1 /* 2 * Copyright (c) 1988 University of Utah. 3 * Copyright (c) 1982, 1990 The Regents of the University of California. 4 * All rights reserved. 5 * 6 * This code is derived from software contributed to Berkeley by 7 * the Systems Programming Group of the University of Utah Computer 8 * Science Department. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * from: Utah Hdr: rd.c 1.38 90/10/12 39 * from: @(#)rd.c 7.9 (Berkeley) 5/7/91 40 * $Id: rd.c,v 1.3 1993/08/01 19:24:28 mycroft Exp $ 41 */ 42 43 /* 44 * CS80/SS80 disk driver 45 */ 46 #include "rd.h" 47 #if NRD > 0 48 49 #include "sys/param.h" 50 #include "sys/systm.h" 51 #include "sys/errno.h" 52 #include "sys/dkstat.h" 53 #include "sys/disklabel.h" 54 #include "sys/buf.h" 55 #include "sys/uio.h" 56 57 #include "device.h" 58 #include "rdreg.h" 59 60 #include "vm/vm_param.h" 61 #include "vm/lock.h" 62 #include "vm/vm_statistics.h" 63 #include "vm/pmap.h" 64 #include "vm/vm_prot.h" 65 66 int rdinit(), rdstart(), rdgo(), rdintr(); 67 struct driver rddriver = { 68 rdinit, "rd", rdstart, rdgo, rdintr, 69 }; 70 71 struct rd_softc { 72 struct hp_device *sc_hd; 73 int sc_flags; 74 short sc_type; 75 short sc_punit; 76 char *sc_addr; 77 int sc_resid; 78 u_int sc_wpms; 79 struct rdinfo *sc_info; 80 struct devqueue sc_dq; 81 struct rd_iocmd sc_ioc; 82 struct rd_rscmd sc_rsc; 83 struct rd_stat sc_stat; 84 struct rd_ssmcmd sc_ssmc; 85 struct rd_srcmd sc_src; 86 struct rd_clearcmd sc_clear; 87 } rd_softc[NRD]; 88 89 /* sc_flags values */ 90 #define RDF_ALIVE 0x1 91 #define RDF_SEEK 0x2 92 #define RDF_SWAIT 0x4 93 94 struct size { 95 daddr_t nblocks; 96 int cyloff; 97 }; 98 99 #ifdef DEBUG 100 int rddebug = 0x80; 101 #define RDB_FOLLOW 0x01 102 #define RDB_STATUS 0x02 103 #define RDB_IDENT 0x04 104 #define RDB_IO 0x08 105 #define RDB_ASYNC 0x10 106 #define RDB_ERROR 0x80 107 #define RDB_DUMP 0x80000000 108 109 struct rdstats { 110 long rdretries; 111 long rdresets; 112 long rdtimeouts; 113 long rdpolltries; 114 long rdpollwaits; 115 } rdstats[NRD]; 116 117 /* error message tables */ 118 char *err_reject[] = { 119 0, 0, 120 "channel parity error", /* 0x2000 */ 121 0, 0, 122 "illegal opcode", /* 0x0400 */ 123 "module addressing", /* 0x0200 */ 124 "address bounds", /* 0x0100 */ 125 "parameter bounds", /* 0x0080 */ 126 "illegal parameter", /* 0x0040 */ 127 "message sequence", /* 0x0020 */ 128 0, 129 "message length", /* 0x0008 */ 130 0, 0, 0 131 }; 132 133 char *err_fault[] = { 134 0, 135 "cross unit", /* 0x4000 */ 136 0, 137 "controller fault", /* 0x1000 */ 138 0, 0, 139 "unit fault", /* 0x0200 */ 140 0, 141 "diagnostic result", /* 0x0080 */ 142 0, 143 "operator release request", /* 0x0020 */ 144 "diagnostic release request", /* 0x0010 */ 145 "internal maintenance release request", /* 0x0008 */ 146 0, 147 "power fail", /* 0x0002 */ 148 "retransmit" /* 0x0001 */ 149 }; 150 151 char *err_access[] = { 152 "illegal parallel operation", /* 0x8000 */ 153 "uninitialized media", /* 0x4000 */ 154 "no spares available", /* 0x2000 */ 155 "not ready", /* 0x1000 */ 156 "write protect", /* 0x0800 */ 157 "no data found", /* 0x0400 */ 158 0, 0, 159 "unrecoverable data overflow", /* 0x0080 */ 160 "unrecoverable data", /* 0x0040 */ 161 0, 162 "end of file", /* 0x0010 */ 163 "end of volume", /* 0x0008 */ 164 0, 0, 0 165 }; 166 167 char *err_info[] = { 168 "operator release request", /* 0x8000 */ 169 "diagnostic release request", /* 0x4000 */ 170 "internal maintenance release request", /* 0x2000 */ 171 "media wear", /* 0x1000 */ 172 "latency induced", /* 0x0800 */ 173 0, 0, 174 "auto sparing invoked", /* 0x0100 */ 175 0, 176 "recoverable data overflow", /* 0x0040 */ 177 "marginal data", /* 0x0020 */ 178 "recoverable data", /* 0x0010 */ 179 0, 180 "maintenance track overflow", /* 0x0004 */ 181 0, 0 182 }; 183 #endif 184 185 /* 186 * CS/80 partitions. We reserve the first cylinder for a LIF 187 * style boot directory (the 8k allowed in the BSD filesystem 188 * is just way too small). This boot area is outside of all but 189 * the C partition. This implies that you cannot use the C 190 * partition on a bootable disk since the filesystem would overlay 191 * the boot area. You must use the A partition. 192 * 193 * These maps support four basic layouts: 194 * 195 * A/B/G: This is the "traditional" setup for a bootable disk. 196 * A is the root partition, B the swap, and G a user partition. 197 * A/D/H: This is a setup for bootable systems requiring more swap 198 * (e.g. those who use HPCL). It has A as the root, D as a 199 * larger swap, and H as a smaller user partition. 200 * A/D/E/F: Similar to A/D/H with E and F breaking H into two partitions. 201 * E could be used for /usr and F for users. 202 * C: This gives a single, non-bootable, large user filesystem. 203 * Good for second drives on a machine (e.g. /usr/src). 204 */ 205 struct size rd7945A_sizes[8] = { 206 RDSZ(15904), 1, /* A=cyl 1 thru 142 */ 207 RDSZ(20160), 143, /* B=cyl 143 thru 322 */ 208 RDSZ(108416), 0, /* C=cyl 0 thru 967 */ 209 RDSZ(40320), 143, /* D=cyl 143 thru 502 */ 210 RDSZ(0), 0, /* E=<undefined> */ 211 RDSZ(0), 0, /* F=<undefined> */ 212 RDSZ(72240), 323, /* G=cyl 323 thru 967 */ 213 RDSZ(52080), 503, /* H=cyl 503 thru 967 */ 214 }, rd9134D_sizes[8] = { 215 RDSZ(15936), 1, /* A=cyl 1 thru 166 */ 216 RDSZ(13056), 167, /* B=cyl 167 thru 302 */ 217 RDSZ(29088), 0, /* C=cyl 0 thru 302 */ 218 RDSZ(0), 0, /* D=<undefined> */ 219 RDSZ(0), 0, /* E=<undefined> */ 220 RDSZ(0), 0, /* F=<undefined> */ 221 RDSZ(0), 0, /* G=<undefined> */ 222 RDSZ(0), 0, /* H=<undefined> */ 223 }, rd9122S_sizes[8] = { 224 RDSZ(0), 0, /* A=<undefined> */ 225 RDSZ(0), 0, /* B=<undefined> */ 226 RDSZ(1232), 0, /* C=cyl 0 thru 76 */ 227 RDSZ(0), 0, /* D=<undefined> */ 228 RDSZ(0), 0, /* E=<undefined> */ 229 RDSZ(0), 0, /* F=<undefined> */ 230 RDSZ(0), 0, /* G=<undefined> */ 231 RDSZ(0), 0, /* H=<undefined> */ 232 }, rd7912P_sizes[8] = { 233 RDSZ(15904), 0, /* A=cyl 1 thru 71 */ 234 RDSZ(22400), 72, /* B=cyl 72 thru 171 */ 235 RDSZ(128128), 0, /* C=cyl 0 thru 571 */ 236 RDSZ(42560), 72, /* D=cyl 72 thru 261 */ 237 RDSZ(0), 292, /* E=<undefined> */ 238 RDSZ(0), 542, /* F=<undefined> */ 239 RDSZ(89600), 172, /* G=cyl 221 thru 571 */ 240 RDSZ(69440), 262, /* H=cyl 262 thru 571 */ 241 }, rd7914P_sizes[8] = { 242 RDSZ(15904), 1, /* A=cyl 1 thru 71 */ 243 RDSZ(40320), 72, /* B=cyl 72 thru 251 */ 244 RDSZ(258048), 0, /* C=cyl 0 thru 1151 */ 245 RDSZ(64960), 72, /* D=cyl 72 thru 361 */ 246 RDSZ(98560), 362, /* E=cyl 362 thru 801 */ 247 RDSZ(78400), 802, /* F=cyl 802 thru 1151 */ 248 RDSZ(201600), 252, /* G=cyl 221 thru 1151 */ 249 RDSZ(176960), 362, /* H=cyl 362 thru 1151 */ 250 }, rd7933H_sizes[8] = { 251 RDSZ(16146), 1, /* A=cyl 1 thru 27 */ 252 RDSZ(66976), 28, /* B=cyl 28 thru 139 */ 253 RDSZ(789958), 0, /* C=cyl 0 thru 1320 */ 254 RDSZ(16146), 140, /* D=cyl 140 thru 166 */ 255 RDSZ(165646), 167, /* E=cyl 167 thru 443 */ 256 RDSZ(165646), 444, /* F=cyl 444 thru 720 */ 257 RDSZ(706238), 140, /* G=cyl 140 thru 1320 */ 258 RDSZ(358800), 721, /* H=cyl 721 thru 1320 */ 259 }, rd9134L_sizes[8] = { 260 RDSZ(15920), 1, /* A=cyl 1 thru 199 */ 261 RDSZ(20000), 200, /* B=cyl 200 thru 449 */ 262 RDSZ(77840), 0, /* C=cyl 0 thru 972 */ 263 RDSZ(32000), 200, /* D=cyl 200 thru 599 */ 264 RDSZ(0), 0, /* E=<undefined> */ 265 RDSZ(0), 0, /* F=<undefined> */ 266 RDSZ(41840), 450, /* G=cyl 450 thru 972 */ 267 RDSZ(29840), 600, /* H=cyl 600 thru 972 */ 268 }, rd7957A_sizes[8] = { 269 RDSZ(16016), 1, /* A=cyl 1 thru 104 */ 270 RDSZ(24640), 105, /* B=cyl 105 thru 264 */ 271 RDSZ(159544), 0, /* C=cyl 0 thru 1035 */ 272 RDSZ(42350), 105, /* D=cyl 105 thru 379 */ 273 RDSZ(54824), 380, /* E=cyl 380 thru 735 */ 274 RDSZ(46200), 736, /* F=cyl 736 thru 1035 */ 275 RDSZ(118734), 265, /* G=cyl 265 thru 1035 */ 276 RDSZ(101024), 380, /* H=cyl 380 thru 1035 */ 277 }, rd7958A_sizes[8] = { 278 RDSZ(16128), 1, /* A=cyl 1 thru 64 */ 279 RDSZ(32256), 65, /* B=cyl 65 thru 192 */ 280 RDSZ(255276), 0, /* C=cyl 0 thru 1012 */ 281 RDSZ(48384), 65, /* D=cyl 65 thru 256 */ 282 RDSZ(100800), 257, /* E=cyl 257 thru 656 */ 283 RDSZ(89712), 657, /* F=cyl 657 thru 1012 */ 284 RDSZ(206640), 193, /* G=cyl 193 thru 1012 */ 285 RDSZ(190512), 257, /* H=cyl 257 thru 1012 */ 286 }, rd7957B_sizes[8] = { 287 RDSZ(16002), 1, /* A=cyl 1 thru 127 */ 288 RDSZ(32760), 128, /* B=cyl 128 thru 387 */ 289 RDSZ(159894), 0, /* C=cyl 0 thru 1268 */ 290 RDSZ(49140), 128, /* D=cyl 128 thru 517 */ 291 RDSZ(50400), 518, /* E=cyl 518 thru 917 */ 292 RDSZ(44226), 918, /* F=cyl 918 thru 1268 */ 293 RDSZ(111006), 388, /* G=cyl 388 thru 1268 */ 294 RDSZ(94626), 518, /* H=cyl 518 thru 1268 */ 295 }, rd7958B_sizes[8] = { 296 RDSZ(16254), 1, /* A=cyl 1 thru 43 */ 297 RDSZ(32886), 44, /* B=cyl 44 thru 130 */ 298 RDSZ(297108), 0, /* C=cyl 0 thru 785 */ 299 RDSZ(49140), 44, /* D=cyl 44 thru 173 */ 300 RDSZ(121716), 174, /* E=cyl 174 thru 495 */ 301 RDSZ(109620), 496, /* F=cyl 496 thru 785 */ 302 RDSZ(247590), 131, /* G=cyl 131 thru 785 */ 303 RDSZ(231336), 174, /* H=cyl 174 thru 785 */ 304 }, rd7959B_sizes[8] = { 305 RDSZ(16254), 1, /* A=cyl 1 thru 43 */ 306 RDSZ(49140), 44, /* B=cyl 44 thru 173 */ 307 RDSZ(594216), 0, /* C=cyl 0 thru 1571 */ 308 RDSZ(65772), 44, /* D=cyl 44 thru 217 */ 309 RDSZ(303912), 218, /* E=cyl 218 thru 1021 */ 310 RDSZ(207900), 1022, /* F=cyl 1022 thru 1571 */ 311 RDSZ(528444), 174, /* G=cyl 174 thru 1571 */ 312 RDSZ(511812), 218, /* H=cyl 218 thru 1571 */ 313 }, rd2200A_sizes[8] = { 314 RDSZ(16272), 1, /* A=cyl 1 thru 36 */ 315 RDSZ(49720), 37, /* B=cyl 37 thru 146 */ 316 RDSZ(654948), 0, /* C=cyl 0 thru 1448 */ 317 RDSZ(65992), 37, /* D=cyl 37 thru 182 */ 318 RDSZ(304648), 183, /* E=cyl 183 thru 856 */ 319 RDSZ(267584), 857, /* F=cyl 857 thru 1448 */ 320 RDSZ(588504), 147, /* G=cyl 147 thru 1448 */ 321 RDSZ(572232), 183, /* H=cyl 183 thru 1448 */ 322 }, rd2203A_sizes[8] = { 323 /* modelled after the 7937; i.e. bogus */ 324 RDSZ(16272), 1, /* A=cyl 1 thru 18 */ 325 RDSZ(67800), 19, /* B=cyl 19 thru 93 */ 326 RDSZ(1309896), 0, /* C=cyl 0 thru 1448 */ 327 RDSZ(16272), 94, /* D=cyl 19 thru 111 */ 328 RDSZ(305552), 112, /* E=cyl 112 thru 449 */ 329 RDSZ(305552), 450, /* F=cyl 450 thru 787 */ 330 RDSZ(1224920), 94, /* G=cyl 94 thru 1448 */ 331 RDSZ(597544), 788, /* H=cyl 788 thru 1448 */ 332 333 #if DEV_BSIZE == 512 334 /* 335 * These values would not work for 1k, 336 * since the number of cylinders would be different. 337 */ 338 }, rd7936H_sizes[8] = { 339 RDSZ(16359), 1, /* A=cyl 1 thru 19 */ 340 RDSZ(67158), 20, /* B=cyl 20 thru 97 */ 341 RDSZ(600978), 0, /* C=cyl 0 thru 697 */ 342 RDSZ(16359), 98, /* D=cyl 98 thru 116 */ 343 RDSZ(120540), 117, /* E=cyl 117 thru 256 */ 344 RDSZ(120540), 256, /* F=cyl 256 thru 396 */ 345 RDSZ(516600), 98, /* G=cyl 98 thru 697 */ 346 RDSZ(259161), 397, /* H=cyl 397 thru 697 */ 347 }, rd7937H_sizes[8] = { 348 #ifdef UTAH 349 RDSZ(15990), 1, /* A=cyl 1 thru 10 */ 350 RDSZ(67158), 11, /* B=cyl 11 thru 52 */ 351 RDSZ(1116102), 0, /* C=cyl 0 thru 697 */ 352 RDSZ(124722), 53, /* D=cyl 53 thru 130 */ 353 RDSZ(163098), 131, /* E=cyl 131 thru 232 */ 354 RDSZ(287820), 233, /* F=cyl 233 thru 412 */ 355 RDSZ(1031355), 53, /* G=cyl 53 thru 697 */ 356 RDSZ(455715), 413, /* H=cyl 413 thru 697 */ 357 #else 358 RDSZ(15990), 1, /* A=cyl 1 thru 10 */ 359 RDSZ(67158), 11, /* B=cyl 11 thru 52 */ 360 RDSZ(1116102), 0, /* C=cyl 0 thru 697 */ 361 RDSZ(15990), 53, /* D=cyl 53 thru 62 */ 362 RDSZ(246246), 63, /* E=cyl 63 thru 216 */ 363 RDSZ(246246), 217, /* F=cyl 217 thru 370 */ 364 RDSZ(1031355), 53, /* G=cyl 53 thru 697 */ 365 RDSZ(522873), 371, /* H=cyl 371 thru 697 */ 366 #endif 367 #endif 368 }; 369 370 struct rdinfo { 371 int nbpt; /* DEV_BSIZE blocks per track */ 372 int ntpc; /* tracks per cylinder */ 373 int nbpc; /* blocks per cylinder */ 374 struct size *sizes; /* default partition info (if no disklabel) */ 375 short hwid; /* 2 byte HW id */ 376 short maxunum; /* maximum allowed unit number */ 377 char *desc; /* drive type description */ 378 }; 379 380 struct rdinfo rdinfo[] = { 381 NRD7945ABPT, NRD7945ATRK, NRD7945ABPT * NRD7945ATRK, 382 rd7945A_sizes, RD7946AID, 0, "7945A", 383 NRD9134DBPT, NRD9134DTRK, NRD9134DBPT * NRD9134DTRK, 384 rd9134D_sizes, RD9134DID, 1, "9134D", 385 NRD9122SBPT, NRD9122STRK, NRD9122SBPT * NRD9122STRK, 386 rd9122S_sizes, RD9134LID, 1, "9122S", 387 NRD7912PBPT, NRD7912PTRK, NRD7912PBPT * NRD7912PTRK, 388 rd7912P_sizes, RD7912PID, 0, "7912P", 389 NRD7914PBPT, NRD7914PTRK, NRD7914PBPT * NRD7914PTRK, 390 rd7914P_sizes, RD7914PID, 0, "7914P", 391 NRD7958ABPT, NRD7958ATRK, NRD7958ABPT * NRD7958ATRK, 392 rd7958A_sizes, RD7958AID, 0, "7958A", 393 NRD7957ABPT, NRD7957ATRK, NRD7957ABPT * NRD7957ATRK, 394 rd7957A_sizes, RD7957AID, 0, "7957A", 395 NRD7933HBPT, NRD7933HTRK, NRD7933HBPT * NRD7933HTRK, 396 rd7933H_sizes, RD7933HID, 0, "7933H", 397 NRD9134LBPT, NRD9134LTRK, NRD9134LBPT * NRD9134LTRK, 398 rd9134L_sizes, RD9134LID, 1, "9134L", 399 NRD7936HBPT, NRD7936HTRK, NRD7936HBPT * NRD7936HTRK, 400 rd7936H_sizes, RD7936HID, 0, "7936H", 401 NRD7937HBPT, NRD7937HTRK, NRD7937HBPT * NRD7937HTRK, 402 rd7937H_sizes, RD7937HID, 0, "7937H", 403 NRD7914PBPT, NRD7914PTRK, NRD7914PBPT * NRD7914PTRK, 404 rd7914P_sizes, RD7914CTID, 0, "7914CT", 405 NRD7945ABPT, NRD7945ATRK, NRD7945ABPT * NRD7945ATRK, 406 rd7945A_sizes, RD7946AID, 0, "7946A", 407 NRD9122SBPT, NRD9122STRK, NRD9122SBPT * NRD9122STRK, 408 rd9122S_sizes, RD9134LID, 1, "9122D", 409 NRD7957BBPT, NRD7957BTRK, NRD7957BBPT * NRD7957BTRK, 410 rd7957B_sizes, RD7957BID, 0, "7957B", 411 NRD7958BBPT, NRD7958BTRK, NRD7958BBPT * NRD7958BTRK, 412 rd7958B_sizes, RD7958BID, 0, "7958B", 413 NRD7959BBPT, NRD7959BTRK, NRD7959BBPT * NRD7959BTRK, 414 rd7959B_sizes, RD7959BID, 0, "7959B", 415 NRD2200ABPT, NRD2200ATRK, NRD2200ABPT * NRD2200ATRK, 416 rd2200A_sizes, RD2200AID, 0, "2200A", 417 NRD2203ABPT, NRD2203ATRK, NRD2203ABPT * NRD2203ATRK, 418 rd2203A_sizes, RD2203AID, 0, "2203A", 419 }; 420 int nrdinfo = sizeof(rdinfo) / sizeof(rdinfo[0]); 421 422 struct buf rdtab[NRD]; 423 424 #define rdunit(x) (minor(x) >> 3) 425 #define rdpart(x) (minor(x) & 0x7) 426 #define rdpunit(x) ((x) & 7) 427 #define b_cylin b_resid 428 #define RDRETRY 5 429 #define RDWAITC 1 /* min time for timeout in seconds */ 430 431 int rderrthresh = RDRETRY-1; /* when to start reporting errors */ 432 433 rdinit(hd) 434 register struct hp_device *hd; 435 { 436 register struct rd_softc *rs = &rd_softc[hd->hp_unit]; 437 438 rs->sc_hd = hd; 439 rs->sc_punit = rdpunit(hd->hp_flags); 440 rs->sc_type = rdident(rs, hd); 441 if (rs->sc_type < 0) 442 return(0); 443 rs->sc_dq.dq_ctlr = hd->hp_ctlr; 444 rs->sc_dq.dq_unit = hd->hp_unit; 445 rs->sc_dq.dq_slave = hd->hp_slave; 446 rs->sc_dq.dq_driver = &rddriver; 447 rs->sc_info = &rdinfo[rs->sc_type]; 448 rs->sc_flags = RDF_ALIVE; 449 #ifdef DEBUG 450 /* always report errors */ 451 if (rddebug & RDB_ERROR) 452 rderrthresh = 0; 453 #endif 454 return(1); 455 } 456 457 rdident(rs, hd) 458 struct rd_softc *rs; 459 struct hp_device *hd; 460 { 461 struct rd_describe desc; 462 u_char stat, cmd[3]; 463 int unit, lunit; 464 char name[7]; 465 register int ctlr, slave, id, i; 466 467 ctlr = hd->hp_ctlr; 468 slave = hd->hp_slave; 469 unit = rs->sc_punit; 470 lunit = hd->hp_unit; 471 472 /* 473 * Grab device id and make sure: 474 * 1. It is a CS80 device. 475 * 2. It is one of the types we support. 476 * 3. If it is a 7946, we are accessing the disk unit (0) 477 */ 478 id = hpibid(ctlr, slave); 479 #ifdef DEBUG 480 if (rddebug & RDB_IDENT) 481 printf("hpibid(%d, %d) -> %x\n", ctlr, slave, id); 482 #endif 483 if ((id & 0x200) == 0) 484 return(-1); 485 for (i = 0; i < nrdinfo; i++) 486 if (id == rdinfo[i].hwid) 487 break; 488 if (i == nrdinfo || unit > rdinfo[i].maxunum) 489 return(-1); 490 id = i; 491 492 /* 493 * Reset drive and collect device description. 494 * Don't really use the description info right now but 495 * might come in handy in the future (for disk labels). 496 */ 497 rdreset(rs, hd); 498 cmd[0] = C_SUNIT(unit); 499 cmd[1] = C_SVOL(0); 500 cmd[2] = C_DESC; 501 hpibsend(ctlr, slave, C_CMD, cmd, sizeof(cmd)); 502 hpibrecv(ctlr, slave, C_EXEC, &desc, 37); 503 hpibrecv(ctlr, slave, C_QSTAT, &stat, sizeof(stat)); 504 bzero(name, sizeof(name)); 505 if (!stat) { 506 register int n = desc.d_name; 507 for (i = 5; i >= 0; i--) { 508 name[i] = (n & 0xf) + '0'; 509 n >>= 4; 510 } 511 /* use drive characteristics to calculate xfer rate */ 512 rs->sc_wpms = 1000000 * (desc.d_sectsize/2) / desc.d_blocktime; 513 } 514 #ifdef DEBUG 515 if (rddebug & RDB_IDENT) { 516 printf("rd%d: name: %x ('%s')\n", 517 lunit, desc.d_name, name); 518 printf(" iuw %x, maxxfr %d, ctype %d\n", 519 desc.d_iuw, desc.d_cmaxxfr, desc.d_ctype); 520 printf(" utype %d, bps %d, blkbuf %d, burst %d, blktime %d\n", 521 desc.d_utype, desc.d_sectsize, 522 desc.d_blkbuf, desc.d_burstsize, desc.d_blocktime); 523 printf(" avxfr %d, ort %d, atp %d, maxint %d, fv %x, rv %x\n", 524 desc.d_uavexfr, desc.d_retry, desc.d_access, 525 desc.d_maxint, desc.d_fvbyte, desc.d_rvbyte); 526 printf(" maxcyl/head/sect %d/%d/%d, maxvsect %d, inter %d\n", 527 desc.d_maxcyl, desc.d_maxhead, desc.d_maxsect, 528 desc.d_maxvsectl, desc.d_interleave); 529 } 530 #endif 531 /* 532 * Take care of a couple of anomolies: 533 * 1. 7945A and 7946A both return same HW id 534 * 2. 9122S and 9134D both return same HW id 535 * 3. 9122D and 9134L both return same HW id 536 */ 537 switch (rdinfo[id].hwid) { 538 case RD7946AID: 539 if (bcmp(name, "079450", 6) == 0) 540 id = RD7945A; 541 else 542 id = RD7946A; 543 break; 544 545 case RD9134LID: 546 if (bcmp(name, "091340", 6) == 0) 547 id = RD9134L; 548 else 549 id = RD9122D; 550 break; 551 552 case RD9134DID: 553 if (bcmp(name, "091220", 6) == 0) 554 id = RD9122S; 555 else 556 id = RD9134D; 557 break; 558 } 559 printf("rd%d: %s\n", lunit, rdinfo[id].desc); 560 return(id); 561 } 562 563 rdreset(rs, hd) 564 register struct rd_softc *rs; 565 register struct hp_device *hd; 566 { 567 u_char stat; 568 569 rs->sc_clear.c_unit = C_SUNIT(rs->sc_punit); 570 rs->sc_clear.c_cmd = C_CLEAR; 571 hpibsend(hd->hp_ctlr, hd->hp_slave, C_TCMD, &rs->sc_clear, 572 sizeof(rs->sc_clear)); 573 hpibswait(hd->hp_ctlr, hd->hp_slave); 574 hpibrecv(hd->hp_ctlr, hd->hp_slave, C_QSTAT, &stat, sizeof(stat)); 575 rs->sc_src.c_unit = C_SUNIT(RDCTLR); 576 rs->sc_src.c_nop = C_NOP; 577 rs->sc_src.c_cmd = C_SREL; 578 rs->sc_src.c_param = C_REL; 579 hpibsend(hd->hp_ctlr, hd->hp_slave, C_CMD, &rs->sc_src, 580 sizeof(rs->sc_src)); 581 hpibswait(hd->hp_ctlr, hd->hp_slave); 582 hpibrecv(hd->hp_ctlr, hd->hp_slave, C_QSTAT, &stat, sizeof(stat)); 583 rs->sc_ssmc.c_unit = C_SUNIT(rs->sc_punit); 584 rs->sc_ssmc.c_cmd = C_SSM; 585 rs->sc_ssmc.c_refm = REF_MASK; 586 rs->sc_ssmc.c_fefm = FEF_MASK; 587 rs->sc_ssmc.c_aefm = AEF_MASK; 588 rs->sc_ssmc.c_iefm = IEF_MASK; 589 hpibsend(hd->hp_ctlr, hd->hp_slave, C_CMD, &rs->sc_ssmc, 590 sizeof(rs->sc_ssmc)); 591 hpibswait(hd->hp_ctlr, hd->hp_slave); 592 hpibrecv(hd->hp_ctlr, hd->hp_slave, C_QSTAT, &stat, sizeof(stat)); 593 #ifdef DEBUG 594 rdstats[hd->hp_unit].rdresets++; 595 #endif 596 } 597 598 int 599 rdopen(dev, flags, mode, p) 600 dev_t dev; 601 int flags, mode; 602 struct proc *p; 603 { 604 register int unit = rdunit(dev); 605 register struct rd_softc *rs = &rd_softc[unit]; 606 607 if (unit >= NRD || (rs->sc_flags & RDF_ALIVE) == 0) 608 return(ENXIO); 609 if (rs->sc_hd->hp_dk >= 0) { 610 /* guess at xfer rate based on 3600 rpm (60 rps) */ 611 if (rs->sc_wpms == 0) 612 rs->sc_wpms = 60 * rs->sc_info->nbpt * DEV_BSIZE / 2; 613 dk_wpms[rs->sc_hd->hp_dk] = rs->sc_wpms; 614 } 615 return(0); 616 } 617 618 rdstrategy(bp) 619 register struct buf *bp; 620 { 621 register int unit = rdunit(bp->b_dev); 622 register struct rd_softc *rs = &rd_softc[unit]; 623 register struct size *pinfo = &rs->sc_info->sizes[rdpart(bp->b_dev)]; 624 register struct buf *dp = &rdtab[unit]; 625 register daddr_t bn; 626 register int sz, s; 627 628 #ifdef DEBUG 629 if (rddebug & RDB_FOLLOW) 630 printf("rdstrategy(%x): dev %x, bn %x, bcount %x, %c\n", 631 bp, bp->b_dev, bp->b_blkno, bp->b_bcount, 632 (bp->b_flags & B_READ) ? 'R' : 'W'); 633 #endif 634 bn = bp->b_blkno; 635 sz = howmany(bp->b_bcount, DEV_BSIZE); 636 if (bn < 0 || bn + sz > pinfo->nblocks) { 637 sz = pinfo->nblocks - bn; 638 if (sz == 0) { 639 bp->b_resid = bp->b_bcount; 640 goto done; 641 } 642 if (sz < 0) { 643 bp->b_error = EINVAL; 644 bp->b_flags |= B_ERROR; 645 goto done; 646 } 647 bp->b_bcount = dbtob(sz); 648 } 649 bp->b_cylin = bn / rs->sc_info->nbpc + pinfo->cyloff; 650 s = splbio(); 651 disksort(dp, bp); 652 if (dp->b_active == 0) { 653 dp->b_active = 1; 654 rdustart(unit); 655 } 656 splx(s); 657 return; 658 done: 659 biodone(bp); 660 } 661 662 /* 663 * Called from timeout() when handling maintenance releases 664 */ 665 rdrestart(unit) 666 int unit; 667 { 668 int s = splbio(); 669 rdustart(unit); 670 splx(s); 671 } 672 673 rdustart(unit) 674 register int unit; 675 { 676 register struct buf *bp; 677 register struct rd_softc *rs = &rd_softc[unit]; 678 679 bp = rdtab[unit].b_actf; 680 rs->sc_addr = bp->b_un.b_addr; 681 rs->sc_resid = bp->b_bcount; 682 if (hpibreq(&rs->sc_dq)) 683 rdstart(unit); 684 } 685 686 rdstart(unit) 687 register int unit; 688 { 689 register struct rd_softc *rs = &rd_softc[unit]; 690 register struct buf *bp = rdtab[unit].b_actf; 691 register struct hp_device *hp = rs->sc_hd; 692 register int part; 693 694 again: 695 #ifdef DEBUG 696 if (rddebug & RDB_FOLLOW) 697 printf("rdstart(%d): bp %x, %c\n", unit, bp, 698 (bp->b_flags & B_READ) ? 'R' : 'W'); 699 #endif 700 part = rdpart(bp->b_dev); 701 rs->sc_flags |= RDF_SEEK; 702 rs->sc_ioc.c_unit = C_SUNIT(rs->sc_punit); 703 rs->sc_ioc.c_volume = C_SVOL(0); 704 rs->sc_ioc.c_saddr = C_SADDR; 705 rs->sc_ioc.c_hiaddr = 0; 706 rs->sc_ioc.c_addr = RDBTOS(bp->b_blkno + rs->sc_info->nbpc * 707 rs->sc_info->sizes[part].cyloff); 708 rs->sc_ioc.c_nop2 = C_NOP; 709 rs->sc_ioc.c_slen = C_SLEN; 710 rs->sc_ioc.c_len = rs->sc_resid; 711 rs->sc_ioc.c_cmd = bp->b_flags & B_READ ? C_READ : C_WRITE; 712 #ifdef DEBUG 713 if (rddebug & RDB_IO) 714 printf("rdstart: hpibsend(%x, %x, %x, %x, %x)\n", 715 hp->hp_ctlr, hp->hp_slave, C_CMD, 716 &rs->sc_ioc.c_unit, sizeof(rs->sc_ioc)-2); 717 #endif 718 if (hpibsend(hp->hp_ctlr, hp->hp_slave, C_CMD, &rs->sc_ioc.c_unit, 719 sizeof(rs->sc_ioc)-2) == sizeof(rs->sc_ioc)-2) { 720 if (hp->hp_dk >= 0) { 721 dk_busy |= 1 << hp->hp_dk; 722 dk_seek[hp->hp_dk]++; 723 } 724 #ifdef DEBUG 725 if (rddebug & RDB_IO) 726 printf("rdstart: hpibawait(%x)\n", hp->hp_ctlr); 727 #endif 728 hpibawait(hp->hp_ctlr); 729 return; 730 } 731 /* 732 * Experience has shown that the hpibwait in this hpibsend will 733 * occasionally timeout. It appears to occur mostly on old 7914 734 * drives with full maintenance tracks. We should probably 735 * integrate this with the backoff code in rderror. 736 */ 737 #ifdef DEBUG 738 if (rddebug & RDB_ERROR) 739 printf("rd%d: rdstart: cmd %x adr %d blk %d len %d ecnt %d\n", 740 unit, rs->sc_ioc.c_cmd, rs->sc_ioc.c_addr, 741 bp->b_blkno, rs->sc_resid, rdtab[unit].b_errcnt); 742 rdstats[unit].rdretries++; 743 #endif 744 rs->sc_flags &= ~RDF_SEEK; 745 rdreset(rs, hp); 746 if (rdtab[unit].b_errcnt++ < RDRETRY) 747 goto again; 748 printf("rd%d: rdstart err: cmd 0x%x sect %d blk %d len %d\n", 749 unit, rs->sc_ioc.c_cmd, rs->sc_ioc.c_addr, 750 bp->b_blkno, rs->sc_resid); 751 rdtab[unit].b_errcnt = 0; 752 rdtab[unit].b_actf = bp->b_actf; 753 bp->b_flags |= B_ERROR; 754 bp->b_error = EIO; 755 bp->b_resid = 0; 756 biodone(bp); 757 hpibfree(&rs->sc_dq); 758 bp = rdtab[unit].b_actf; 759 if (bp == NULL) { 760 rdtab[unit].b_active = 0; 761 return; 762 } 763 rs->sc_addr = bp->b_un.b_addr; 764 rs->sc_resid = bp->b_bcount; 765 if (hpibreq(&rs->sc_dq)) 766 goto again; 767 } 768 769 rdgo(unit) 770 register int unit; 771 { 772 register struct rd_softc *rs = &rd_softc[unit]; 773 register struct hp_device *hp = rs->sc_hd; 774 struct buf *bp = rdtab[unit].b_actf; 775 776 if (hp->hp_dk >= 0) { 777 dk_busy |= 1 << hp->hp_dk; 778 dk_xfer[hp->hp_dk]++; 779 dk_wds[hp->hp_dk] += rs->sc_resid >> 6; 780 } 781 hpibgo(hp->hp_ctlr, hp->hp_slave, C_EXEC, 782 rs->sc_addr, rs->sc_resid, bp->b_flags & B_READ); 783 } 784 785 rdintr(unit) 786 register int unit; 787 { 788 register struct rd_softc *rs = &rd_softc[unit]; 789 register struct buf *bp = rdtab[unit].b_actf; 790 register struct hp_device *hp = rs->sc_hd; 791 u_char stat = 13; /* in case hpibrecv fails */ 792 int rv, restart; 793 794 #ifdef DEBUG 795 if (rddebug & RDB_FOLLOW) 796 printf("rdintr(%d): bp %x, %c, flags %x\n", unit, bp, 797 (bp->b_flags & B_READ) ? 'R' : 'W', rs->sc_flags); 798 if (bp == NULL) { 799 printf("rd%d: bp == NULL\n", unit); 800 return; 801 } 802 #endif 803 if (hp->hp_dk >= 0) 804 dk_busy &= ~(1 << hp->hp_dk); 805 if (rs->sc_flags & RDF_SEEK) { 806 rs->sc_flags &= ~RDF_SEEK; 807 if (hpibustart(hp->hp_ctlr)) 808 rdgo(unit); 809 return; 810 } 811 if ((rs->sc_flags & RDF_SWAIT) == 0) { 812 #ifdef DEBUG 813 rdstats[unit].rdpolltries++; 814 #endif 815 if (hpibpptest(hp->hp_ctlr, hp->hp_slave) == 0) { 816 #ifdef DEBUG 817 rdstats[unit].rdpollwaits++; 818 #endif 819 if (hp->hp_dk >= 0) 820 dk_busy |= 1 << hp->hp_dk; 821 rs->sc_flags |= RDF_SWAIT; 822 hpibawait(hp->hp_ctlr); 823 return; 824 } 825 } else 826 rs->sc_flags &= ~RDF_SWAIT; 827 rv = hpibrecv(hp->hp_ctlr, hp->hp_slave, C_QSTAT, &stat, 1); 828 if (rv != 1 || stat) { 829 #ifdef DEBUG 830 if (rddebug & RDB_ERROR) 831 printf("rdintr: recv failed or bad stat %d\n", stat); 832 #endif 833 restart = rderror(unit); 834 #ifdef DEBUG 835 rdstats[unit].rdretries++; 836 #endif 837 if (rdtab[unit].b_errcnt++ < RDRETRY) { 838 if (restart) 839 rdstart(unit); 840 return; 841 } 842 bp->b_flags |= B_ERROR; 843 bp->b_error = EIO; 844 } 845 rdtab[unit].b_errcnt = 0; 846 rdtab[unit].b_actf = bp->b_actf; 847 bp->b_resid = 0; 848 biodone(bp); 849 hpibfree(&rs->sc_dq); 850 if (rdtab[unit].b_actf) 851 rdustart(unit); 852 else 853 rdtab[unit].b_active = 0; 854 } 855 856 rdstatus(rs) 857 register struct rd_softc *rs; 858 { 859 register int c, s; 860 u_char stat; 861 int rv; 862 863 c = rs->sc_hd->hp_ctlr; 864 s = rs->sc_hd->hp_slave; 865 rs->sc_rsc.c_unit = C_SUNIT(rs->sc_punit); 866 rs->sc_rsc.c_sram = C_SRAM; 867 rs->sc_rsc.c_ram = C_RAM; 868 rs->sc_rsc.c_cmd = C_STATUS; 869 bzero((caddr_t)&rs->sc_stat, sizeof(rs->sc_stat)); 870 rv = hpibsend(c, s, C_CMD, &rs->sc_rsc, sizeof(rs->sc_rsc)); 871 if (rv != sizeof(rs->sc_rsc)) { 872 #ifdef DEBUG 873 if (rddebug & RDB_STATUS) 874 printf("rdstatus: send C_CMD failed %d != %d\n", 875 rv, sizeof(rs->sc_rsc)); 876 #endif 877 return(1); 878 } 879 rv = hpibrecv(c, s, C_EXEC, &rs->sc_stat, sizeof(rs->sc_stat)); 880 if (rv != sizeof(rs->sc_stat)) { 881 #ifdef DEBUG 882 if (rddebug & RDB_STATUS) 883 printf("rdstatus: send C_EXEC failed %d != %d\n", 884 rv, sizeof(rs->sc_stat)); 885 #endif 886 return(1); 887 } 888 rv = hpibrecv(c, s, C_QSTAT, &stat, 1); 889 if (rv != 1 || stat) { 890 #ifdef DEBUG 891 if (rddebug & RDB_STATUS) 892 printf("rdstatus: recv failed %d or bad stat %d\n", 893 rv, stat); 894 #endif 895 return(1); 896 } 897 return(0); 898 } 899 900 /* 901 * Deal with errors. 902 * Returns 1 if request should be restarted, 903 * 0 if we should just quietly give up. 904 */ 905 rderror(unit) 906 int unit; 907 { 908 struct rd_softc *rs = &rd_softc[unit]; 909 register struct rd_stat *sp; 910 struct buf *bp; 911 daddr_t hwbn, pbn; 912 913 if (rdstatus(rs)) { 914 #ifdef DEBUG 915 printf("rd%d: couldn't get status\n", unit); 916 #endif 917 rdreset(rs, rs->sc_hd); 918 return(1); 919 } 920 sp = &rs->sc_stat; 921 if (sp->c_fef & FEF_REXMT) 922 return(1); 923 if (sp->c_fef & FEF_PF) { 924 rdreset(rs, rs->sc_hd); 925 return(1); 926 } 927 /* 928 * Unit requests release for internal maintenance. 929 * We just delay awhile and try again later. Use expontially 930 * increasing backoff ala ethernet drivers since we don't really 931 * know how long the maintenance will take. With RDWAITC and 932 * RDRETRY as defined, the range is 1 to 32 seconds. 933 */ 934 if (sp->c_fef & FEF_IMR) { 935 extern int hz; 936 int rdtimo = RDWAITC << rdtab[unit].b_errcnt; 937 #ifdef DEBUG 938 printf("rd%d: internal maintenance, %d second timeout\n", 939 unit, rdtimo); 940 rdstats[unit].rdtimeouts++; 941 #endif 942 hpibfree(&rs->sc_dq); 943 timeout(rdrestart, unit, rdtimo*hz); 944 return(0); 945 } 946 /* 947 * Only report error if we have reached the error reporting 948 * threshhold. By default, this will only report after the 949 * retry limit has been exceeded. 950 */ 951 if (rdtab[unit].b_errcnt < rderrthresh) 952 return(1); 953 954 /* 955 * First conjure up the block number at which the error occured. 956 * Note that not all errors report a block number, in that case 957 * we just use b_blkno. 958 */ 959 bp = rdtab[unit].b_actf; 960 pbn = rs->sc_info->nbpc * 961 rs->sc_info->sizes[rdpart(bp->b_dev)].cyloff; 962 if ((sp->c_fef & FEF_CU) || (sp->c_fef & FEF_DR) || 963 (sp->c_ief & IEF_RRMASK)) { 964 hwbn = RDBTOS(pbn + bp->b_blkno); 965 pbn = bp->b_blkno; 966 } else { 967 hwbn = sp->c_blk; 968 pbn = RDSTOB(hwbn) - pbn; 969 } 970 /* 971 * Now output a generic message suitable for badsect. 972 * Note that we don't use harderr cuz it just prints 973 * out b_blkno which is just the beginning block number 974 * of the transfer, not necessary where the error occured. 975 */ 976 printf("rd%d%c: hard error sn%d\n", 977 rdunit(bp->b_dev), 'a'+rdpart(bp->b_dev), pbn); 978 /* 979 * Now report the status as returned by the hardware with 980 * attempt at interpretation (unless debugging). 981 */ 982 printf("rd%d %s error:", 983 unit, (bp->b_flags & B_READ) ? "read" : "write"); 984 #ifdef DEBUG 985 if (rddebug & RDB_ERROR) { 986 /* status info */ 987 printf("\n volume: %d, unit: %d\n", 988 (sp->c_vu>>4)&0xF, sp->c_vu&0xF); 989 rdprinterr("reject", sp->c_ref, err_reject); 990 rdprinterr("fault", sp->c_fef, err_fault); 991 rdprinterr("access", sp->c_aef, err_access); 992 rdprinterr("info", sp->c_ief, err_info); 993 printf(" block: %d, P1-P10: ", hwbn); 994 printf("%s", hexstr(*(u_int *)&sp->c_raw[0], 8)); 995 printf("%s", hexstr(*(u_int *)&sp->c_raw[4], 8)); 996 printf("%s\n", hexstr(*(u_short *)&sp->c_raw[8], 4)); 997 /* command */ 998 printf(" ioc: "); 999 printf("%s", hexstr(*(u_int *)&rs->sc_ioc.c_pad, 8)); 1000 printf("%s", hexstr(*(u_short *)&rs->sc_ioc.c_hiaddr, 4)); 1001 printf("%s", hexstr(*(u_int *)&rs->sc_ioc.c_addr, 8)); 1002 printf("%s", hexstr(*(u_short *)&rs->sc_ioc.c_nop2, 4)); 1003 printf("%s", hexstr(*(u_int *)&rs->sc_ioc.c_len, 8)); 1004 printf("%s\n", hexstr(*(u_short *)&rs->sc_ioc.c_cmd, 4)); 1005 return(1); 1006 } 1007 #endif 1008 printf(" v%d u%d, R0x%x F0x%x A0x%x I0x%x\n", 1009 (sp->c_vu>>4)&0xF, sp->c_vu&0xF, 1010 sp->c_ref, sp->c_fef, sp->c_aef, sp->c_ief); 1011 printf("P1-P10: "); 1012 printf("%s", hexstr(*(u_int *)&sp->c_raw[0], 8)); 1013 printf("%s", hexstr(*(u_int *)&sp->c_raw[4], 8)); 1014 printf("%s\n", hexstr(*(u_short *)&sp->c_raw[8], 4)); 1015 return(1); 1016 } 1017 1018 int 1019 rdread(dev, uio, flags) 1020 dev_t dev; 1021 struct uio *uio; 1022 int flags; 1023 { 1024 register int unit = rdunit(dev); 1025 1026 return (physio(rdstrategy, NULL, dev, B_READ, minphys, uio)); 1027 } 1028 1029 int 1030 rdwrite(dev, uio, flags) 1031 dev_t dev; 1032 struct uio *uio; 1033 int flags; 1034 { 1035 register int unit = rdunit(dev); 1036 1037 return (physio(rdstrategy, NULL, dev, B_WRITE, minphys, uio)); 1038 } 1039 1040 int 1041 rdioctl(dev, cmd, data, flag, p) 1042 dev_t dev; 1043 int cmd; 1044 caddr_t data; 1045 int flag; 1046 struct proc *p; 1047 { 1048 return(EINVAL); 1049 } 1050 1051 int 1052 rdsize(dev) 1053 dev_t dev; 1054 { 1055 register int unit = rdunit(dev); 1056 register struct rd_softc *rs = &rd_softc[unit]; 1057 1058 if (unit >= NRD || (rs->sc_flags & RDF_ALIVE) == 0) 1059 return(-1); 1060 return(rs->sc_info->sizes[rdpart(dev)].nblocks); 1061 } 1062 1063 #ifdef DEBUG 1064 rdprinterr(str, err, tab) 1065 char *str; 1066 short err; 1067 char *tab[]; 1068 { 1069 register int i; 1070 int printed; 1071 1072 if (err == 0) 1073 return; 1074 printf(" %s error field:", str, err); 1075 printed = 0; 1076 for (i = 0; i < 16; i++) 1077 if (err & (0x8000 >> i)) 1078 printf("%s%s", printed++ ? " + " : " ", tab[i]); 1079 printf("\n"); 1080 } 1081 #endif 1082 1083 /* 1084 * Non-interrupt driven, non-dma dump routine. 1085 */ 1086 int 1087 rddump(dev) 1088 dev_t dev; 1089 { 1090 int part = rdpart(dev); 1091 int unit = rdunit(dev); 1092 register struct rd_softc *rs = &rd_softc[unit]; 1093 register struct hp_device *hp = rs->sc_hd; 1094 register daddr_t baddr; 1095 register int maddr, pages, i; 1096 char stat; 1097 extern int lowram, dumpsize; 1098 #ifdef DEBUG 1099 extern int pmapdebug; 1100 pmapdebug = 0; 1101 #endif 1102 1103 pages = dumpsize; 1104 #ifdef DEBUG 1105 if (rddebug & RDB_DUMP) 1106 printf("rddump(%x): u %d p %d dumplo %d ram %x pmem %d\n", 1107 dev, unit, part, dumplo, lowram, ctod(pages)); 1108 #endif 1109 /* is drive ok? */ 1110 if (unit >= NRD || (rs->sc_flags & RDF_ALIVE) == 0) 1111 return (ENXIO); 1112 /* HPIB idle? */ 1113 if (!hpibreq(&rs->sc_dq)) { 1114 #ifdef DEBUG 1115 /* is this a safe thing to do?? */ 1116 hpibreset(hp->hp_ctlr); 1117 rdreset(rs, rs->sc_hd); 1118 printf("[ drive %d reset ] ", unit); 1119 #else 1120 return (EFAULT); 1121 #endif 1122 } 1123 /* dump parameters in range? */ 1124 if (dumplo < 0 || dumplo >= rs->sc_info->sizes[part].nblocks) 1125 return (EINVAL); 1126 if (dumplo + ctod(pages) > rs->sc_info->sizes[part].nblocks) 1127 pages = dtoc(rs->sc_info->sizes[part].nblocks - dumplo); 1128 maddr = lowram; 1129 baddr = dumplo + rs->sc_info->nbpc * rs->sc_info->sizes[part].cyloff; 1130 #ifdef DEBUG 1131 if (rddebug & RDB_DUMP) 1132 printf("rddump: dumping %d pages from %x to disk block %d\n", 1133 pages, maddr, baddr); 1134 #endif 1135 for (i = 0; i < pages; i++) { 1136 #ifdef DEBUG 1137 #define NPGMB (1024*1024/NBPG) 1138 /* print out how many Mbs we have dumped */ 1139 if (i && (i % NPGMB) == 0) 1140 printf("%d ", i / NPGMB); 1141 #undef NPBMG 1142 #endif 1143 rs->sc_ioc.c_unit = C_SUNIT(rs->sc_punit); 1144 rs->sc_ioc.c_volume = C_SVOL(0); 1145 rs->sc_ioc.c_saddr = C_SADDR; 1146 rs->sc_ioc.c_hiaddr = 0; 1147 rs->sc_ioc.c_addr = RDBTOS(baddr); 1148 rs->sc_ioc.c_nop2 = C_NOP; 1149 rs->sc_ioc.c_slen = C_SLEN; 1150 rs->sc_ioc.c_len = NBPG; 1151 rs->sc_ioc.c_cmd = C_WRITE; 1152 hpibsend(hp->hp_ctlr, hp->hp_slave, C_CMD, 1153 &rs->sc_ioc.c_unit, sizeof(rs->sc_ioc)-2); 1154 if (hpibswait(hp->hp_ctlr, hp->hp_slave)) { 1155 #ifdef DEBUG 1156 if (rddebug & RDB_DUMP) 1157 printf("rddump: IOC wait timeout\n"); 1158 #endif 1159 return (EIO); 1160 } 1161 pmap_enter(pmap_kernel(), vmmap, maddr, VM_PROT_READ, TRUE); 1162 hpibsend(hp->hp_ctlr, hp->hp_slave, C_EXEC, vmmap, NBPG); 1163 if (hpibswait(hp->hp_ctlr, hp->hp_slave)) { 1164 #ifdef DEBUG 1165 if (rddebug & RDB_DUMP) 1166 printf("rddump: write wait timeout\n"); 1167 #endif 1168 } 1169 hpibrecv(hp->hp_ctlr, hp->hp_slave, C_QSTAT, &stat, 1); 1170 if (stat) { 1171 #ifdef DEBUG 1172 if (rddebug & RDB_DUMP) 1173 printf("rddump: write failed, status %x\n", 1174 stat); 1175 #endif 1176 return (EIO); 1177 } 1178 maddr += NBPG; 1179 baddr += ctod(1); 1180 } 1181 return (0); 1182 } 1183 #endif 1184