xref: /netbsd-src/sys/arch/hp300/dev/rd.c (revision 4b30c543a0b21e3ba94f2c569e9a82b4fdb2075f)
1 /*
2  * Copyright (c) 1988 University of Utah.
3  * Copyright (c) 1982, 1990 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * the Systems Programming Group of the University of Utah Computer
8  * Science Department.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: Utah Hdr: rd.c 1.38 90/10/12
39  *	from: @(#)rd.c	7.9 (Berkeley) 5/7/91
40  *	$Id: rd.c,v 1.3 1993/08/01 19:24:28 mycroft Exp $
41  */
42 
43 /*
44  * CS80/SS80 disk driver
45  */
46 #include "rd.h"
47 #if NRD > 0
48 
49 #include "sys/param.h"
50 #include "sys/systm.h"
51 #include "sys/errno.h"
52 #include "sys/dkstat.h"
53 #include "sys/disklabel.h"
54 #include "sys/buf.h"
55 #include "sys/uio.h"
56 
57 #include "device.h"
58 #include "rdreg.h"
59 
60 #include "vm/vm_param.h"
61 #include "vm/lock.h"
62 #include "vm/vm_statistics.h"
63 #include "vm/pmap.h"
64 #include "vm/vm_prot.h"
65 
66 int	rdinit(), rdstart(), rdgo(), rdintr();
67 struct	driver rddriver = {
68 	rdinit, "rd", rdstart, rdgo, rdintr,
69 };
70 
71 struct	rd_softc {
72 	struct	hp_device *sc_hd;
73 	int	sc_flags;
74 	short	sc_type;
75 	short	sc_punit;
76 	char	*sc_addr;
77 	int	sc_resid;
78 	u_int	sc_wpms;
79 	struct	rdinfo *sc_info;
80 	struct	devqueue sc_dq;
81 	struct	rd_iocmd sc_ioc;
82 	struct	rd_rscmd sc_rsc;
83 	struct	rd_stat sc_stat;
84 	struct	rd_ssmcmd sc_ssmc;
85 	struct	rd_srcmd sc_src;
86 	struct	rd_clearcmd sc_clear;
87 } rd_softc[NRD];
88 
89 /* sc_flags values */
90 #define	RDF_ALIVE	0x1
91 #define	RDF_SEEK	0x2
92 #define RDF_SWAIT	0x4
93 
94 struct	size {
95 	daddr_t	nblocks;
96 	int	cyloff;
97 };
98 
99 #ifdef DEBUG
100 int rddebug = 0x80;
101 #define RDB_FOLLOW	0x01
102 #define RDB_STATUS	0x02
103 #define RDB_IDENT	0x04
104 #define RDB_IO		0x08
105 #define RDB_ASYNC	0x10
106 #define RDB_ERROR	0x80
107 #define RDB_DUMP	0x80000000
108 
109 struct rdstats {
110 	long	rdretries;
111 	long	rdresets;
112 	long	rdtimeouts;
113 	long	rdpolltries;
114 	long	rdpollwaits;
115 } rdstats[NRD];
116 
117 /* error message tables */
118 char *err_reject[] = {
119 	0, 0,
120 	"channel parity error",		/* 0x2000 */
121 	0, 0,
122 	"illegal opcode",		/* 0x0400 */
123 	"module addressing",		/* 0x0200 */
124 	"address bounds",		/* 0x0100 */
125 	"parameter bounds",		/* 0x0080 */
126 	"illegal parameter",		/* 0x0040 */
127 	"message sequence",		/* 0x0020 */
128 	0,
129 	"message length",		/* 0x0008 */
130 	0, 0, 0
131 };
132 
133 char *err_fault[] = {
134 	0,
135 	"cross unit",			/* 0x4000 */
136 	0,
137 	"controller fault",		/* 0x1000 */
138 	0, 0,
139 	"unit fault",			/* 0x0200 */
140 	0,
141 	"diagnostic result",		/* 0x0080 */
142 	0,
143 	"operator release request",	/* 0x0020 */
144 	"diagnostic release request",	/* 0x0010 */
145 	"internal maintenance release request",	/* 0x0008 */
146 	0,
147 	"power fail",			/* 0x0002 */
148 	"retransmit"			/* 0x0001 */
149 };
150 
151 char *err_access[] = {
152 	"illegal parallel operation",	/* 0x8000 */
153 	"uninitialized media",		/* 0x4000 */
154 	"no spares available",		/* 0x2000 */
155 	"not ready",			/* 0x1000 */
156 	"write protect",		/* 0x0800 */
157 	"no data found",		/* 0x0400 */
158 	0, 0,
159 	"unrecoverable data overflow",	/* 0x0080 */
160 	"unrecoverable data",		/* 0x0040 */
161 	0,
162 	"end of file",			/* 0x0010 */
163 	"end of volume",		/* 0x0008 */
164 	0, 0, 0
165 };
166 
167 char *err_info[] = {
168 	"operator release request",	/* 0x8000 */
169 	"diagnostic release request",	/* 0x4000 */
170 	"internal maintenance release request",	/* 0x2000 */
171 	"media wear",			/* 0x1000 */
172 	"latency induced",		/* 0x0800 */
173 	0, 0,
174 	"auto sparing invoked",		/* 0x0100 */
175 	0,
176 	"recoverable data overflow",	/* 0x0040 */
177 	"marginal data",		/* 0x0020 */
178 	"recoverable data",		/* 0x0010 */
179 	0,
180 	"maintenance track overflow",	/* 0x0004 */
181 	0, 0
182 };
183 #endif
184 
185 /*
186  * CS/80 partitions.  We reserve the first cylinder for a LIF
187  * style boot directory (the 8k allowed in the BSD filesystem
188  * is just way too small).  This boot area is outside of all but
189  * the C partition.  This implies that you cannot use the C
190  * partition on a bootable disk since the filesystem would overlay
191  * the boot area.  You must use the A partition.
192  *
193  * These maps support four basic layouts:
194  *
195  *	A/B/G:   This is the "traditional" setup for a bootable disk.
196  *	         A is the root partition, B the swap, and G a user partition.
197  *	A/D/H:   This is a setup for bootable systems requiring more swap
198  *		 (e.g. those who use HPCL).  It has A as the root, D as a
199  *		 larger swap, and H as a smaller user partition.
200  *	A/D/E/F: Similar to A/D/H with E and F breaking H into two partitions.
201  *		 E could be used for /usr and F for users.
202  *	C:       This gives a single, non-bootable, large user filesystem.
203  *	         Good for second drives on a machine (e.g. /usr/src).
204  */
205 struct size rd7945A_sizes[8] = {
206 	RDSZ(15904),	1,		/* A=cyl 1 thru 142 */
207 	RDSZ(20160),	143,		/* B=cyl 143 thru 322 */
208 	RDSZ(108416),	0,		/* C=cyl 0 thru 967 */
209 	RDSZ(40320),	143,		/* D=cyl 143 thru 502 */
210 	RDSZ(0),	0,		/* E=<undefined> */
211 	RDSZ(0),	0,		/* F=<undefined> */
212 	RDSZ(72240),	323,		/* G=cyl 323 thru 967 */
213 	RDSZ(52080),	503,		/* H=cyl 503 thru 967 */
214 }, rd9134D_sizes[8] = {
215 	RDSZ(15936),	1,		/* A=cyl 1 thru 166 */
216 	RDSZ(13056),	167,		/* B=cyl 167 thru 302 */
217 	RDSZ(29088),	0,		/* C=cyl 0 thru 302 */
218 	RDSZ(0),	0,		/* D=<undefined> */
219 	RDSZ(0),	0,		/* E=<undefined> */
220 	RDSZ(0),	0,		/* F=<undefined> */
221 	RDSZ(0),	0,		/* G=<undefined> */
222 	RDSZ(0),	0,		/* H=<undefined> */
223 }, rd9122S_sizes[8] = {
224 	RDSZ(0),	0,		/* A=<undefined> */
225 	RDSZ(0),	0,		/* B=<undefined> */
226 	RDSZ(1232),	0,		/* C=cyl 0 thru 76 */
227 	RDSZ(0),	0,		/* D=<undefined> */
228 	RDSZ(0),	0,		/* E=<undefined> */
229 	RDSZ(0),	0,		/* F=<undefined> */
230 	RDSZ(0),	0,		/* G=<undefined> */
231 	RDSZ(0),	0,		/* H=<undefined> */
232 }, rd7912P_sizes[8] = {
233 	RDSZ(15904),	0,		/* A=cyl 1 thru 71 */
234 	RDSZ(22400),	72,		/* B=cyl 72 thru 171 */
235 	RDSZ(128128),	0,		/* C=cyl 0 thru 571 */
236 	RDSZ(42560),	72,		/* D=cyl 72 thru 261 */
237 	RDSZ(0),	292,		/* E=<undefined> */
238 	RDSZ(0),	542,		/* F=<undefined> */
239 	RDSZ(89600),	172,		/* G=cyl 221 thru 571 */
240 	RDSZ(69440),	262,		/* H=cyl 262 thru 571 */
241 }, rd7914P_sizes[8] = {
242 	RDSZ(15904),	1,		/* A=cyl 1 thru 71 */
243 	RDSZ(40320),	72,		/* B=cyl 72 thru 251 */
244 	RDSZ(258048),	0,		/* C=cyl 0 thru 1151 */
245 	RDSZ(64960),	72,		/* D=cyl 72 thru 361 */
246 	RDSZ(98560),	362,		/* E=cyl 362 thru 801 */
247 	RDSZ(78400),	802,		/* F=cyl 802 thru 1151 */
248 	RDSZ(201600),	252,		/* G=cyl 221 thru 1151 */
249 	RDSZ(176960),	362,		/* H=cyl 362 thru 1151 */
250 }, rd7933H_sizes[8] = {
251 	RDSZ(16146),	1,		/* A=cyl 1 thru 27 */
252 	RDSZ(66976),	28,		/* B=cyl 28 thru 139 */
253 	RDSZ(789958),	0,		/* C=cyl 0 thru 1320 */
254 	RDSZ(16146),	140,		/* D=cyl 140 thru 166 */
255 	RDSZ(165646),	167,		/* E=cyl 167 thru 443 */
256 	RDSZ(165646),	444,		/* F=cyl 444 thru 720 */
257 	RDSZ(706238),	140,		/* G=cyl 140 thru 1320 */
258 	RDSZ(358800),	721,		/* H=cyl 721 thru 1320 */
259 }, rd9134L_sizes[8] = {
260 	RDSZ(15920),	1,		/* A=cyl 1 thru 199 */
261 	RDSZ(20000),	200,		/* B=cyl 200 thru 449 */
262 	RDSZ(77840),	0,		/* C=cyl 0 thru 972 */
263 	RDSZ(32000),	200,		/* D=cyl 200 thru 599 */
264 	RDSZ(0),	0,		/* E=<undefined> */
265 	RDSZ(0),	0,		/* F=<undefined> */
266 	RDSZ(41840),	450,		/* G=cyl 450 thru 972 */
267 	RDSZ(29840),	600,		/* H=cyl 600 thru 972 */
268 }, rd7957A_sizes[8] = {
269 	RDSZ(16016),	1,		/* A=cyl 1 thru 104 */
270 	RDSZ(24640),	105,		/* B=cyl 105 thru 264 */
271 	RDSZ(159544),	0,		/* C=cyl 0 thru 1035 */
272 	RDSZ(42350),	105,		/* D=cyl 105 thru 379 */
273 	RDSZ(54824),	380,		/* E=cyl 380 thru 735 */
274 	RDSZ(46200),	736,		/* F=cyl 736 thru 1035 */
275 	RDSZ(118734),	265,		/* G=cyl 265 thru 1035 */
276 	RDSZ(101024),	380,		/* H=cyl 380 thru 1035 */
277 }, rd7958A_sizes[8] = {
278 	RDSZ(16128),	1,		/* A=cyl 1 thru 64 */
279 	RDSZ(32256),	65,		/* B=cyl 65 thru 192 */
280 	RDSZ(255276),	0,		/* C=cyl 0 thru 1012 */
281 	RDSZ(48384),	65,		/* D=cyl 65 thru 256 */
282 	RDSZ(100800),	257,		/* E=cyl 257 thru 656 */
283 	RDSZ(89712),	657,		/* F=cyl 657 thru 1012 */
284 	RDSZ(206640),	193,		/* G=cyl 193 thru 1012 */
285 	RDSZ(190512),	257,		/* H=cyl 257 thru 1012 */
286 }, rd7957B_sizes[8] = {
287 	RDSZ(16002),	1,		/* A=cyl 1 thru 127 */
288 	RDSZ(32760),	128,		/* B=cyl 128 thru 387 */
289 	RDSZ(159894),	0,		/* C=cyl 0 thru 1268 */
290 	RDSZ(49140),	128,		/* D=cyl 128 thru 517 */
291 	RDSZ(50400),	518,		/* E=cyl 518 thru 917 */
292 	RDSZ(44226),	918,		/* F=cyl 918 thru 1268 */
293 	RDSZ(111006),	388,		/* G=cyl 388 thru 1268 */
294 	RDSZ(94626),	518,		/* H=cyl 518 thru 1268 */
295 }, rd7958B_sizes[8] = {
296 	RDSZ(16254),	1,		/* A=cyl 1 thru 43 */
297 	RDSZ(32886),	44,		/* B=cyl 44 thru 130 */
298 	RDSZ(297108),	0,		/* C=cyl 0 thru 785 */
299 	RDSZ(49140),	44,		/* D=cyl 44 thru 173 */
300 	RDSZ(121716),	174,		/* E=cyl 174 thru 495 */
301 	RDSZ(109620),	496,		/* F=cyl 496 thru 785 */
302 	RDSZ(247590),	131,		/* G=cyl 131 thru 785 */
303 	RDSZ(231336),	174,		/* H=cyl 174 thru 785 */
304 }, rd7959B_sizes[8] = {
305 	RDSZ(16254),	1,		/* A=cyl 1 thru 43 */
306 	RDSZ(49140),	44,		/* B=cyl 44 thru 173 */
307 	RDSZ(594216),	0,		/* C=cyl 0 thru 1571 */
308 	RDSZ(65772),	44,		/* D=cyl 44 thru 217 */
309 	RDSZ(303912),	218,		/* E=cyl 218 thru 1021 */
310 	RDSZ(207900),	1022,		/* F=cyl 1022 thru 1571 */
311 	RDSZ(528444),	174,		/* G=cyl 174 thru 1571 */
312 	RDSZ(511812),	218,		/* H=cyl 218 thru 1571 */
313 }, rd2200A_sizes[8] = {
314 	RDSZ(16272),	1,		/* A=cyl 1 thru 36 */
315 	RDSZ(49720),	37,		/* B=cyl 37 thru 146 */
316 	RDSZ(654948),	0,		/* C=cyl 0 thru 1448 */
317 	RDSZ(65992),	37,		/* D=cyl 37 thru 182 */
318 	RDSZ(304648),	183,		/* E=cyl 183 thru 856 */
319 	RDSZ(267584),	857,		/* F=cyl 857 thru 1448 */
320 	RDSZ(588504),	147,		/* G=cyl 147 thru 1448 */
321 	RDSZ(572232),	183,		/* H=cyl 183 thru 1448 */
322 }, rd2203A_sizes[8] = {
323 	/* modelled after the 7937; i.e. bogus */
324 	RDSZ(16272),	1,		/* A=cyl 1 thru 18 */
325 	RDSZ(67800),	19,		/* B=cyl 19 thru 93 */
326 	RDSZ(1309896),	0,		/* C=cyl 0 thru 1448 */
327 	RDSZ(16272),	94,		/* D=cyl 19 thru 111 */
328 	RDSZ(305552),	112,		/* E=cyl 112 thru 449 */
329 	RDSZ(305552),	450,		/* F=cyl 450 thru 787 */
330 	RDSZ(1224920),	94,		/* G=cyl 94 thru 1448 */
331 	RDSZ(597544),	788,		/* H=cyl 788 thru 1448 */
332 
333 #if DEV_BSIZE == 512
334 /*
335  * These values would not work for 1k,
336  * since the number of cylinders would be different.
337  */
338 }, rd7936H_sizes[8] = {
339 	RDSZ(16359),	1,		/* A=cyl 1 thru 19 */
340 	RDSZ(67158),	20,		/* B=cyl 20 thru 97 */
341 	RDSZ(600978),	0,		/* C=cyl 0 thru 697 */
342 	RDSZ(16359),	98,		/* D=cyl 98 thru 116 */
343 	RDSZ(120540),	117,		/* E=cyl 117 thru 256 */
344 	RDSZ(120540),	256,		/* F=cyl 256 thru 396 */
345 	RDSZ(516600),	98,		/* G=cyl 98 thru 697 */
346 	RDSZ(259161),	397,		/* H=cyl 397 thru 697 */
347 }, rd7937H_sizes[8] = {
348 #ifdef UTAH
349 	RDSZ(15990),	1,		/* A=cyl 1 thru 10 */
350 	RDSZ(67158),	11,		/* B=cyl 11 thru 52 */
351 	RDSZ(1116102),	0,		/* C=cyl 0 thru 697 */
352 	RDSZ(124722),	53,		/* D=cyl 53 thru 130 */
353 	RDSZ(163098),	131,		/* E=cyl 131 thru 232 */
354 	RDSZ(287820),	233,		/* F=cyl 233 thru 412 */
355 	RDSZ(1031355),	53,		/* G=cyl 53 thru 697 */
356 	RDSZ(455715),	413,		/* H=cyl 413 thru 697 */
357 #else
358 	RDSZ(15990),	1,		/* A=cyl 1 thru 10 */
359 	RDSZ(67158),	11,		/* B=cyl 11 thru 52 */
360 	RDSZ(1116102),	0,		/* C=cyl 0 thru 697 */
361 	RDSZ(15990),	53,		/* D=cyl 53 thru 62 */
362 	RDSZ(246246),	63,		/* E=cyl 63 thru 216 */
363 	RDSZ(246246),	217,		/* F=cyl 217 thru 370 */
364 	RDSZ(1031355),	53,		/* G=cyl 53 thru 697 */
365 	RDSZ(522873),	371,		/* H=cyl 371 thru 697 */
366 #endif
367 #endif
368 };
369 
370 struct	rdinfo {
371 	int	nbpt;		/* DEV_BSIZE blocks per track */
372 	int	ntpc;		/* tracks per cylinder */
373 	int	nbpc;		/* blocks per cylinder */
374 	struct	size *sizes;	/* default partition info (if no disklabel) */
375 	short	hwid;		/* 2 byte HW id */
376 	short	maxunum;	/* maximum allowed unit number */
377 	char	*desc;		/* drive type description */
378 };
379 
380 struct rdinfo rdinfo[] = {
381 	NRD7945ABPT,	NRD7945ATRK,	NRD7945ABPT * NRD7945ATRK,
382 	rd7945A_sizes,	RD7946AID,	0,	"7945A",
383 	NRD9134DBPT,	NRD9134DTRK,	NRD9134DBPT * NRD9134DTRK,
384 	rd9134D_sizes,	RD9134DID,	1,	"9134D",
385 	NRD9122SBPT,	NRD9122STRK,	NRD9122SBPT * NRD9122STRK,
386 	rd9122S_sizes,	RD9134LID,	1,	"9122S",
387 	NRD7912PBPT,	NRD7912PTRK,	NRD7912PBPT * NRD7912PTRK,
388 	rd7912P_sizes,	RD7912PID,	0,	"7912P",
389 	NRD7914PBPT,	NRD7914PTRK,	NRD7914PBPT * NRD7914PTRK,
390 	rd7914P_sizes,	RD7914PID,	0,	"7914P",
391 	NRD7958ABPT,	NRD7958ATRK,	NRD7958ABPT * NRD7958ATRK,
392 	rd7958A_sizes,	RD7958AID,	0,	"7958A",
393 	NRD7957ABPT,	NRD7957ATRK,	NRD7957ABPT * NRD7957ATRK,
394 	rd7957A_sizes,	RD7957AID,	0,	"7957A",
395 	NRD7933HBPT,	NRD7933HTRK,	NRD7933HBPT * NRD7933HTRK,
396 	rd7933H_sizes,	RD7933HID,	0,	"7933H",
397 	NRD9134LBPT,	NRD9134LTRK,	NRD9134LBPT * NRD9134LTRK,
398 	rd9134L_sizes,	RD9134LID,	1,	"9134L",
399 	NRD7936HBPT,	NRD7936HTRK,	NRD7936HBPT * NRD7936HTRK,
400 	rd7936H_sizes,	RD7936HID,	0,	"7936H",
401 	NRD7937HBPT,	NRD7937HTRK,	NRD7937HBPT * NRD7937HTRK,
402 	rd7937H_sizes,	RD7937HID,	0,	"7937H",
403 	NRD7914PBPT,	NRD7914PTRK,	NRD7914PBPT * NRD7914PTRK,
404 	rd7914P_sizes,	RD7914CTID,	0,	"7914CT",
405 	NRD7945ABPT,	NRD7945ATRK,	NRD7945ABPT * NRD7945ATRK,
406 	rd7945A_sizes,	RD7946AID,	0,	"7946A",
407 	NRD9122SBPT,	NRD9122STRK,	NRD9122SBPT * NRD9122STRK,
408 	rd9122S_sizes,	RD9134LID,	1,	"9122D",
409 	NRD7957BBPT,	NRD7957BTRK,	NRD7957BBPT * NRD7957BTRK,
410 	rd7957B_sizes,	RD7957BID,	0,	"7957B",
411 	NRD7958BBPT,	NRD7958BTRK,	NRD7958BBPT * NRD7958BTRK,
412 	rd7958B_sizes,	RD7958BID,	0,	"7958B",
413 	NRD7959BBPT,	NRD7959BTRK,	NRD7959BBPT * NRD7959BTRK,
414 	rd7959B_sizes,	RD7959BID,	0,	"7959B",
415 	NRD2200ABPT,	NRD2200ATRK,	NRD2200ABPT * NRD2200ATRK,
416 	rd2200A_sizes,	RD2200AID,	0,	"2200A",
417 	NRD2203ABPT,	NRD2203ATRK,	NRD2203ABPT * NRD2203ATRK,
418 	rd2203A_sizes,	RD2203AID,	0,	"2203A",
419 };
420 int nrdinfo = sizeof(rdinfo) / sizeof(rdinfo[0]);
421 
422 struct	buf rdtab[NRD];
423 
424 #define	rdunit(x)	(minor(x) >> 3)
425 #define rdpart(x)	(minor(x) & 0x7)
426 #define	rdpunit(x)	((x) & 7)
427 #define	b_cylin		b_resid
428 #define	RDRETRY		5
429 #define RDWAITC		1	/* min time for timeout in seconds */
430 
431 int rderrthresh = RDRETRY-1;	/* when to start reporting errors */
432 
433 rdinit(hd)
434 	register struct hp_device *hd;
435 {
436 	register struct rd_softc *rs = &rd_softc[hd->hp_unit];
437 
438 	rs->sc_hd = hd;
439 	rs->sc_punit = rdpunit(hd->hp_flags);
440 	rs->sc_type = rdident(rs, hd);
441 	if (rs->sc_type < 0)
442 		return(0);
443 	rs->sc_dq.dq_ctlr = hd->hp_ctlr;
444 	rs->sc_dq.dq_unit = hd->hp_unit;
445 	rs->sc_dq.dq_slave = hd->hp_slave;
446 	rs->sc_dq.dq_driver = &rddriver;
447 	rs->sc_info = &rdinfo[rs->sc_type];
448 	rs->sc_flags = RDF_ALIVE;
449 #ifdef DEBUG
450 	/* always report errors */
451 	if (rddebug & RDB_ERROR)
452 		rderrthresh = 0;
453 #endif
454 	return(1);
455 }
456 
457 rdident(rs, hd)
458 	struct rd_softc *rs;
459 	struct hp_device *hd;
460 {
461 	struct rd_describe desc;
462 	u_char stat, cmd[3];
463 	int unit, lunit;
464 	char name[7];
465 	register int ctlr, slave, id, i;
466 
467 	ctlr = hd->hp_ctlr;
468 	slave = hd->hp_slave;
469 	unit = rs->sc_punit;
470 	lunit = hd->hp_unit;
471 
472 	/*
473 	 * Grab device id and make sure:
474 	 * 1. It is a CS80 device.
475 	 * 2. It is one of the types we support.
476 	 * 3. If it is a 7946, we are accessing the disk unit (0)
477 	 */
478 	id = hpibid(ctlr, slave);
479 #ifdef DEBUG
480 	if (rddebug & RDB_IDENT)
481 		printf("hpibid(%d, %d) -> %x\n", ctlr, slave, id);
482 #endif
483 	if ((id & 0x200) == 0)
484 		return(-1);
485 	for (i = 0; i < nrdinfo; i++)
486 		if (id == rdinfo[i].hwid)
487 			break;
488 	if (i == nrdinfo || unit > rdinfo[i].maxunum)
489 		return(-1);
490 	id = i;
491 
492 	/*
493 	 * Reset drive and collect device description.
494 	 * Don't really use the description info right now but
495 	 * might come in handy in the future (for disk labels).
496 	 */
497 	rdreset(rs, hd);
498 	cmd[0] = C_SUNIT(unit);
499 	cmd[1] = C_SVOL(0);
500 	cmd[2] = C_DESC;
501 	hpibsend(ctlr, slave, C_CMD, cmd, sizeof(cmd));
502 	hpibrecv(ctlr, slave, C_EXEC, &desc, 37);
503 	hpibrecv(ctlr, slave, C_QSTAT, &stat, sizeof(stat));
504 	bzero(name, sizeof(name));
505 	if (!stat) {
506 		register int n = desc.d_name;
507 		for (i = 5; i >= 0; i--) {
508 			name[i] = (n & 0xf) + '0';
509 			n >>= 4;
510 		}
511 		/* use drive characteristics to calculate xfer rate */
512 		rs->sc_wpms = 1000000 * (desc.d_sectsize/2) / desc.d_blocktime;
513 	}
514 #ifdef DEBUG
515 	if (rddebug & RDB_IDENT) {
516 		printf("rd%d: name: %x ('%s')\n",
517 		       lunit, desc.d_name, name);
518 		printf("  iuw %x, maxxfr %d, ctype %d\n",
519 		       desc.d_iuw, desc.d_cmaxxfr, desc.d_ctype);
520 		printf("  utype %d, bps %d, blkbuf %d, burst %d, blktime %d\n",
521 		       desc.d_utype, desc.d_sectsize,
522 		       desc.d_blkbuf, desc.d_burstsize, desc.d_blocktime);
523 		printf("  avxfr %d, ort %d, atp %d, maxint %d, fv %x, rv %x\n",
524 		       desc.d_uavexfr, desc.d_retry, desc.d_access,
525 		       desc.d_maxint, desc.d_fvbyte, desc.d_rvbyte);
526 		printf("  maxcyl/head/sect %d/%d/%d, maxvsect %d, inter %d\n",
527 		       desc.d_maxcyl, desc.d_maxhead, desc.d_maxsect,
528 		       desc.d_maxvsectl, desc.d_interleave);
529 	}
530 #endif
531 	/*
532 	 * Take care of a couple of anomolies:
533 	 * 1. 7945A and 7946A both return same HW id
534 	 * 2. 9122S and 9134D both return same HW id
535 	 * 3. 9122D and 9134L both return same HW id
536 	 */
537 	switch (rdinfo[id].hwid) {
538 	case RD7946AID:
539 		if (bcmp(name, "079450", 6) == 0)
540 			id = RD7945A;
541 		else
542 			id = RD7946A;
543 		break;
544 
545 	case RD9134LID:
546 		if (bcmp(name, "091340", 6) == 0)
547 			id = RD9134L;
548 		else
549 			id = RD9122D;
550 		break;
551 
552 	case RD9134DID:
553 		if (bcmp(name, "091220", 6) == 0)
554 			id = RD9122S;
555 		else
556 			id = RD9134D;
557 		break;
558 	}
559 	printf("rd%d: %s\n", lunit, rdinfo[id].desc);
560 	return(id);
561 }
562 
563 rdreset(rs, hd)
564 	register struct rd_softc *rs;
565 	register struct hp_device *hd;
566 {
567 	u_char stat;
568 
569 	rs->sc_clear.c_unit = C_SUNIT(rs->sc_punit);
570 	rs->sc_clear.c_cmd = C_CLEAR;
571 	hpibsend(hd->hp_ctlr, hd->hp_slave, C_TCMD, &rs->sc_clear,
572 		sizeof(rs->sc_clear));
573 	hpibswait(hd->hp_ctlr, hd->hp_slave);
574 	hpibrecv(hd->hp_ctlr, hd->hp_slave, C_QSTAT, &stat, sizeof(stat));
575 	rs->sc_src.c_unit = C_SUNIT(RDCTLR);
576 	rs->sc_src.c_nop = C_NOP;
577 	rs->sc_src.c_cmd = C_SREL;
578 	rs->sc_src.c_param = C_REL;
579 	hpibsend(hd->hp_ctlr, hd->hp_slave, C_CMD, &rs->sc_src,
580 		sizeof(rs->sc_src));
581 	hpibswait(hd->hp_ctlr, hd->hp_slave);
582 	hpibrecv(hd->hp_ctlr, hd->hp_slave, C_QSTAT, &stat, sizeof(stat));
583 	rs->sc_ssmc.c_unit = C_SUNIT(rs->sc_punit);
584 	rs->sc_ssmc.c_cmd = C_SSM;
585 	rs->sc_ssmc.c_refm = REF_MASK;
586 	rs->sc_ssmc.c_fefm = FEF_MASK;
587 	rs->sc_ssmc.c_aefm = AEF_MASK;
588 	rs->sc_ssmc.c_iefm = IEF_MASK;
589 	hpibsend(hd->hp_ctlr, hd->hp_slave, C_CMD, &rs->sc_ssmc,
590 		sizeof(rs->sc_ssmc));
591 	hpibswait(hd->hp_ctlr, hd->hp_slave);
592 	hpibrecv(hd->hp_ctlr, hd->hp_slave, C_QSTAT, &stat, sizeof(stat));
593 #ifdef DEBUG
594 	rdstats[hd->hp_unit].rdresets++;
595 #endif
596 }
597 
598 int
599 rdopen(dev, flags, mode, p)
600 	dev_t dev;
601 	int flags, mode;
602 	struct proc *p;
603 {
604 	register int unit = rdunit(dev);
605 	register struct rd_softc *rs = &rd_softc[unit];
606 
607 	if (unit >= NRD || (rs->sc_flags & RDF_ALIVE) == 0)
608 		return(ENXIO);
609 	if (rs->sc_hd->hp_dk >= 0) {
610 		/* guess at xfer rate based on 3600 rpm (60 rps) */
611 		if (rs->sc_wpms == 0)
612 			rs->sc_wpms = 60 * rs->sc_info->nbpt * DEV_BSIZE / 2;
613 		dk_wpms[rs->sc_hd->hp_dk] = rs->sc_wpms;
614 	}
615 	return(0);
616 }
617 
618 rdstrategy(bp)
619 	register struct buf *bp;
620 {
621 	register int unit = rdunit(bp->b_dev);
622 	register struct rd_softc *rs = &rd_softc[unit];
623 	register struct size *pinfo = &rs->sc_info->sizes[rdpart(bp->b_dev)];
624 	register struct buf *dp = &rdtab[unit];
625 	register daddr_t bn;
626 	register int sz, s;
627 
628 #ifdef DEBUG
629 	if (rddebug & RDB_FOLLOW)
630 		printf("rdstrategy(%x): dev %x, bn %x, bcount %x, %c\n",
631 		       bp, bp->b_dev, bp->b_blkno, bp->b_bcount,
632 		       (bp->b_flags & B_READ) ? 'R' : 'W');
633 #endif
634 	bn = bp->b_blkno;
635 	sz = howmany(bp->b_bcount, DEV_BSIZE);
636 	if (bn < 0 || bn + sz > pinfo->nblocks) {
637 		sz = pinfo->nblocks - bn;
638 		if (sz == 0) {
639 			bp->b_resid = bp->b_bcount;
640 			goto done;
641 		}
642 		if (sz < 0) {
643 			bp->b_error = EINVAL;
644 			bp->b_flags |= B_ERROR;
645 			goto done;
646 		}
647 		bp->b_bcount = dbtob(sz);
648 	}
649 	bp->b_cylin = bn / rs->sc_info->nbpc + pinfo->cyloff;
650 	s = splbio();
651 	disksort(dp, bp);
652 	if (dp->b_active == 0) {
653 		dp->b_active = 1;
654 		rdustart(unit);
655 	}
656 	splx(s);
657 	return;
658 done:
659 	biodone(bp);
660 }
661 
662 /*
663  * Called from timeout() when handling maintenance releases
664  */
665 rdrestart(unit)
666 	int unit;
667 {
668 	int s = splbio();
669 	rdustart(unit);
670 	splx(s);
671 }
672 
673 rdustart(unit)
674 	register int unit;
675 {
676 	register struct buf *bp;
677 	register struct rd_softc *rs = &rd_softc[unit];
678 
679 	bp = rdtab[unit].b_actf;
680 	rs->sc_addr = bp->b_un.b_addr;
681 	rs->sc_resid = bp->b_bcount;
682 	if (hpibreq(&rs->sc_dq))
683 		rdstart(unit);
684 }
685 
686 rdstart(unit)
687 	register int unit;
688 {
689 	register struct rd_softc *rs = &rd_softc[unit];
690 	register struct buf *bp = rdtab[unit].b_actf;
691 	register struct hp_device *hp = rs->sc_hd;
692 	register int part;
693 
694 again:
695 #ifdef DEBUG
696 	if (rddebug & RDB_FOLLOW)
697 		printf("rdstart(%d): bp %x, %c\n", unit, bp,
698 		       (bp->b_flags & B_READ) ? 'R' : 'W');
699 #endif
700 	part = rdpart(bp->b_dev);
701 	rs->sc_flags |= RDF_SEEK;
702 	rs->sc_ioc.c_unit = C_SUNIT(rs->sc_punit);
703 	rs->sc_ioc.c_volume = C_SVOL(0);
704 	rs->sc_ioc.c_saddr = C_SADDR;
705 	rs->sc_ioc.c_hiaddr = 0;
706 	rs->sc_ioc.c_addr = RDBTOS(bp->b_blkno + rs->sc_info->nbpc *
707 		rs->sc_info->sizes[part].cyloff);
708 	rs->sc_ioc.c_nop2 = C_NOP;
709 	rs->sc_ioc.c_slen = C_SLEN;
710 	rs->sc_ioc.c_len = rs->sc_resid;
711 	rs->sc_ioc.c_cmd = bp->b_flags & B_READ ? C_READ : C_WRITE;
712 #ifdef DEBUG
713 	if (rddebug & RDB_IO)
714 		printf("rdstart: hpibsend(%x, %x, %x, %x, %x)\n",
715 		       hp->hp_ctlr, hp->hp_slave, C_CMD,
716 		       &rs->sc_ioc.c_unit, sizeof(rs->sc_ioc)-2);
717 #endif
718 	if (hpibsend(hp->hp_ctlr, hp->hp_slave, C_CMD, &rs->sc_ioc.c_unit,
719 		     sizeof(rs->sc_ioc)-2) == sizeof(rs->sc_ioc)-2) {
720 		if (hp->hp_dk >= 0) {
721 			dk_busy |= 1 << hp->hp_dk;
722 			dk_seek[hp->hp_dk]++;
723 		}
724 #ifdef DEBUG
725 		if (rddebug & RDB_IO)
726 			printf("rdstart: hpibawait(%x)\n", hp->hp_ctlr);
727 #endif
728 		hpibawait(hp->hp_ctlr);
729 		return;
730 	}
731 	/*
732 	 * Experience has shown that the hpibwait in this hpibsend will
733 	 * occasionally timeout.  It appears to occur mostly on old 7914
734 	 * drives with full maintenance tracks.  We should probably
735 	 * integrate this with the backoff code in rderror.
736 	 */
737 #ifdef DEBUG
738 	if (rddebug & RDB_ERROR)
739 		printf("rd%d: rdstart: cmd %x adr %d blk %d len %d ecnt %d\n",
740 		       unit, rs->sc_ioc.c_cmd, rs->sc_ioc.c_addr,
741 		       bp->b_blkno, rs->sc_resid, rdtab[unit].b_errcnt);
742 	rdstats[unit].rdretries++;
743 #endif
744 	rs->sc_flags &= ~RDF_SEEK;
745 	rdreset(rs, hp);
746 	if (rdtab[unit].b_errcnt++ < RDRETRY)
747 		goto again;
748 	printf("rd%d: rdstart err: cmd 0x%x sect %d blk %d len %d\n",
749 	       unit, rs->sc_ioc.c_cmd, rs->sc_ioc.c_addr,
750 	       bp->b_blkno, rs->sc_resid);
751 	rdtab[unit].b_errcnt = 0;
752 	rdtab[unit].b_actf = bp->b_actf;
753 	bp->b_flags |= B_ERROR;
754 	bp->b_error = EIO;
755 	bp->b_resid = 0;
756 	biodone(bp);
757 	hpibfree(&rs->sc_dq);
758 	bp = rdtab[unit].b_actf;
759 	if (bp == NULL) {
760 		rdtab[unit].b_active = 0;
761 		return;
762 	}
763 	rs->sc_addr = bp->b_un.b_addr;
764 	rs->sc_resid = bp->b_bcount;
765 	if (hpibreq(&rs->sc_dq))
766 		goto again;
767 }
768 
769 rdgo(unit)
770 	register int unit;
771 {
772 	register struct rd_softc *rs = &rd_softc[unit];
773 	register struct hp_device *hp = rs->sc_hd;
774 	struct buf *bp = rdtab[unit].b_actf;
775 
776 	if (hp->hp_dk >= 0) {
777 		dk_busy |= 1 << hp->hp_dk;
778 		dk_xfer[hp->hp_dk]++;
779 		dk_wds[hp->hp_dk] += rs->sc_resid >> 6;
780 	}
781 	hpibgo(hp->hp_ctlr, hp->hp_slave, C_EXEC,
782 	       rs->sc_addr, rs->sc_resid, bp->b_flags & B_READ);
783 }
784 
785 rdintr(unit)
786 	register int unit;
787 {
788 	register struct rd_softc *rs = &rd_softc[unit];
789 	register struct buf *bp = rdtab[unit].b_actf;
790 	register struct hp_device *hp = rs->sc_hd;
791 	u_char stat = 13;	/* in case hpibrecv fails */
792 	int rv, restart;
793 
794 #ifdef DEBUG
795 	if (rddebug & RDB_FOLLOW)
796 		printf("rdintr(%d): bp %x, %c, flags %x\n", unit, bp,
797 		       (bp->b_flags & B_READ) ? 'R' : 'W', rs->sc_flags);
798 	if (bp == NULL) {
799 		printf("rd%d: bp == NULL\n", unit);
800 		return;
801 	}
802 #endif
803 	if (hp->hp_dk >= 0)
804 		dk_busy &= ~(1 << hp->hp_dk);
805 	if (rs->sc_flags & RDF_SEEK) {
806 		rs->sc_flags &= ~RDF_SEEK;
807 		if (hpibustart(hp->hp_ctlr))
808 			rdgo(unit);
809 		return;
810 	}
811 	if ((rs->sc_flags & RDF_SWAIT) == 0) {
812 #ifdef DEBUG
813 		rdstats[unit].rdpolltries++;
814 #endif
815 		if (hpibpptest(hp->hp_ctlr, hp->hp_slave) == 0) {
816 #ifdef DEBUG
817 			rdstats[unit].rdpollwaits++;
818 #endif
819 			if (hp->hp_dk >= 0)
820 				dk_busy |= 1 << hp->hp_dk;
821 			rs->sc_flags |= RDF_SWAIT;
822 			hpibawait(hp->hp_ctlr);
823 			return;
824 		}
825 	} else
826 		rs->sc_flags &= ~RDF_SWAIT;
827 	rv = hpibrecv(hp->hp_ctlr, hp->hp_slave, C_QSTAT, &stat, 1);
828 	if (rv != 1 || stat) {
829 #ifdef DEBUG
830 		if (rddebug & RDB_ERROR)
831 			printf("rdintr: recv failed or bad stat %d\n", stat);
832 #endif
833 		restart = rderror(unit);
834 #ifdef DEBUG
835 		rdstats[unit].rdretries++;
836 #endif
837 		if (rdtab[unit].b_errcnt++ < RDRETRY) {
838 			if (restart)
839 				rdstart(unit);
840 			return;
841 		}
842 		bp->b_flags |= B_ERROR;
843 		bp->b_error = EIO;
844 	}
845 	rdtab[unit].b_errcnt = 0;
846 	rdtab[unit].b_actf = bp->b_actf;
847 	bp->b_resid = 0;
848 	biodone(bp);
849 	hpibfree(&rs->sc_dq);
850 	if (rdtab[unit].b_actf)
851 		rdustart(unit);
852 	else
853 		rdtab[unit].b_active = 0;
854 }
855 
856 rdstatus(rs)
857 	register struct rd_softc *rs;
858 {
859 	register int c, s;
860 	u_char stat;
861 	int rv;
862 
863 	c = rs->sc_hd->hp_ctlr;
864 	s = rs->sc_hd->hp_slave;
865 	rs->sc_rsc.c_unit = C_SUNIT(rs->sc_punit);
866 	rs->sc_rsc.c_sram = C_SRAM;
867 	rs->sc_rsc.c_ram = C_RAM;
868 	rs->sc_rsc.c_cmd = C_STATUS;
869 	bzero((caddr_t)&rs->sc_stat, sizeof(rs->sc_stat));
870 	rv = hpibsend(c, s, C_CMD, &rs->sc_rsc, sizeof(rs->sc_rsc));
871 	if (rv != sizeof(rs->sc_rsc)) {
872 #ifdef DEBUG
873 		if (rddebug & RDB_STATUS)
874 			printf("rdstatus: send C_CMD failed %d != %d\n",
875 			       rv, sizeof(rs->sc_rsc));
876 #endif
877 		return(1);
878 	}
879 	rv = hpibrecv(c, s, C_EXEC, &rs->sc_stat, sizeof(rs->sc_stat));
880 	if (rv != sizeof(rs->sc_stat)) {
881 #ifdef DEBUG
882 		if (rddebug & RDB_STATUS)
883 			printf("rdstatus: send C_EXEC failed %d != %d\n",
884 			       rv, sizeof(rs->sc_stat));
885 #endif
886 		return(1);
887 	}
888 	rv = hpibrecv(c, s, C_QSTAT, &stat, 1);
889 	if (rv != 1 || stat) {
890 #ifdef DEBUG
891 		if (rddebug & RDB_STATUS)
892 			printf("rdstatus: recv failed %d or bad stat %d\n",
893 			       rv, stat);
894 #endif
895 		return(1);
896 	}
897 	return(0);
898 }
899 
900 /*
901  * Deal with errors.
902  * Returns 1 if request should be restarted,
903  * 0 if we should just quietly give up.
904  */
905 rderror(unit)
906 	int unit;
907 {
908 	struct rd_softc *rs = &rd_softc[unit];
909 	register struct rd_stat *sp;
910 	struct buf *bp;
911 	daddr_t hwbn, pbn;
912 
913 	if (rdstatus(rs)) {
914 #ifdef DEBUG
915 		printf("rd%d: couldn't get status\n", unit);
916 #endif
917 		rdreset(rs, rs->sc_hd);
918 		return(1);
919 	}
920 	sp = &rs->sc_stat;
921 	if (sp->c_fef & FEF_REXMT)
922 		return(1);
923 	if (sp->c_fef & FEF_PF) {
924 		rdreset(rs, rs->sc_hd);
925 		return(1);
926 	}
927 	/*
928 	 * Unit requests release for internal maintenance.
929 	 * We just delay awhile and try again later.  Use expontially
930 	 * increasing backoff ala ethernet drivers since we don't really
931 	 * know how long the maintenance will take.  With RDWAITC and
932 	 * RDRETRY as defined, the range is 1 to 32 seconds.
933 	 */
934 	if (sp->c_fef & FEF_IMR) {
935 		extern int hz;
936 		int rdtimo = RDWAITC << rdtab[unit].b_errcnt;
937 #ifdef DEBUG
938 		printf("rd%d: internal maintenance, %d second timeout\n",
939 		       unit, rdtimo);
940 		rdstats[unit].rdtimeouts++;
941 #endif
942 		hpibfree(&rs->sc_dq);
943 		timeout(rdrestart, unit, rdtimo*hz);
944 		return(0);
945 	}
946 	/*
947 	 * Only report error if we have reached the error reporting
948 	 * threshhold.  By default, this will only report after the
949 	 * retry limit has been exceeded.
950 	 */
951 	if (rdtab[unit].b_errcnt < rderrthresh)
952 		return(1);
953 
954 	/*
955 	 * First conjure up the block number at which the error occured.
956 	 * Note that not all errors report a block number, in that case
957 	 * we just use b_blkno.
958  	 */
959 	bp = rdtab[unit].b_actf;
960 	pbn = rs->sc_info->nbpc *
961 		rs->sc_info->sizes[rdpart(bp->b_dev)].cyloff;
962 	if ((sp->c_fef & FEF_CU) || (sp->c_fef & FEF_DR) ||
963 	    (sp->c_ief & IEF_RRMASK)) {
964 		hwbn = RDBTOS(pbn + bp->b_blkno);
965 		pbn = bp->b_blkno;
966 	} else {
967 		hwbn = sp->c_blk;
968 		pbn = RDSTOB(hwbn) - pbn;
969 	}
970 	/*
971 	 * Now output a generic message suitable for badsect.
972 	 * Note that we don't use harderr cuz it just prints
973 	 * out b_blkno which is just the beginning block number
974 	 * of the transfer, not necessary where the error occured.
975 	 */
976 	printf("rd%d%c: hard error sn%d\n",
977 	       rdunit(bp->b_dev), 'a'+rdpart(bp->b_dev), pbn);
978 	/*
979 	 * Now report the status as returned by the hardware with
980 	 * attempt at interpretation (unless debugging).
981 	 */
982 	printf("rd%d %s error:",
983 	       unit, (bp->b_flags & B_READ) ? "read" : "write");
984 #ifdef DEBUG
985 	if (rddebug & RDB_ERROR) {
986 		/* status info */
987 		printf("\n    volume: %d, unit: %d\n",
988 		       (sp->c_vu>>4)&0xF, sp->c_vu&0xF);
989 		rdprinterr("reject", sp->c_ref, err_reject);
990 		rdprinterr("fault", sp->c_fef, err_fault);
991 		rdprinterr("access", sp->c_aef, err_access);
992 		rdprinterr("info", sp->c_ief, err_info);
993 		printf("    block: %d, P1-P10: ", hwbn);
994 		printf("%s", hexstr(*(u_int *)&sp->c_raw[0], 8));
995 		printf("%s", hexstr(*(u_int *)&sp->c_raw[4], 8));
996 		printf("%s\n", hexstr(*(u_short *)&sp->c_raw[8], 4));
997 		/* command */
998 		printf("    ioc: ");
999 		printf("%s", hexstr(*(u_int *)&rs->sc_ioc.c_pad, 8));
1000 		printf("%s", hexstr(*(u_short *)&rs->sc_ioc.c_hiaddr, 4));
1001 		printf("%s", hexstr(*(u_int *)&rs->sc_ioc.c_addr, 8));
1002 		printf("%s", hexstr(*(u_short *)&rs->sc_ioc.c_nop2, 4));
1003 		printf("%s", hexstr(*(u_int *)&rs->sc_ioc.c_len, 8));
1004 		printf("%s\n", hexstr(*(u_short *)&rs->sc_ioc.c_cmd, 4));
1005 		return(1);
1006 	}
1007 #endif
1008 	printf(" v%d u%d, R0x%x F0x%x A0x%x I0x%x\n",
1009 	       (sp->c_vu>>4)&0xF, sp->c_vu&0xF,
1010 	       sp->c_ref, sp->c_fef, sp->c_aef, sp->c_ief);
1011 	printf("P1-P10: ");
1012 	printf("%s", hexstr(*(u_int *)&sp->c_raw[0], 8));
1013 	printf("%s", hexstr(*(u_int *)&sp->c_raw[4], 8));
1014 	printf("%s\n", hexstr(*(u_short *)&sp->c_raw[8], 4));
1015 	return(1);
1016 }
1017 
1018 int
1019 rdread(dev, uio, flags)
1020 	dev_t dev;
1021 	struct uio *uio;
1022 	int flags;
1023 {
1024 	register int unit = rdunit(dev);
1025 
1026 	return (physio(rdstrategy, NULL, dev, B_READ, minphys, uio));
1027 }
1028 
1029 int
1030 rdwrite(dev, uio, flags)
1031 	dev_t dev;
1032 	struct uio *uio;
1033 	int flags;
1034 {
1035 	register int unit = rdunit(dev);
1036 
1037 	return (physio(rdstrategy, NULL, dev, B_WRITE, minphys, uio));
1038 }
1039 
1040 int
1041 rdioctl(dev, cmd, data, flag, p)
1042 	dev_t dev;
1043 	int cmd;
1044 	caddr_t data;
1045 	int flag;
1046 	struct proc *p;
1047 {
1048 	return(EINVAL);
1049 }
1050 
1051 int
1052 rdsize(dev)
1053 	dev_t dev;
1054 {
1055 	register int unit = rdunit(dev);
1056 	register struct rd_softc *rs = &rd_softc[unit];
1057 
1058 	if (unit >= NRD || (rs->sc_flags & RDF_ALIVE) == 0)
1059 		return(-1);
1060 	return(rs->sc_info->sizes[rdpart(dev)].nblocks);
1061 }
1062 
1063 #ifdef DEBUG
1064 rdprinterr(str, err, tab)
1065 	char *str;
1066 	short err;
1067 	char *tab[];
1068 {
1069 	register int i;
1070 	int printed;
1071 
1072 	if (err == 0)
1073 		return;
1074 	printf("    %s error field:", str, err);
1075 	printed = 0;
1076 	for (i = 0; i < 16; i++)
1077 		if (err & (0x8000 >> i))
1078 			printf("%s%s", printed++ ? " + " : " ", tab[i]);
1079 	printf("\n");
1080 }
1081 #endif
1082 
1083 /*
1084  * Non-interrupt driven, non-dma dump routine.
1085  */
1086 int
1087 rddump(dev)
1088 	dev_t dev;
1089 {
1090 	int part = rdpart(dev);
1091 	int unit = rdunit(dev);
1092 	register struct rd_softc *rs = &rd_softc[unit];
1093 	register struct hp_device *hp = rs->sc_hd;
1094 	register daddr_t baddr;
1095 	register int maddr, pages, i;
1096 	char stat;
1097 	extern int lowram, dumpsize;
1098 #ifdef DEBUG
1099 	extern int pmapdebug;
1100 	pmapdebug = 0;
1101 #endif
1102 
1103 	pages = dumpsize;
1104 #ifdef DEBUG
1105 	if (rddebug & RDB_DUMP)
1106 		printf("rddump(%x): u %d p %d dumplo %d ram %x pmem %d\n",
1107 		       dev, unit, part, dumplo, lowram, ctod(pages));
1108 #endif
1109 	/* is drive ok? */
1110 	if (unit >= NRD || (rs->sc_flags & RDF_ALIVE) == 0)
1111 		return (ENXIO);
1112 	/* HPIB idle? */
1113 	if (!hpibreq(&rs->sc_dq)) {
1114 #ifdef DEBUG
1115 		/* is this a safe thing to do?? */
1116 		hpibreset(hp->hp_ctlr);
1117 		rdreset(rs, rs->sc_hd);
1118 		printf("[ drive %d reset ] ", unit);
1119 #else
1120 		return (EFAULT);
1121 #endif
1122 	}
1123 	/* dump parameters in range? */
1124 	if (dumplo < 0 || dumplo >= rs->sc_info->sizes[part].nblocks)
1125 		return (EINVAL);
1126 	if (dumplo + ctod(pages) > rs->sc_info->sizes[part].nblocks)
1127 		pages = dtoc(rs->sc_info->sizes[part].nblocks - dumplo);
1128 	maddr = lowram;
1129 	baddr = dumplo + rs->sc_info->nbpc * rs->sc_info->sizes[part].cyloff;
1130 #ifdef DEBUG
1131 	if (rddebug & RDB_DUMP)
1132 		printf("rddump: dumping %d pages from %x to disk block %d\n",
1133 		       pages, maddr, baddr);
1134 #endif
1135 	for (i = 0; i < pages; i++) {
1136 #ifdef DEBUG
1137 #define NPGMB	(1024*1024/NBPG)
1138 		/* print out how many Mbs we have dumped */
1139 		if (i && (i % NPGMB) == 0)
1140 			printf("%d ", i / NPGMB);
1141 #undef NPBMG
1142 #endif
1143 		rs->sc_ioc.c_unit = C_SUNIT(rs->sc_punit);
1144 		rs->sc_ioc.c_volume = C_SVOL(0);
1145 		rs->sc_ioc.c_saddr = C_SADDR;
1146 		rs->sc_ioc.c_hiaddr = 0;
1147 		rs->sc_ioc.c_addr = RDBTOS(baddr);
1148 		rs->sc_ioc.c_nop2 = C_NOP;
1149 		rs->sc_ioc.c_slen = C_SLEN;
1150 		rs->sc_ioc.c_len = NBPG;
1151 		rs->sc_ioc.c_cmd = C_WRITE;
1152 		hpibsend(hp->hp_ctlr, hp->hp_slave, C_CMD,
1153 			 &rs->sc_ioc.c_unit, sizeof(rs->sc_ioc)-2);
1154 		if (hpibswait(hp->hp_ctlr, hp->hp_slave)) {
1155 #ifdef DEBUG
1156 			if (rddebug & RDB_DUMP)
1157 				printf("rddump: IOC wait timeout\n");
1158 #endif
1159 			return (EIO);
1160 		}
1161 		pmap_enter(pmap_kernel(), vmmap, maddr, VM_PROT_READ, TRUE);
1162 		hpibsend(hp->hp_ctlr, hp->hp_slave, C_EXEC, vmmap, NBPG);
1163 		if (hpibswait(hp->hp_ctlr, hp->hp_slave)) {
1164 #ifdef DEBUG
1165 			if (rddebug & RDB_DUMP)
1166 				printf("rddump: write wait timeout\n");
1167 #endif
1168 		}
1169 		hpibrecv(hp->hp_ctlr, hp->hp_slave, C_QSTAT, &stat, 1);
1170 		if (stat) {
1171 #ifdef DEBUG
1172 			if (rddebug & RDB_DUMP)
1173 				printf("rddump: write failed, status %x\n",
1174 				       stat);
1175 #endif
1176 			return (EIO);
1177 		}
1178 		maddr += NBPG;
1179 		baddr += ctod(1);
1180 	}
1181 	return (0);
1182 }
1183 #endif
1184