1 /* $NetBSD: mt.c,v 1.14 2000/05/19 18:54:31 thorpej Exp $ */ 2 3 /*- 4 * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /* 40 * Copyright (c) 1992, The University of Utah and 41 * the Computer Systems Laboratory at the University of Utah (CSL). 42 * All rights reserved. 43 * 44 * Permission to use, copy, modify and distribute this software is hereby 45 * granted provided that (1) source code retains these copyright, permission, 46 * and disclaimer notices, and (2) redistributions including binaries 47 * reproduce the notices in supporting documentation, and (3) all advertising 48 * materials mentioning features or use of this software display the following 49 * acknowledgement: ``This product includes software developed by the 50 * Computer Systems Laboratory at the University of Utah.'' 51 * 52 * THE UNIVERSITY OF UTAH AND CSL ALLOW FREE USE OF THIS SOFTWARE IN ITS "AS 53 * IS" CONDITION. THE UNIVERSITY OF UTAH AND CSL DISCLAIM ANY LIABILITY OF 54 * ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 55 * 56 * CSL requests users of this software to return to csl-dist@cs.utah.edu any 57 * improvements that they make and grant CSL redistribution rights. 58 * 59 * Utah $Hdr: mt.c 1.8 95/09/12$ 60 */ 61 /* @(#)mt.c 3.9 90/07/10 mt Xinu 62 * 63 * Magnetic tape driver (7974a, 7978a/b, 7979a, 7980a, 7980xc) 64 * Original version contributed by Mt. Xinu. 65 * Modified for 4.4BSD by Mark Davies and Andrew Vignaux, Department of 66 * Computer Science, Victoria University of Wellington 67 */ 68 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/callout.h> 72 #include <sys/buf.h> 73 #include <sys/ioctl.h> 74 #include <sys/mtio.h> 75 #include <sys/file.h> 76 #include <sys/proc.h> 77 #include <sys/errno.h> 78 #include <sys/syslog.h> 79 #include <sys/tty.h> 80 #include <sys/kernel.h> 81 #include <sys/tprintf.h> 82 #include <sys/device.h> 83 #include <sys/conf.h> 84 85 #include <hp300/dev/hpibvar.h> 86 87 #include <hp300/dev/mtreg.h> 88 89 struct mtinfo { 90 u_short hwid; 91 char *desc; 92 } mtinfo[] = { 93 { MT7978ID, "7978" }, 94 { MT7979AID, "7979A" }, 95 { MT7980ID, "7980" }, 96 { MT7974AID, "7974A" }, 97 }; 98 int nmtinfo = sizeof(mtinfo) / sizeof(mtinfo[0]); 99 100 struct mt_softc { 101 struct device sc_dev; 102 struct callout sc_start_ch; 103 struct callout sc_intr_ch; 104 int sc_hpibno; /* logical HPIB this slave it attached to */ 105 int sc_slave; /* HPIB slave address (0-6) */ 106 short sc_flags; /* see below */ 107 u_char sc_lastdsj; /* place for DSJ in mtreaddsj() */ 108 u_char sc_lastecmd; /* place for End Command in mtreaddsj() */ 109 short sc_recvtimeo; /* count of hpibsend timeouts to prevent hang */ 110 short sc_statindex; /* index for next sc_stat when MTF_STATTIMEO */ 111 struct mt_stat sc_stat;/* status bytes last read from device */ 112 short sc_density; /* current density of tape (mtio.h format) */ 113 short sc_type; /* tape drive model (hardware IDs) */ 114 struct hpibqueue sc_hq; /* HPIB device queue member */ 115 tpr_t sc_ttyp; 116 struct buf_queue sc_tab;/* buf queue */ 117 int sc_active; 118 struct buf sc_bufstore; /* XXX buffer storage */ 119 }; 120 121 #ifdef DEBUG 122 int mtdebug = 0; 123 #define dlog if (mtdebug) log 124 #else 125 #define dlog if (0) log 126 #endif 127 128 #define UNIT(x) (minor(x) & 3) 129 130 #define B_CMD B_XXX /* command buf instead of data */ 131 #define b_cmd b_blkno /* blkno holds cmd when B_CMD */ 132 133 int mtmatch __P((struct device *, struct cfdata *, void *)); 134 void mtattach __P((struct device *, struct device *, void *)); 135 136 struct cfattach mt_ca = { 137 sizeof(struct mt_softc), mtmatch, mtattach 138 }; 139 140 extern struct cfdriver mt_cd; 141 142 int mtident __P((struct mt_softc *, struct hpibbus_attach_args *)); 143 void mtustart __P((struct mt_softc *)); 144 int mtreaddsj __P((struct mt_softc *, int)); 145 int mtcommand __P((dev_t, int, int)); 146 void spl_mtintr __P((void *)); 147 void spl_mtstart __P((void *)); 148 149 void mtstart __P((void *)); 150 void mtgo __P((void *)); 151 void mtintr __P((void *)); 152 153 bdev_decl(mt); 154 cdev_decl(mt); 155 156 int 157 mtmatch(parent, match, aux) 158 struct device *parent; 159 struct cfdata *match; 160 void *aux; 161 { 162 struct hpibbus_attach_args *ha = aux; 163 164 return (mtident(NULL, ha)); 165 } 166 167 void 168 mtattach(parent, self, aux) 169 struct device *parent, *self; 170 void *aux; 171 { 172 struct mt_softc *sc = (struct mt_softc *)self; 173 struct hpibbus_attach_args *ha = aux; 174 int unit, hpibno, slave; 175 176 if (mtident(sc, ha) == 0) { 177 printf("\n%s: impossible!\n", sc->sc_dev.dv_xname); 178 return; 179 } 180 181 unit = self->dv_unit; 182 hpibno = parent->dv_unit; 183 slave = ha->ha_slave; 184 185 BUFQ_INIT(&sc->sc_tab); 186 callout_init(&sc->sc_start_ch); 187 callout_init(&sc->sc_intr_ch); 188 189 sc->sc_hpibno = hpibno; 190 sc->sc_slave = slave; 191 sc->sc_flags = MTF_EXISTS; 192 193 /* Initialize hpib job queue entry. */ 194 sc->sc_hq.hq_softc = sc; 195 sc->sc_hq.hq_slave = sc->sc_slave; 196 sc->sc_hq.hq_start = mtstart; 197 sc->sc_hq.hq_go = mtgo; 198 sc->sc_hq.hq_intr = mtintr; 199 } 200 201 int 202 mtident(sc, ha) 203 struct mt_softc *sc; 204 struct hpibbus_attach_args *ha; 205 { 206 int i; 207 208 for (i = 0; i < nmtinfo; i++) { 209 if (ha->ha_id == mtinfo[i].hwid) { 210 if (sc != NULL) { 211 sc->sc_type = mtinfo[i].hwid; 212 printf(": %s tape\n", mtinfo[i].desc); 213 } 214 return (1); 215 } 216 } 217 return (0); 218 } 219 220 /* 221 * Perform a read of "Device Status Jump" register and update the 222 * status if necessary. If status is read, the given "ecmd" is also 223 * performed, unless "ecmd" is zero. Returns DSJ value, -1 on failure 224 * and -2 on "temporary" failure. 225 */ 226 int 227 mtreaddsj(sc, ecmd) 228 struct mt_softc *sc; 229 int ecmd; 230 { 231 int retval; 232 233 if (sc->sc_flags & MTF_STATTIMEO) 234 goto getstats; 235 retval = hpibrecv(sc->sc_hpibno, 236 (sc->sc_flags & MTF_DSJTIMEO) ? -1 : sc->sc_slave, 237 MTT_DSJ, &(sc->sc_lastdsj), 1); 238 sc->sc_flags &= ~MTF_DSJTIMEO; 239 if (retval != 1) { 240 dlog(LOG_DEBUG, "%s can't hpibrecv DSJ", 241 sc->sc_dev.dv_xname); 242 if (sc->sc_recvtimeo == 0) 243 sc->sc_recvtimeo = hz; 244 if (--sc->sc_recvtimeo == 0) 245 return (-1); 246 if (retval == 0) 247 sc->sc_flags |= MTF_DSJTIMEO; 248 return (-2); 249 } 250 sc->sc_recvtimeo = 0; 251 sc->sc_statindex = 0; 252 dlog(LOG_DEBUG, "%s readdsj: 0x%x", sc->sc_dev.dv_xname, 253 sc->sc_lastdsj); 254 sc->sc_lastecmd = ecmd; 255 switch (sc->sc_lastdsj) { 256 case 0: 257 if (ecmd & MTE_DSJ_FORCE) 258 break; 259 return (0); 260 261 case 2: 262 sc->sc_lastecmd = MTE_COMPLETE; 263 case 1: 264 break; 265 266 default: 267 log(LOG_ERR, "%s readdsj: DSJ 0x%x\n", sc->sc_dev.dv_xname, 268 sc->sc_lastdsj); 269 return (-1); 270 } 271 getstats: 272 retval = hpibrecv(sc->sc_hpibno, 273 (sc->sc_flags & MTF_STATCONT) ? -1 : sc->sc_slave, 274 MTT_STAT, ((char *)&(sc->sc_stat)) + sc->sc_statindex, 275 sizeof(sc->sc_stat) - sc->sc_statindex); 276 sc->sc_flags &= ~(MTF_STATTIMEO | MTF_STATCONT); 277 if (retval != sizeof(sc->sc_stat) - sc->sc_statindex) { 278 if (sc->sc_recvtimeo == 0) 279 sc->sc_recvtimeo = hz; 280 if (--sc->sc_recvtimeo != 0) { 281 if (retval >= 0) { 282 sc->sc_statindex += retval; 283 sc->sc_flags |= MTF_STATCONT; 284 } 285 sc->sc_flags |= MTF_STATTIMEO; 286 return (-2); 287 } 288 log(LOG_ERR, "%s readdsj: can't read status", 289 sc->sc_dev.dv_xname); 290 return (-1); 291 } 292 sc->sc_recvtimeo = 0; 293 sc->sc_statindex = 0; 294 dlog(LOG_DEBUG, "%s readdsj: status is %x %x %x %x %x %x", 295 sc->sc_dev.dv_xname, 296 sc->sc_stat1, sc->sc_stat2, sc->sc_stat3, 297 sc->sc_stat4, sc->sc_stat5, sc->sc_stat6); 298 if (sc->sc_lastecmd) 299 (void) hpibsend(sc->sc_hpibno, sc->sc_slave, 300 MTL_ECMD, &(sc->sc_lastecmd), 1); 301 return ((int) sc->sc_lastdsj); 302 } 303 304 int 305 mtopen(dev, flag, mode, p) 306 dev_t dev; 307 int flag, mode; 308 struct proc *p; 309 { 310 int unit = UNIT(dev); 311 struct mt_softc *sc; 312 int req_den; 313 int error; 314 315 if (unit >= mt_cd.cd_ndevs || 316 (sc = mt_cd.cd_devs[unit]) == NULL || 317 (sc->sc_flags & MTF_EXISTS) == 0) 318 return (ENXIO); 319 320 dlog(LOG_DEBUG, "%s open: flags 0x%x", sc->sc_dev.dv_xname, 321 sc->sc_flags); 322 if (sc->sc_flags & MTF_OPEN) 323 return (EBUSY); 324 sc->sc_flags |= MTF_OPEN; 325 sc->sc_ttyp = tprintf_open(p); 326 if ((sc->sc_flags & MTF_ALIVE) == 0) { 327 error = mtcommand(dev, MTRESET, 0); 328 if (error != 0 || (sc->sc_flags & MTF_ALIVE) == 0) 329 goto errout; 330 if ((sc->sc_stat1 & (SR1_BOT | SR1_ONLINE)) == SR1_ONLINE) 331 (void) mtcommand(dev, MTREW, 0); 332 } 333 for (;;) { 334 if ((error = mtcommand(dev, MTNOP, 0)) != 0) 335 goto errout; 336 if (!(sc->sc_flags & MTF_REW)) 337 break; 338 if (tsleep((caddr_t) &lbolt, PCATCH | (PZERO + 1), 339 "mt", 0) != 0) { 340 error = EINTR; 341 goto errout; 342 } 343 } 344 if ((flag & FWRITE) && (sc->sc_stat1 & SR1_RO)) { 345 error = EROFS; 346 goto errout; 347 } 348 if (!(sc->sc_stat1 & SR1_ONLINE)) { 349 uprintf("%s: not online\n", sc->sc_dev.dv_xname); 350 error = EIO; 351 goto errout; 352 } 353 /* 354 * Select density: 355 * - find out what density the drive is set to 356 * (i.e. the density of the current tape) 357 * - if we are going to write 358 * - if we're not at the beginning of the tape 359 * - complain if we want to change densities 360 * - otherwise, select the mtcommand to set the density 361 * 362 * If the drive doesn't support it then don't change the recorded 363 * density. 364 * 365 * The original MOREbsd code had these additional conditions 366 * for the mid-tape change 367 * 368 * req_den != T_BADBPI && 369 * sc->sc_density != T_6250BPI 370 * 371 * which suggests that it would be possible to write multiple 372 * densities if req_den == T_BAD_BPI or the current tape 373 * density was 6250. Testing of our 7980 suggests that the 374 * device cannot change densities mid-tape. 375 * 376 * ajv@comp.vuw.ac.nz 377 */ 378 sc->sc_density = (sc->sc_stat2 & SR2_6250) ? T_6250BPI : ( 379 (sc->sc_stat3 & SR3_1600) ? T_1600BPI : ( 380 (sc->sc_stat3 & SR3_800) ? T_800BPI : -1)); 381 req_den = (dev & T_DENSEL); 382 383 if (flag & FWRITE) { 384 if (!(sc->sc_stat1 & SR1_BOT)) { 385 if (sc->sc_density != req_den) { 386 uprintf("%s: can't change density mid-tape\n", 387 sc->sc_dev.dv_xname); 388 error = EIO; 389 goto errout; 390 } 391 } 392 else { 393 int mtset_density = 394 (req_den == T_800BPI ? MTSET800BPI : ( 395 req_den == T_1600BPI ? MTSET1600BPI : ( 396 req_den == T_6250BPI ? MTSET6250BPI : ( 397 sc->sc_type == MT7980ID 398 ? MTSET6250DC 399 : MTSET6250BPI)))); 400 if (mtcommand(dev, mtset_density, 0) == 0) 401 sc->sc_density = req_den; 402 } 403 } 404 return (0); 405 errout: 406 sc->sc_flags &= ~MTF_OPEN; 407 return (error); 408 } 409 410 int 411 mtclose(dev, flag, fmt, p) 412 dev_t dev; 413 int flag, fmt; 414 struct proc *p; 415 { 416 struct mt_softc *sc = mt_cd.cd_devs[UNIT(dev)]; 417 418 if (sc->sc_flags & MTF_WRT) { 419 (void) mtcommand(dev, MTWEOF, 2); 420 (void) mtcommand(dev, MTBSF, 0); 421 } 422 if ((minor(dev) & T_NOREWIND) == 0) 423 (void) mtcommand(dev, MTREW, 0); 424 sc->sc_flags &= ~MTF_OPEN; 425 tprintf_close(sc->sc_ttyp); 426 return (0); 427 } 428 429 int 430 mtcommand(dev, cmd, cnt) 431 dev_t dev; 432 int cmd; 433 int cnt; 434 { 435 struct mt_softc *sc = mt_cd.cd_devs[UNIT(dev)]; 436 struct buf *bp = &sc->sc_bufstore; 437 int error = 0; 438 439 #if 1 440 if (bp->b_flags & B_BUSY) 441 return (EBUSY); 442 #endif 443 bp->b_cmd = cmd; 444 bp->b_dev = dev; 445 do { 446 bp->b_flags = B_BUSY | B_CMD; 447 mtstrategy(bp); 448 biowait(bp); 449 if (bp->b_flags & B_ERROR) { 450 error = (int) (unsigned) bp->b_error; 451 break; 452 } 453 } while (--cnt > 0); 454 #if 0 455 bp->b_flags = 0 /*&= ~B_BUSY*/; 456 #else 457 bp->b_flags &= ~B_BUSY; 458 #endif 459 return (error); 460 } 461 462 /* 463 * Only thing to check here is for legal record lengths (writes only). 464 */ 465 void 466 mtstrategy(bp) 467 struct buf *bp; 468 { 469 struct mt_softc *sc; 470 int unit; 471 int s; 472 473 unit = UNIT(bp->b_dev); 474 sc = mt_cd.cd_devs[unit]; 475 dlog(LOG_DEBUG, "%s strategy", sc->sc_dev.dv_xname); 476 if ((bp->b_flags & (B_CMD | B_READ)) == 0) { 477 #define WRITE_BITS_IGNORED 8 478 #if 0 479 if (bp->b_bcount & ((1 << WRITE_BITS_IGNORED) - 1)) { 480 tprintf(sc->sc_ttyp, 481 "%s: write record must be multiple of %d\n", 482 sc->sc_dev.dv_xname, 1 << WRITE_BITS_IGNORED); 483 goto error; 484 } 485 #endif 486 s = 16 * 1024; 487 if (sc->sc_stat2 & SR2_LONGREC) { 488 switch (sc->sc_density) { 489 case T_1600BPI: 490 s = 32 * 1024; 491 break; 492 493 case T_6250BPI: 494 case T_BADBPI: 495 s = 60 * 1024; 496 break; 497 } 498 } 499 if (bp->b_bcount > s) { 500 tprintf(sc->sc_ttyp, 501 "%s: write record (%ld) too big: limit (%d)\n", 502 sc->sc_dev.dv_xname, bp->b_bcount, s); 503 #if 0 /* XXX see above */ 504 error: 505 #endif 506 bp->b_flags |= B_ERROR; 507 bp->b_error = EIO; 508 biodone(bp); 509 return; 510 } 511 } 512 s = splbio(); 513 BUFQ_INSERT_TAIL(&sc->sc_tab, bp); 514 if (sc->sc_active == 0) { 515 sc->sc_active = 1; 516 mtustart(sc); 517 } 518 splx(s); 519 } 520 521 void 522 mtustart(sc) 523 struct mt_softc *sc; 524 { 525 526 dlog(LOG_DEBUG, "%s ustart", sc->sc_dev.dv_xname); 527 if (hpibreq(sc->sc_dev.dv_parent, &sc->sc_hq)) 528 mtstart(sc); 529 } 530 531 void 532 spl_mtintr(arg) 533 void *arg; 534 { 535 struct mt_softc *sc = arg; 536 int s = splbio(); 537 538 hpibppclear(sc->sc_hpibno); 539 mtintr(sc); 540 (void) splx(s); 541 } 542 543 void 544 spl_mtstart(arg) 545 void *arg; 546 { 547 int s = splbio(); 548 549 mtstart(arg); 550 (void) splx(s); 551 } 552 553 void 554 mtstart(arg) 555 void *arg; 556 { 557 struct mt_softc *sc = arg; 558 struct buf *bp; 559 short cmdcount = 1; 560 u_char cmdbuf[2]; 561 562 dlog(LOG_DEBUG, "%s start", sc->sc_dev.dv_xname); 563 sc->sc_flags &= ~MTF_WRT; 564 bp = BUFQ_FIRST(&sc->sc_tab); 565 if ((sc->sc_flags & MTF_ALIVE) == 0 && 566 ((bp->b_flags & B_CMD) == 0 || bp->b_cmd != MTRESET)) 567 goto fatalerror; 568 569 if (sc->sc_flags & MTF_REW) { 570 if (!hpibpptest(sc->sc_hpibno, sc->sc_slave)) 571 goto stillrew; 572 switch (mtreaddsj(sc, MTE_DSJ_FORCE|MTE_COMPLETE|MTE_IDLE)) { 573 case 0: 574 case 1: 575 stillrew: 576 if ((sc->sc_stat1 & SR1_BOT) || 577 !(sc->sc_stat1 & SR1_ONLINE)) { 578 sc->sc_flags &= ~MTF_REW; 579 break; 580 } 581 case -2: 582 /* 583 * -2 means "timeout" reading DSJ, which is probably 584 * temporary. This is considered OK when doing a NOP, 585 * but not otherwise. 586 */ 587 if (sc->sc_flags & (MTF_DSJTIMEO | MTF_STATTIMEO)) { 588 callout_reset(&sc->sc_start_ch, hz >> 5, 589 spl_mtstart, sc); 590 return; 591 } 592 case 2: 593 if (bp->b_cmd != MTNOP || !(bp->b_flags & B_CMD)) { 594 bp->b_error = EBUSY; 595 goto errdone; 596 } 597 goto done; 598 599 default: 600 goto fatalerror; 601 } 602 } 603 if (bp->b_flags & B_CMD) { 604 if (sc->sc_flags & MTF_PASTEOT) { 605 switch(bp->b_cmd) { 606 case MTFSF: 607 case MTWEOF: 608 case MTFSR: 609 bp->b_error = ENOSPC; 610 goto errdone; 611 612 case MTBSF: 613 case MTOFFL: 614 case MTBSR: 615 case MTREW: 616 sc->sc_flags &= ~(MTF_PASTEOT | MTF_ATEOT); 617 break; 618 } 619 } 620 switch(bp->b_cmd) { 621 case MTFSF: 622 if (sc->sc_flags & MTF_HITEOF) 623 goto done; 624 cmdbuf[0] = MTTC_FSF; 625 break; 626 627 case MTBSF: 628 if (sc->sc_flags & MTF_HITBOF) 629 goto done; 630 cmdbuf[0] = MTTC_BSF; 631 break; 632 633 case MTOFFL: 634 sc->sc_flags |= MTF_REW; 635 cmdbuf[0] = MTTC_REWOFF; 636 break; 637 638 case MTWEOF: 639 cmdbuf[0] = MTTC_WFM; 640 break; 641 642 case MTBSR: 643 cmdbuf[0] = MTTC_BSR; 644 break; 645 646 case MTFSR: 647 cmdbuf[0] = MTTC_FSR; 648 break; 649 650 case MTREW: 651 sc->sc_flags |= MTF_REW; 652 cmdbuf[0] = MTTC_REW; 653 break; 654 655 case MTNOP: 656 /* 657 * NOP is supposed to set status bits. 658 * Force readdsj to do it. 659 */ 660 switch (mtreaddsj(sc, 661 MTE_DSJ_FORCE | MTE_COMPLETE | MTE_IDLE)) { 662 default: 663 goto done; 664 665 case -1: 666 /* 667 * If this fails, perform a device clear 668 * to fix any protocol problems and (most 669 * likely) get the status. 670 */ 671 bp->b_cmd = MTRESET; 672 break; 673 674 case -2: 675 callout_reset(&sc->sc_start_ch, hz >> 5, 676 spl_mtstart, sc); 677 return; 678 } 679 680 case MTRESET: 681 /* 682 * 1) selected device clear (send with "-2" secondary) 683 * 2) set timeout, then wait for "service request" 684 * 3) interrupt will read DSJ (and END COMPLETE-IDLE) 685 */ 686 if (hpibsend(sc->sc_hpibno, sc->sc_slave, -2, NULL, 0)){ 687 log(LOG_ERR, "%s can't reset", 688 sc->sc_dev.dv_xname); 689 goto fatalerror; 690 } 691 callout_reset(&sc->sc_intr_ch, 4 * hz, spl_mtintr, sc); 692 hpibawait(sc->sc_hpibno); 693 return; 694 695 case MTSET800BPI: 696 cmdbuf[0] = MTTC_800; 697 break; 698 699 case MTSET1600BPI: 700 cmdbuf[0] = MTTC_1600; 701 break; 702 703 case MTSET6250BPI: 704 cmdbuf[0] = MTTC_6250; 705 break; 706 707 case MTSET6250DC: 708 cmdbuf[0] = MTTC_DC6250; 709 break; 710 } 711 } else { 712 if (sc->sc_flags & MTF_PASTEOT) { 713 bp->b_error = ENOSPC; 714 goto errdone; 715 } 716 if (bp->b_flags & B_READ) { 717 sc->sc_flags |= MTF_IO; 718 cmdbuf[0] = MTTC_READ; 719 } else { 720 sc->sc_flags |= MTF_WRT | MTF_IO; 721 cmdbuf[0] = MTTC_WRITE; 722 cmdbuf[1] = (bp->b_bcount + ((1 << WRITE_BITS_IGNORED) - 1)) >> WRITE_BITS_IGNORED; 723 cmdcount = 2; 724 } 725 } 726 if (hpibsend(sc->sc_hpibno, sc->sc_slave, MTL_TCMD, cmdbuf, cmdcount) 727 == cmdcount) { 728 if (sc->sc_flags & MTF_REW) 729 goto done; 730 hpibawait(sc->sc_hpibno); 731 return; 732 } 733 fatalerror: 734 /* 735 * If anything fails, the drive is probably hosed, so mark it not 736 * "ALIVE" (but it EXISTS and is OPEN or we wouldn't be here, and 737 * if, last we heard, it was REWinding, remember that). 738 */ 739 sc->sc_flags &= MTF_EXISTS | MTF_OPEN | MTF_REW; 740 bp->b_error = EIO; 741 errdone: 742 bp->b_flags |= B_ERROR; 743 done: 744 sc->sc_flags &= ~(MTF_HITEOF | MTF_HITBOF); 745 BUFQ_REMOVE(&sc->sc_tab, bp); 746 biodone(bp); 747 hpibfree(sc->sc_dev.dv_parent, &sc->sc_hq); 748 if ((bp = BUFQ_FIRST(&sc->sc_tab)) == NULL) 749 sc->sc_active = 0; 750 else 751 mtustart(sc); 752 } 753 754 /* 755 * The Utah code had a bug which meant that the driver was unable to read. 756 * "rw" was initialized to bp->b_flags & B_READ before "bp" was initialized. 757 * -- ajv@comp.vuw.ac.nz 758 */ 759 void 760 mtgo(arg) 761 void *arg; 762 { 763 struct mt_softc *sc = arg; 764 struct buf *bp; 765 int rw; 766 767 dlog(LOG_DEBUG, "%s go", sc->sc_dev.dv_xname); 768 bp = BUFQ_FIRST(&sc->sc_tab); 769 rw = bp->b_flags & B_READ; 770 hpibgo(sc->sc_hpibno, sc->sc_slave, rw ? MTT_READ : MTL_WRITE, 771 bp->b_data, bp->b_bcount, rw, rw != 0); 772 } 773 774 void 775 mtintr(arg) 776 void *arg; 777 { 778 struct mt_softc *sc = arg; 779 struct buf *bp; 780 int i; 781 u_char cmdbuf[4]; 782 783 bp = BUFQ_FIRST(&sc->sc_tab); 784 if (bp == NULL) { 785 log(LOG_ERR, "%s intr: bp == NULL", sc->sc_dev.dv_xname); 786 return; 787 } 788 789 dlog(LOG_DEBUG, "%s intr", sc->sc_dev.dv_xname); 790 791 /* 792 * Some operation completed. Read status bytes and report errors. 793 * Clear EOF flags here `cause they're set once on specific conditions 794 * below when a command succeeds. 795 * A DSJ of 2 always means keep waiting. If the command was READ 796 * (and we're in data DMA phase) stop data transfer first. 797 */ 798 sc->sc_flags &= ~(MTF_HITEOF | MTF_HITBOF); 799 if ((bp->b_flags & (B_CMD|B_READ)) == B_READ && 800 !(sc->sc_flags & (MTF_IO | MTF_STATTIMEO | MTF_DSJTIMEO))){ 801 cmdbuf[0] = MTE_STOP; 802 (void) hpibsend(sc->sc_hpibno, sc->sc_slave, MTL_ECMD,cmdbuf,1); 803 } 804 switch (mtreaddsj(sc, 0)) { 805 case 0: 806 break; 807 808 case 1: 809 /* 810 * If we're in the middle of a READ/WRITE and have yet to 811 * start the data transfer, a DSJ of one should terminate it. 812 */ 813 sc->sc_flags &= ~MTF_IO; 814 break; 815 816 case 2: 817 (void) hpibawait(sc->sc_hpibno); 818 return; 819 820 case -2: 821 /* 822 * -2 means that the drive failed to respond quickly enough 823 * to the request for DSJ. It's probably just "busy" figuring 824 * it out and will know in a little bit... 825 */ 826 callout_reset(&sc->sc_intr_ch, hz >> 5, spl_mtintr, sc); 827 return; 828 829 default: 830 log(LOG_ERR, "%s intr: can't get drive stat", 831 sc->sc_dev.dv_xname); 832 goto error; 833 } 834 if (sc->sc_stat1 & (SR1_ERR | SR1_REJECT)) { 835 i = sc->sc_stat4 & SR4_ERCLMASK; 836 log(LOG_ERR, "%s: %s error, retry %d, SR2/3 %x/%x, code %d", 837 sc->sc_dev.dv_xname, i == SR4_DEVICE ? "device" : 838 (i == SR4_PROTOCOL ? "protocol" : 839 (i == SR4_SELFTEST ? "selftest" : "unknown")), 840 sc->sc_stat4 & SR4_RETRYMASK, sc->sc_stat2, 841 sc->sc_stat3, sc->sc_stat5); 842 843 if ((bp->b_flags & B_CMD) && bp->b_cmd == MTRESET) 844 callout_stop(&sc->sc_intr_ch); 845 if (sc->sc_stat3 & SR3_POWERUP) 846 sc->sc_flags &= MTF_OPEN | MTF_EXISTS; 847 goto error; 848 } 849 /* 850 * Report and clear any soft errors. 851 */ 852 if (sc->sc_stat1 & SR1_SOFTERR) { 853 log(LOG_WARNING, "%s: soft error, retry %d\n", 854 sc->sc_dev.dv_xname, sc->sc_stat4 & SR4_RETRYMASK); 855 sc->sc_stat1 &= ~SR1_SOFTERR; 856 } 857 /* 858 * We've initiated a read or write, but haven't actually started to 859 * DMA the data yet. At this point, the drive's ready. 860 */ 861 if (sc->sc_flags & MTF_IO) { 862 sc->sc_flags &= ~MTF_IO; 863 if (hpibustart(sc->sc_hpibno)) 864 mtgo(sc); 865 return; 866 } 867 /* 868 * Check for End Of Tape - we're allowed to hit EOT and then write (or 869 * read) one more record. If we get here and have not already hit EOT, 870 * return ENOSPC to inform the process that it's hit it. If we get 871 * here and HAVE already hit EOT, don't allow any more operations that 872 * move the tape forward. 873 */ 874 if (sc->sc_stat1 & SR1_EOT) { 875 if (sc->sc_flags & MTF_ATEOT) 876 sc->sc_flags |= MTF_PASTEOT; 877 else { 878 bp->b_flags |= B_ERROR; 879 bp->b_error = ENOSPC; 880 sc->sc_flags |= MTF_ATEOT; 881 } 882 } 883 /* 884 * If a motion command was being executed, check for Tape Marks. 885 * If we were doing data, make sure we got the right amount, and 886 * check for hitting tape marks on reads. 887 */ 888 if (bp->b_flags & B_CMD) { 889 if (sc->sc_stat1 & SR1_EOF) { 890 if (bp->b_cmd == MTFSR) 891 sc->sc_flags |= MTF_HITEOF; 892 if (bp->b_cmd == MTBSR) 893 sc->sc_flags |= MTF_HITBOF; 894 } 895 if (bp->b_cmd == MTRESET) { 896 callout_stop(&sc->sc_intr_ch); 897 sc->sc_flags |= MTF_ALIVE; 898 } 899 } else { 900 i = hpibrecv(sc->sc_hpibno, sc->sc_slave, MTT_BCNT, cmdbuf, 2); 901 if (i != 2) { 902 log(LOG_ERR, "%s intr: can't get xfer length\n", 903 sc->sc_dev.dv_xname); 904 goto error; 905 } 906 i = (int) *((u_short *) cmdbuf); 907 if (i <= bp->b_bcount) { 908 if (i == 0) 909 sc->sc_flags |= MTF_HITEOF; 910 bp->b_resid = bp->b_bcount - i; 911 dlog(LOG_DEBUG, "%s intr: bcount %ld, resid %ld", 912 sc->sc_dev.dv_xname, bp->b_bcount, bp->b_resid); 913 } else { 914 tprintf(sc->sc_ttyp, 915 "%s: record (%d) larger than wanted (%ld)\n", 916 sc->sc_dev.dv_xname, i, bp->b_bcount); 917 error: 918 sc->sc_flags &= ~MTF_IO; 919 bp->b_error = EIO; 920 bp->b_flags |= B_ERROR; 921 } 922 } 923 /* 924 * The operation is completely done. 925 * Let the drive know with an END command. 926 */ 927 cmdbuf[0] = MTE_COMPLETE | MTE_IDLE; 928 (void) hpibsend(sc->sc_hpibno, sc->sc_slave, MTL_ECMD, cmdbuf, 1); 929 bp->b_flags &= ~B_CMD; 930 BUFQ_REMOVE(&sc->sc_tab, bp); 931 biodone(bp); 932 hpibfree(sc->sc_dev.dv_parent, &sc->sc_hq); 933 if (BUFQ_FIRST(&sc->sc_tab) == NULL) 934 sc->sc_active = 0; 935 else 936 mtustart(sc); 937 } 938 939 int 940 mtread(dev, uio, flags) 941 dev_t dev; 942 struct uio *uio; 943 int flags; 944 { 945 struct mt_softc *sc = mt_cd.cd_devs[UNIT(dev)]; 946 947 return(physio(mtstrategy, &sc->sc_bufstore, 948 dev, B_READ, minphys, uio)); 949 } 950 951 int 952 mtwrite(dev, uio, flags) 953 dev_t dev; 954 struct uio *uio; 955 int flags; 956 { 957 struct mt_softc *sc = mt_cd.cd_devs[UNIT(dev)]; 958 959 return(physio(mtstrategy, &sc->sc_bufstore, 960 dev, B_WRITE, minphys, uio)); 961 } 962 963 int 964 mtioctl(dev, cmd, data, flag, p) 965 dev_t dev; 966 u_long cmd; 967 caddr_t data; 968 int flag; 969 struct proc *p; 970 { 971 struct mtop *op; 972 int cnt; 973 974 switch (cmd) { 975 case MTIOCTOP: 976 op = (struct mtop *)data; 977 switch(op->mt_op) { 978 case MTWEOF: 979 case MTFSF: 980 case MTBSR: 981 case MTBSF: 982 case MTFSR: 983 cnt = op->mt_count; 984 break; 985 986 case MTOFFL: 987 case MTREW: 988 case MTNOP: 989 cnt = 0; 990 break; 991 992 default: 993 return (EINVAL); 994 } 995 return (mtcommand(dev, op->mt_op, cnt)); 996 997 case MTIOCGET: 998 break; 999 1000 default: 1001 return (EINVAL); 1002 } 1003 return (0); 1004 } 1005 1006 /*ARGSUSED*/ 1007 int 1008 mtdump(dev, blkno, va, size) 1009 dev_t dev; 1010 daddr_t blkno; 1011 caddr_t va; 1012 size_t size; 1013 { 1014 return (ENODEV); 1015 } 1016