.b_addr;
682 	rs->sc_resid = bp->b_bcount;
683 	if (hpibreq(&rs->sc_dq))
684 		rdstart(unit);
685 }
686 
687 rdstart(unit)
688 	register int unit;
689 {
690 	register struct rd_softc *rs = &rd_softc[unit];
691 	register struct buf *bp = rdtab[unit].b_actf;
692 	register struct hp_device *hp = rs->sc_hd;
693 	register int part;
694 
695 again:
696 #ifdef DEBUG
697 	if (rddebug & RDB_FOLLOW)
698 		printf("rdstart(%d): bp %x, %c\n", unit, bp,
699 		       (bp->b_flags & B_READ) ? 'R' : 'W');
700 #endif
701 	part = rdpart(bp->b_dev);
702 	rs->sc_flags |= RDF_SEEK;
703 	rs->sc_ioc.c_unit = C_SUNIT(rs->sc_punit);
704 	rs->sc_ioc.c_volume = C_SVOL(0);
705 	rs->sc_ioc.c_saddr = C_SADDR;
706 	rs->sc_ioc.c_hiaddr = 0;
707 	rs->sc_ioc.c_addr = RDBTOS(bp->b_blkno + rs->sc_info->nbpc *
708 		rs->sc_info->sizes[part].cyloff);
709 	rs->sc_ioc.c_nop2 = C_NOP;
710 	rs->sc_ioc.c_slen = C_SLEN;
711 	rs->sc_ioc.c_len = rs->sc_resid;
712 	rs->sc_ioc.c_cmd = bp->b_flags & B_READ ? C_READ : C_WRITE;
713 #ifdef DEBUG
714 	if (rddebug & RDB_IO)
715 		printf("rdstart: hpibsend(%x, %x, %x, %x, %x)\n",
716 		       hp->hp_ctlr, hp->hp_slave, C_CMD,
717 		       &rs->sc_ioc.c_unit, sizeof(rs->sc_ioc)-2);
718 #endif
719 	if (hpibsend(hp->hp_ctlr, hp->hp_slave, C_CMD, &rs->sc_ioc.c_unit,
720 		     sizeof(rs->sc_ioc)-2) == sizeof(rs->sc_ioc)-2) {
721 		if (hp->hp_dk >= 0) {
722 			dk_busy |= 1 << hp->hp_dk;
723 			dk_seek[hp->hp_dk]++;
724 		}
725 #ifdef DEBUG
726 		if (rddebug & RDB_IO)
727 			printf("rdstart: hpibawait(%x)\n", hp->hp_ctlr);
728 #endif
729 		hpibawait(hp->hp_ctlr);
730 		return;
731 	}
732 	/*
733 	 * Experience has shown that the hpibwait in this hpibsend will
734 	 * occasionally timeout.  It appears to occur mostly on old 7914
735 	 * drives with full maintenance tracks.  We should probably
736 	 * integrate this with the backoff code in rderror.
737 	 */
738 #ifdef DEBUG
739 	if (rddebug & RDB_ERROR)
740 		printf("rd%d: rdstart: cmd %x adr %d blk %d len %d ecnt %d\n",
741 		       unit, rs->sc_ioc.c_cmd, rs->sc_ioc.c_addr,
742 		       bp->b_blkno, rs->sc_resid, rdtab[unit].b_errcnt);
743 	rdstats[unit].rdretries++;
744 #endif
745 	rs->sc_flags &= ~RDF_SEEK;
746 	rdreset(rs, hp);
747 	if (rdtab[unit].b_errcnt++ < RDRETRY)
748 		goto again;
749 	printf("rd%d: rdstart err: cmd 0x%x sect %d blk %d len %d\n",
750 	       unit, rs->sc_ioc.c_cmd, rs->sc_ioc.c_addr,
751 	       bp->b_blkno, rs->sc_resid);
752 	rdtab[unit].b_errcnt = 0;
753 	rdtab[unit].b_actf = bp->b_actf;
754 	bp->b_flags |= B_ERROR;
755 	bp->b_error = EIO;
756 	bp->b_resid = 0;
757 	biodone(bp);
758 	hpibfree(&rs->sc_dq);
759 	bp = rdtab[unit].b_actf;
760 	if (bp == NULL) {
761 		rdtab[unit].b_active = 0;
762 		return;
763 	}
764 	rs->sc_addr = bp->b_un.b_addr;
765 	rs->sc_resid = bp->b_bcount;
766 	if (hpibreq(&rs->sc_dq))
767 		goto again;
768 }
769 
770 rdgo(unit)
771 	register int unit;
772 {
773 	register struct rd_softc *rs = &rd_softc[unit];
774 	register struct hp_device *hp = rs->sc_hd;
775 	struct buf *bp = rdtab[unit].b_actf;
776 
777 	if (hp->hp_dk >= 0) {
778 		dk_busy |= 1 << hp->hp_dk;
779 		dk_xfer[hp->hp_dk]++;
780 		dk_wds[hp->hp_dk] += rs->sc_resid >> 6;
781 	}
782 	hpibgo(hp->hp_ctlr, hp->hp_slave, C_EXEC,
783 	       rs->sc_addr, rs->sc_resid, bp->b_flags & B_READ);
784 }
785 
786 rdintr(unit)
787 	register int unit;
788 {
789 	register struct rd_softc *rs = &rd_softc[unit];
790 	register struct buf *bp = rdtab[unit].b_actf;
791 	register struct hp_device *hp = rs->sc_hd;
792 	u_char stat = 13;	/* in case hpibrecv fails */
793 	int rv, restart;
794 
795 #ifdef DEBUG
796 	if (rddebug & RDB_FOLLOW)
797 		printf("rdintr(%d): bp %x, %c, flags %x\n", unit, bp,
798 		       (bp->b_flags & B_READ) ? 'R' : 'W', rs->sc_flags);
799 	if (bp == NULL) {
800 		printf("rd%d: bp == NULL\n", unit);
801 		return;
802 	}
803 #endif
804 	if (hp->hp_dk >= 0)
805 		dk_busy &= ~(1 << hp->hp_dk);
806 	if (rs->sc_flags & RDF_SEEK) {
807 		rs->sc_flags &= ~RDF_SEEK;
808 		if (hpibustart(hp->hp_ctlr))
809 			rdgo(unit);
810 		return;
811 	}
812 	if ((rs->sc_flags & RDF_SWAIT) == 0) {
813 #ifdef DEBUG
814 		rdstats[unit].rdpolltries++;
815 #endif
816 		if (hpibpptest(hp->hp_ctlr, hp->hp_slave) == 0) {
817 #ifdef DEBUG
818 			rdstats[unit].rdpollwaits++;
819 #endif
820 			if (hp->hp_dk >= 0)
821 				dk_busy |= 1 << hp->hp_dk;
822 			rs->sc_flags |= RDF_SWAIT;
823 			hpibawait(hp->hp_ctlr);
824 			return;
825 		}
826 	} else
827 		rs->sc_flags &= ~RDF_SWAIT;
828 	rv = hpibrecv(hp->hp_ctlr, hp->hp_slave, C_QSTAT, &stat, 1);
829 	if (rv != 1 || stat) {
830 #ifdef DEBUG
831 		if (rddebug & RDB_ERROR)
832 			printf("rdintr: recv failed or bad stat %d\n", stat);
833 #endif
834 		restart = rderror(unit);
835 #ifdef DEBUG
836 		rdstats[unit].rdretries++;
837 #endif
838 		if (rdtab[unit].b_errcnt++ < RDRETRY) {
839 			if (restart)
840 				rdstart(unit);
841 			return;
842 		}
843 		bp->b_flags |= B_ERROR;
844 		bp->b_error = EIO;
845 	}
846 	rdtab[unit].b_errcnt = 0;
847 	rdtab[unit].b_actf = bp->b_actf;
848 	bp->b_resid = 0;
849 	biodone(bp);
850 	hpibfree(&rs->sc_dq);
851 	if (rdtab[unit].b_actf)
852 		rdustart(unit);
853 	else
854 		rdtab[unit].b_active = 0;
855 }
856 
857 rdstatus(rs)
858 	register struct rd_softc *rs;
859 {
860 	register int c, s;
861 	u_char stat;
862 	int rv;
863 
864 	c = rs->sc_hd->hp_ctlr;
865 	s = rs->sc_hd->hp_slave;
866 	rs->sc_rsc.c_unit = C_SUNIT(rs->sc_punit);
867 	rs->sc_rsc.c_sram = C_SRAM;
868 	rs->sc_rsc.c_ram = C_RAM;
869 	rs->sc_rsc.c_cmd = C_STATUS;
870 	bzero((caddr_t)&rs->sc_stat, sizeof(rs->sc_stat));
871 	rv = hpibsend(c, s, C_CMD, &rs->sc_rsc, sizeof(rs->sc_rsc));
872 	if (rv != sizeof(rs->sc_rsc)) {
873 #ifdef DEBUG
874 		if (rddebug & RDB_STATUS)
875 			printf("rdstatus: send C_CMD failed %d != %d\n",
876 			       rv, sizeof(rs->sc_rsc));
877 #endif
878 		return(1);
879 	}
880 	rv = hpibrecv(c, s, C_EXEC, &rs->sc_stat, sizeof(rs->sc_stat));
881 	if (rv != sizeof(rs->sc_stat)) {
882 #ifdef DEBUG
883 		if (rddebug & RDB_STATUS)
884 			printf("rdstatus: send C_EXEC failed %d != %d\n",
885 			       rv, sizeof(rs->sc_stat));
886 #endif
887 		return(1);
888 	}
889 	rv = hpibrecv(c, s, C_QSTAT, &stat, 1);
890 	if (rv != 1 || stat) {
891 #ifdef DEBUG
892 		if (rddebug & RDB_STATUS)
893 			printf("rdstatus: recv failed %d or bad stat %d\n",
894 			       rv, stat);
895 #endif
896 		return(1);
897 	}
898 	return(0);
899 }
900 
901 /*
902  * Deal with errors.
903  * Returns 1 if request should be restarted,
904  * 0 if we should just quietly give up.
905  */
906 rderror(unit)
907 	int unit;
908 {
909 	struct rd_softc *rs = &rd_softc[unit];
910 	register struct rd_stat *sp;
911 	struct buf *bp;
912 	daddr_t hwbn, pbn;
913 
914 	if (rdstatus(rs)) {
915 #ifdef DEBUG
916 		printf("rd%d: couldn't get status\n", unit);
917 #endif
918 		rdreset(rs, rs->sc_hd);
919 		return(1);
920 	}
921 	sp = &rs->sc_stat;
922 	if (sp->c_fef & FEF_REXMT)
923 		return(1);
924 	if (sp->c_fef & FEF_PF) {
925 		rdreset(rs, rs->sc_hd);
926 		return(1);
927 	}
928 	/*
929 	 * Unit requests release for internal maintenance.
930 	 * We just delay awhile and try again later.  Use expontially
931 	 * increasing backoff ala ethernet drivers since we don't really
932 	 * know how long the maintenance will take.  With RDWAITC and
933 	 * RDRETRY as defined, the range is 1 to 32 seconds.
934 	 */
935 	if (sp->c_fef & FEF_IMR) {
936 		extern int hz;
937 		int rdtimo = RDWAITC << rdtab[unit].b_errcnt;
938 #ifdef DEBUG
939 		printf("rd%d: internal maintenance, %d second timeout\n",
940 		       unit, rdtimo);
941 		rdstats[unit].rdtimeouts++;
942 #endif
943 		hpibfree(&rs->sc_dq);
944 		timeout(rdrestart, unit, rdtimo*hz);
945 		return(0);
946 	}
947 	/*
948 	 * Only report error if we have reached the error reporting
949 	 * threshhold.  By default, this will only report after the
950 	 * retry limit has been exceeded.
951 	 */
952 	if (rdtab[unit].b_errcnt < rderrthresh)
953 		return(1);
954 
955 	/*
956 	 * First conjure up the block number at which the error occured.
957 	 * Note that not all errors report a block number, in that case
958 	 * we just use b_blkno.
959  	 */
960 	bp = rdtab[unit].b_actf;
961 	pbn = rs->sc_info->nbpc *
962 		rs->sc_info->sizes[rdpart(bp->b_dev)].cyloff;
963 	if ((sp->c_fef & FEF_CU) || (sp->c_fef & FEF_DR) ||
964 	    (sp->c_ief & IEF_RRMASK)) {
965 		hwbn = RDBTOS(pbn + bp->b_blkno);
966 		pbn = bp->b_blkno;
967 	} else {
968 		hwbn = sp->c_blk;
969 		pbn = RDSTOB(hwbn) - pbn;
970 	}
971 	/*
972 	 * Now output a generic message suitable for badsect.
973 	 * Note that we don't use harderr cuz it just prints
974 	 * out b_blkno which is just the beginning block number
975 	 * of the transfer, not necessary where the error occured.
976 	 */
977 	printf("rd%d%c: hard error sn%d\n",
978 	       rdunit(bp->b_dev), 'a'+rdpart(bp->b_dev), pbn);
979 	/*
980 	 * Now report the status as returned by the hardware with
981 	 * attempt at interpretation (unless debugging).
982 	 */
983 	printf("rd%d %s error:",
984 	       unit, (bp->b_flags & B_READ) ? "read" : "write");
985 #ifdef DEBUG
986 	if (rddebug & RDB_ERROR) {
987 		/* status info */
988 		printf("\n    volume: %d, unit: %d\n",
989 		       (sp->c_vu>>4)&0xF, sp->c_vu&0xF);
990 		rdprinterr("reject", sp->c_ref, err_reject);
991 		rdprinterr("fault", sp->c_fef, err_fault);
992 		rdprinterr("access", sp->c_aef, err_access);
993 		rdprinterr("info", sp->c_ief, err_info);
994 		printf("    block: %d, P1-P10: ", hwbn);
995 		printf("%s", hexstr(*(u_int *)&sp->c_raw[0], 8));
996 		printf("%s", hexstr(*(u_int *)&sp->c_raw[4], 8));
997 		printf("%s\n", hexstr(*(u_short *)&sp->c_raw[8], 4));
998 		/* command */
999 		printf("    ioc: ");
1000 		printf("%s", hexstr(*(u_int *)&rs->sc_ioc.c_pad, 8));
1001 		printf("%s", hexstr(*(u_short *)&rs->sc_ioc.c_hiaddr, 4));
1002 		printf("%s", hexstr(*(u_int *)&rs->sc_ioc.c_addr, 8));
1003 		printf("%s", hexstr(*(u_short *)&rs->sc_ioc.c_nop2, 4));
1004 		printf("%s", hexstr(*(u_int *)&rs->sc_ioc.c_len, 8));
1005 		printf("%s\n", hexstr(*(u_short *)&rs->sc_ioc.c_cmd, 4));
1006 		return(1);
1007 	}
1008 #endif
1009 	printf(" v%d u%d, R0x%x F0x%x A0x%x I0x%x\n",
1010 	       (sp->c_vu>>4)&0xF, sp->c_vu&0xF,
1011 	       sp->c_ref, sp->c_fef, sp->c_aef, sp->c_ief);
1012 	printf("P1-P10: ");
1013 	printf("%s", hexstr(*(u_int *)&sp->c_raw[0], 8));
1014 	printf("%s", hexstr(*(u_int *)&sp->c_raw[4], 8));
1015 	printf("%s\n", hexstr(*(u_short *)&sp->c_raw[8], 4));
1016 	return(1);
1017 }
1018 
1019 int
1020 rdread(dev, uio, flags)
1021 	dev_t dev;
1022 	struct uio *uio;
1023 	int flags;
1024 {
1025 	register int unit = rdunit(dev);
1026 
1027 	return (physio(rdstrategy, NULL, dev, B_READ, minphys, uio));
1028 }
1029 
1030 int
1031 rdwrite(dev, uio, flags)
1032 	dev_t dev;
1033 	struct uio *uio;
1034 	int flags;
1035 {
1036 	register int unit = rdunit(dev);
1037 
1038 	return (physio(rdstrategy, NULL, dev, B_WRITE, minphys, uio));
1039 }
1040 
1041 int
1042 rdioctl(dev, cmd, data, flag, p)
1043 	dev_t dev;
1044 	int cmd;
1045 	caddr_t data;
1046 	int flag;
1047 	struct proc *p;
1048 {
1049 	return(EINVAL);
1050 }
1051 
1052 int
1053 rdsize(dev)
1054 	dev_t dev;
1055 {
1056 	register int unit = rdunit(dev);
1057 	register struct rd_softc *rs = &rd_softc[unit];
1058 
1059 	if (unit >= NRD || (rs->sc_flags & RDF_ALIVE) == 0)
1060 		return(-1);
1061 	return(rs->sc_info->sizes[rdpart(dev)].nblocks);
1062 }
1063 
1064 #ifdef DEBUG
1065 rdprinterr(str, err, tab)
1066 	char *str;
1067 	short err;
1068 	char *tab[];
1069 {
1070 	register int i;
1071 	int printed;
1072 
1073 	if (err == 0)
1074 		return;
1075 	printf("    %s error field:", str, err);
1076 	printed = 0;
1077 	for (i = 0; i < 16; i++)
1078 		if (err & (0x8000 >> i))
1079 			printf("%s%s", printed++ ? " + " : " ", tab[i]);
1080 	printf("\n");
1081 }
1082 #endif
1083 
1084 /*
1085  * Non-interrupt driven, non-dma dump routine.
1086  */
1087 int
1088 rddump(dev)
1089 	dev_t dev;
1090 {
1091 	int part = rdpart(dev);
1092 	int unit = rdunit(dev);
1093 	register struct rd_softc *rs = &rd_softc[unit];
1094 	register struct hp_device *hp = rs->sc_hd;
1095 	register daddr_t baddr;
1096 	register int maddr, pages, i;
1097 	char stat;
1098 	extern int lowram, dumpsize;
1099 #ifdef DEBUG
1100 	extern int pmapdebug;
1101 	pmapdebug = 0;
1102 #endif
1103 
1104 	pages = dumpsize;
1105 #ifdef DEBUG
1106 	if (rddebug & RDB_DUMP)
1107 		printf("rddump(%x): u %d p %d dumplo %d ram %x pmem %d\n",
1108 		       dev, unit, part, dumplo, lowram, ctod(pages));
1109 #endif
1110 	/* is drive ok? */
1111 	if (unit >= NRD || (rs->sc_flags & RDF_ALIVE) == 0)
1112 		return (ENXIO);
1113 	/* HPIB idle? */
1114 	if (!hpibreq(&rs->sc_dq)) {
1115 #ifdef DEBUG
1116 		/* is this a safe thing to do?? */
1117 		hpibreset(hp->hp_ctlr);
1118 		rdreset(rs, rs->sc_hd);
1119 		printf("[ drive %d reset ] ", unit);
1120 #else
1121 		return (EFAULT);
1122 #endif
1123 	}
1124 	/* dump parameters in range? */
1125 	if (dumplo < 0 || dumplo >= rs->sc_info->sizes[part].nblocks)
1126 		return (EINVAL);
1127 	if (dumplo + ctod(pages) > rs->sc_info->sizes[part].nblocks)
1128 		pages = dtoc(rs->sc_info->sizes[part].nblocks - dumplo);
1129 	maddr = lowram;
1130 	baddr = dumplo + rs->sc_info->nbpc * rs->sc_info->sizes[part].cyloff;
1131 #ifdef DEBUG
1132 	if (rddebug & RDB_DUMP)
1133 		printf("rddump: dumping %d pages from %x to disk block %d\n",
1134 		       pages, maddr, baddr);
1135 #endif
1136 	for (i = 0; i < pages; i++) {
1137 #ifdef DEBUG
1138 #define NPGMB	(1024*1024/NBPG)
1139 		/* print out how many Mbs we have dumped */
1140 		if (i && (i % NPGMB) == 0)
1141 			printf("%d ", i / NPGMB);
1142 #undef NPBMG
1143 #endif
1144 		rs->sc_ioc.c_unit = C_SUNIT(rs->sc_punit);
1145 		rs->sc_ioc.c_volume = C_SVOL(0);
1146 		rs->sc_ioc.c_saddr = C_SADDR;
1147 		rs->sc_ioc.c_hiaddr = 0;
1148 		rs->sc_ioc.c_addr = RDBTOS(baddr);
1149 		rs->sc_ioc.c_nop2 = C_NOP;
1150 		rs->sc_ioc.c_slen = C_SLEN;
1151 		rs->sc_ioc.c_len = NBPG;
1152 		rs->sc_ioc.c_cmd = C_WRITE;
1153 		hpibsend(hp->hp_ctlr, hp->hp_slave, C_CMD,
1154 			 &rs->sc_ioc.c_unit, sizeof(rs->sc_ioc)-2);
1155 		if (hpibswait(hp->hp_ctlr, hp->hp_slave)) {
1156 #ifdef DEBUG
1157 			if (rddebug & RDB_DUMP)
1158 				printf("rddump: IOC wait timeout\n");
1159 #endif
1160 			return (EIO);
1161 		}
1162 		pmap_enter(pmap_kernel(), vmmap, maddr, VM_PROT_READ, TRUE);
1163 		hpibsend(hp->hp_ctlr, hp->hp_slave, C_EXEC, vmmap, NBPG);
1164 		if (hpibswait(hp->hp_ctlr, hp->hp_slave)) {
1165 #ifdef DEBUG
1166 			if (rddebug & RDB_DUMP)
1167 				printf("rddump: write wait timeout\n");
1168 #endif
1169 		}
1170 		hpibrecv(hp->hp_ctlr, hp->hp_slave, C_QSTAT, &stat, 1);
1171 		if (stat) {
1172 #ifdef DEBUG
1173 			if (rddebug & RDB_DUMP)
1174 				printf("rddump: write failed, status %x\n",
1175 				       stat);
1176 #endif
1177 			return (EIO);
1178 		}
1179 		maddr += NBPG;
1180 		baddr += ctod(1);
1181 	}
1182 	return (0);
1183 }
1184 #endif
1185