1 /* $NetBSD: mt.c,v 1.9 1997/10/04 10:00:17 thorpej Exp $ */ 2 3 /*- 4 * Copyright (c) 1996, 1997 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /* 40 * Copyright (c) 1992, The University of Utah and 41 * the Computer Systems Laboratory at the University of Utah (CSL). 42 * All rights reserved. 43 * 44 * Permission to use, copy, modify and distribute this software is hereby 45 * granted provided that (1) source code retains these copyright, permission, 46 * and disclaimer notices, and (2) redistributions including binaries 47 * reproduce the notices in supporting documentation, and (3) all advertising 48 * materials mentioning features or use of this software display the following 49 * acknowledgement: ``This product includes software developed by the 50 * Computer Systems Laboratory at the University of Utah.'' 51 * 52 * THE UNIVERSITY OF UTAH AND CSL ALLOW FREE USE OF THIS SOFTWARE IN ITS "AS 53 * IS" CONDITION. THE UNIVERSITY OF UTAH AND CSL DISCLAIM ANY LIABILITY OF 54 * ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 55 * 56 * CSL requests users of this software to return to csl-dist@cs.utah.edu any 57 * improvements that they make and grant CSL redistribution rights. 58 * 59 * Utah $Hdr: mt.c 1.8 95/09/12$ 60 */ 61 /* @(#)mt.c 3.9 90/07/10 mt Xinu 62 * 63 * Magnetic tape driver (7974a, 7978a/b, 7979a, 7980a, 7980xc) 64 * Original version contributed by Mt. Xinu. 65 * Modified for 4.4BSD by Mark Davies and Andrew Vignaux, Department of 66 * Computer Science, Victoria University of Wellington 67 */ 68 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/buf.h> 72 #include <sys/ioctl.h> 73 #include <sys/mtio.h> 74 #include <sys/file.h> 75 #include <sys/proc.h> 76 #include <sys/errno.h> 77 #include <sys/syslog.h> 78 #include <sys/tty.h> 79 #include <sys/kernel.h> 80 #include <sys/tprintf.h> 81 #include <sys/device.h> 82 #include <sys/conf.h> 83 84 #include <hp300/dev/hpibvar.h> 85 86 #include <hp300/dev/mtreg.h> 87 88 struct mtinfo { 89 u_short hwid; 90 char *desc; 91 } mtinfo[] = { 92 { MT7978ID, "7978" }, 93 { MT7979AID, "7979A" }, 94 { MT7980ID, "7980" }, 95 { MT7974AID, "7974A" }, 96 }; 97 int nmtinfo = sizeof(mtinfo) / sizeof(mtinfo[0]); 98 99 struct mt_softc { 100 struct device sc_dev; 101 int sc_hpibno; /* logical HPIB this slave it attached to */ 102 int sc_slave; /* HPIB slave address (0-6) */ 103 short sc_flags; /* see below */ 104 u_char sc_lastdsj; /* place for DSJ in mtreaddsj() */ 105 u_char sc_lastecmd; /* place for End Command in mtreaddsj() */ 106 short sc_recvtimeo; /* count of hpibsend timeouts to prevent hang */ 107 short sc_statindex; /* index for next sc_stat when MTF_STATTIMEO */ 108 struct mt_stat sc_stat;/* status bytes last read from device */ 109 short sc_density; /* current density of tape (mtio.h format) */ 110 short sc_type; /* tape drive model (hardware IDs) */ 111 struct hpibqueue sc_hq; /* HPIB device queue member */ 112 tpr_t sc_ttyp; 113 struct buf sc_tab; /* buf queue */ 114 struct buf sc_bufstore; /* XXX buffer storage */ 115 }; 116 117 #ifdef DEBUG 118 int mtdebug = 0; 119 #define dlog if (mtdebug) log 120 #else 121 #define dlog if (0) log 122 #endif 123 124 #define UNIT(x) (minor(x) & 3) 125 126 #define B_CMD B_XXX /* command buf instead of data */ 127 #define b_cmd b_blkno /* blkno holds cmd when B_CMD */ 128 129 int mtmatch __P((struct device *, struct cfdata *, void *)); 130 void mtattach __P((struct device *, struct device *, void *)); 131 132 struct cfattach mt_ca = { 133 sizeof(struct mt_softc), mtmatch, mtattach 134 }; 135 136 struct cfdriver mt_cd = { 137 NULL, "mt", DV_TAPE 138 }; 139 140 int mtident __P((struct mt_softc *, struct hpibbus_attach_args *)); 141 void mtustart __P((struct mt_softc *)); 142 int mtreaddsj __P((struct mt_softc *, int)); 143 int mtcommand __P((dev_t, int, int)); 144 void spl_mtintr __P((void *)); 145 void spl_mtstart __P((void *)); 146 147 void mtstart __P((void *)); 148 void mtgo __P((void *)); 149 void mtintr __P((void *)); 150 151 bdev_decl(mt); 152 cdev_decl(mt); 153 154 int 155 mtmatch(parent, match, aux) 156 struct device *parent; 157 struct cfdata *match; 158 void *aux; 159 { 160 struct hpibbus_attach_args *ha = aux; 161 162 return (mtident(NULL, ha)); 163 } 164 165 void 166 mtattach(parent, self, aux) 167 struct device *parent, *self; 168 void *aux; 169 { 170 struct mt_softc *sc = (struct mt_softc *)self; 171 struct hpibbus_attach_args *ha = aux; 172 int unit, hpibno, slave; 173 174 if (mtident(sc, ha) == 0) { 175 printf("\n%s: impossible!\n", sc->sc_dev.dv_xname); 176 return; 177 } 178 179 unit = self->dv_unit; 180 hpibno = parent->dv_unit; 181 slave = ha->ha_slave; 182 183 sc->sc_tab.b_actb = &sc->sc_tab.b_actf; 184 185 sc->sc_hpibno = hpibno; 186 sc->sc_slave = slave; 187 sc->sc_flags = MTF_EXISTS; 188 189 /* Initialize hpib job queue entry. */ 190 sc->sc_hq.hq_softc = sc; 191 sc->sc_hq.hq_slave = sc->sc_slave; 192 sc->sc_hq.hq_start = mtstart; 193 sc->sc_hq.hq_go = mtgo; 194 sc->sc_hq.hq_intr = mtintr; 195 } 196 197 int 198 mtident(sc, ha) 199 struct mt_softc *sc; 200 struct hpibbus_attach_args *ha; 201 { 202 int i; 203 204 for (i = 0; i < nmtinfo; i++) { 205 if (ha->ha_id == mtinfo[i].hwid) { 206 if (sc != NULL) { 207 sc->sc_type = mtinfo[i].hwid; 208 printf(": %s tape\n", mtinfo[i].desc); 209 } 210 return (1); 211 } 212 } 213 return (0); 214 } 215 216 /* 217 * Perform a read of "Device Status Jump" register and update the 218 * status if necessary. If status is read, the given "ecmd" is also 219 * performed, unless "ecmd" is zero. Returns DSJ value, -1 on failure 220 * and -2 on "temporary" failure. 221 */ 222 int 223 mtreaddsj(sc, ecmd) 224 struct mt_softc *sc; 225 int ecmd; 226 { 227 int retval; 228 229 if (sc->sc_flags & MTF_STATTIMEO) 230 goto getstats; 231 retval = hpibrecv(sc->sc_hpibno, 232 (sc->sc_flags & MTF_DSJTIMEO) ? -1 : sc->sc_slave, 233 MTT_DSJ, &(sc->sc_lastdsj), 1); 234 sc->sc_flags &= ~MTF_DSJTIMEO; 235 if (retval != 1) { 236 dlog(LOG_DEBUG, "%s can't hpibrecv DSJ", 237 sc->sc_dev.dv_xname); 238 if (sc->sc_recvtimeo == 0) 239 sc->sc_recvtimeo = hz; 240 if (--sc->sc_recvtimeo == 0) 241 return (-1); 242 if (retval == 0) 243 sc->sc_flags |= MTF_DSJTIMEO; 244 return (-2); 245 } 246 sc->sc_recvtimeo = 0; 247 sc->sc_statindex = 0; 248 dlog(LOG_DEBUG, "%s readdsj: 0x%x", sc->sc_dev.dv_xname, 249 sc->sc_lastdsj); 250 sc->sc_lastecmd = ecmd; 251 switch (sc->sc_lastdsj) { 252 case 0: 253 if (ecmd & MTE_DSJ_FORCE) 254 break; 255 return (0); 256 257 case 2: 258 sc->sc_lastecmd = MTE_COMPLETE; 259 case 1: 260 break; 261 262 default: 263 log(LOG_ERR, "%s readdsj: DSJ 0x%x\n", sc->sc_dev.dv_xname, 264 sc->sc_lastdsj); 265 return (-1); 266 } 267 getstats: 268 retval = hpibrecv(sc->sc_hpibno, 269 (sc->sc_flags & MTF_STATCONT) ? -1 : sc->sc_slave, 270 MTT_STAT, ((char *)&(sc->sc_stat)) + sc->sc_statindex, 271 sizeof(sc->sc_stat) - sc->sc_statindex); 272 sc->sc_flags &= ~(MTF_STATTIMEO | MTF_STATCONT); 273 if (retval != sizeof(sc->sc_stat) - sc->sc_statindex) { 274 if (sc->sc_recvtimeo == 0) 275 sc->sc_recvtimeo = hz; 276 if (--sc->sc_recvtimeo != 0) { 277 if (retval >= 0) { 278 sc->sc_statindex += retval; 279 sc->sc_flags |= MTF_STATCONT; 280 } 281 sc->sc_flags |= MTF_STATTIMEO; 282 return (-2); 283 } 284 log(LOG_ERR, "%s readdsj: can't read status", 285 sc->sc_dev.dv_xname); 286 return (-1); 287 } 288 sc->sc_recvtimeo = 0; 289 sc->sc_statindex = 0; 290 dlog(LOG_DEBUG, "%s readdsj: status is %x %x %x %x %x %x", 291 sc->sc_dev.dv_xname, 292 sc->sc_stat1, sc->sc_stat2, sc->sc_stat3, 293 sc->sc_stat4, sc->sc_stat5, sc->sc_stat6); 294 if (sc->sc_lastecmd) 295 (void) hpibsend(sc->sc_hpibno, sc->sc_slave, 296 MTL_ECMD, &(sc->sc_lastecmd), 1); 297 return ((int) sc->sc_lastdsj); 298 } 299 300 int 301 mtopen(dev, flag, mode, p) 302 dev_t dev; 303 int flag, mode; 304 struct proc *p; 305 { 306 int unit = UNIT(dev); 307 struct mt_softc *sc; 308 int req_den; 309 int error; 310 311 if (unit >= mt_cd.cd_ndevs || 312 (sc = mt_cd.cd_devs[unit]) == NULL || 313 (sc->sc_flags & MTF_EXISTS) == 0) 314 return (ENXIO); 315 316 dlog(LOG_DEBUG, "%s open: flags 0x%x", sc->sc_dev.dv_xname, 317 sc->sc_flags); 318 if (sc->sc_flags & MTF_OPEN) 319 return (EBUSY); 320 sc->sc_flags |= MTF_OPEN; 321 sc->sc_ttyp = tprintf_open(p); 322 if ((sc->sc_flags & MTF_ALIVE) == 0) { 323 error = mtcommand(dev, MTRESET, 0); 324 if (error != 0 || (sc->sc_flags & MTF_ALIVE) == 0) 325 goto errout; 326 if ((sc->sc_stat1 & (SR1_BOT | SR1_ONLINE)) == SR1_ONLINE) 327 (void) mtcommand(dev, MTREW, 0); 328 } 329 for (;;) { 330 if ((error = mtcommand(dev, MTNOP, 0)) != 0) 331 goto errout; 332 if (!(sc->sc_flags & MTF_REW)) 333 break; 334 if (tsleep((caddr_t) &lbolt, PCATCH | (PZERO + 1), 335 "mt", 0) != 0) { 336 error = EINTR; 337 goto errout; 338 } 339 } 340 if ((flag & FWRITE) && (sc->sc_stat1 & SR1_RO)) { 341 error = EROFS; 342 goto errout; 343 } 344 if (!(sc->sc_stat1 & SR1_ONLINE)) { 345 uprintf("%s: not online\n", sc->sc_dev.dv_xname); 346 error = EIO; 347 goto errout; 348 } 349 /* 350 * Select density: 351 * - find out what density the drive is set to 352 * (i.e. the density of the current tape) 353 * - if we are going to write 354 * - if we're not at the beginning of the tape 355 * - complain if we want to change densities 356 * - otherwise, select the mtcommand to set the density 357 * 358 * If the drive doesn't support it then don't change the recorded 359 * density. 360 * 361 * The original MOREbsd code had these additional conditions 362 * for the mid-tape change 363 * 364 * req_den != T_BADBPI && 365 * sc->sc_density != T_6250BPI 366 * 367 * which suggests that it would be possible to write multiple 368 * densities if req_den == T_BAD_BPI or the current tape 369 * density was 6250. Testing of our 7980 suggests that the 370 * device cannot change densities mid-tape. 371 * 372 * ajv@comp.vuw.ac.nz 373 */ 374 sc->sc_density = (sc->sc_stat2 & SR2_6250) ? T_6250BPI : ( 375 (sc->sc_stat3 & SR3_1600) ? T_1600BPI : ( 376 (sc->sc_stat3 & SR3_800) ? T_800BPI : -1)); 377 req_den = (dev & T_DENSEL); 378 379 if (flag & FWRITE) { 380 if (!(sc->sc_stat1 & SR1_BOT)) { 381 if (sc->sc_density != req_den) { 382 uprintf("%s: can't change density mid-tape\n", 383 sc->sc_dev.dv_xname); 384 error = EIO; 385 goto errout; 386 } 387 } 388 else { 389 int mtset_density = 390 (req_den == T_800BPI ? MTSET800BPI : ( 391 req_den == T_1600BPI ? MTSET1600BPI : ( 392 req_den == T_6250BPI ? MTSET6250BPI : ( 393 sc->sc_type == MT7980ID 394 ? MTSET6250DC 395 : MTSET6250BPI)))); 396 if (mtcommand(dev, mtset_density, 0) == 0) 397 sc->sc_density = req_den; 398 } 399 } 400 return (0); 401 errout: 402 sc->sc_flags &= ~MTF_OPEN; 403 return (error); 404 } 405 406 int 407 mtclose(dev, flag, fmt, p) 408 dev_t dev; 409 int flag, fmt; 410 struct proc *p; 411 { 412 struct mt_softc *sc = mt_cd.cd_devs[UNIT(dev)]; 413 414 if (sc->sc_flags & MTF_WRT) { 415 (void) mtcommand(dev, MTWEOF, 2); 416 (void) mtcommand(dev, MTBSF, 0); 417 } 418 if ((minor(dev) & T_NOREWIND) == 0) 419 (void) mtcommand(dev, MTREW, 0); 420 sc->sc_flags &= ~MTF_OPEN; 421 tprintf_close(sc->sc_ttyp); 422 return (0); 423 } 424 425 int 426 mtcommand(dev, cmd, cnt) 427 dev_t dev; 428 int cmd; 429 int cnt; 430 { 431 struct mt_softc *sc = mt_cd.cd_devs[UNIT(dev)]; 432 struct buf *bp = &sc->sc_bufstore; 433 int error = 0; 434 435 #if 1 436 if (bp->b_flags & B_BUSY) 437 return (EBUSY); 438 #endif 439 bp->b_cmd = cmd; 440 bp->b_dev = dev; 441 do { 442 bp->b_flags = B_BUSY | B_CMD; 443 mtstrategy(bp); 444 iowait(bp); 445 if (bp->b_flags & B_ERROR) { 446 error = (int) (unsigned) bp->b_error; 447 break; 448 } 449 } while (--cnt > 0); 450 #if 0 451 bp->b_flags = 0 /*&= ~B_BUSY*/; 452 #else 453 bp->b_flags &= ~B_BUSY; 454 #endif 455 return (error); 456 } 457 458 /* 459 * Only thing to check here is for legal record lengths (writes only). 460 */ 461 void 462 mtstrategy(bp) 463 struct buf *bp; 464 { 465 struct mt_softc *sc; 466 struct buf *dp; 467 int unit; 468 int s; 469 470 unit = UNIT(bp->b_dev); 471 sc = mt_cd.cd_devs[unit]; 472 dlog(LOG_DEBUG, "%s strategy", sc->sc_dev.dv_xname); 473 if ((bp->b_flags & (B_CMD | B_READ)) == 0) { 474 #define WRITE_BITS_IGNORED 8 475 #if 0 476 if (bp->b_bcount & ((1 << WRITE_BITS_IGNORED) - 1)) { 477 tprintf(sc->sc_ttyp, 478 "%s: write record must be multiple of %d\n", 479 sc->sc_dev.dv_xname, 1 << WRITE_BITS_IGNORED); 480 goto error; 481 } 482 #endif 483 s = 16 * 1024; 484 if (sc->sc_stat2 & SR2_LONGREC) { 485 switch (sc->sc_density) { 486 case T_1600BPI: 487 s = 32 * 1024; 488 break; 489 490 case T_6250BPI: 491 case T_BADBPI: 492 s = 60 * 1024; 493 break; 494 } 495 } 496 if (bp->b_bcount > s) { 497 tprintf(sc->sc_ttyp, 498 "%s: write record (%ld) too big: limit (%d)\n", 499 sc->sc_dev.dv_xname, bp->b_bcount, s); 500 #if 0 /* XXX see above */ 501 error: 502 #endif 503 bp->b_flags |= B_ERROR; 504 bp->b_error = EIO; 505 iodone(bp); 506 return; 507 } 508 } 509 dp = &sc->sc_tab; 510 bp->b_actf = NULL; 511 s = splbio(); 512 bp->b_actb = dp->b_actb; 513 *dp->b_actb = bp; 514 dp->b_actb = &bp->b_actf; 515 if (dp->b_active == 0) { 516 dp->b_active = 1; 517 mtustart(sc); 518 } 519 splx(s); 520 } 521 522 void 523 mtustart(sc) 524 struct mt_softc *sc; 525 { 526 527 dlog(LOG_DEBUG, "%s ustart", sc->sc_dev.dv_xname); 528 if (hpibreq(sc->sc_dev.dv_parent, &sc->sc_hq)) 529 mtstart(sc); 530 } 531 532 void 533 spl_mtintr(arg) 534 void *arg; 535 { 536 struct mt_softc *sc = arg; 537 int s = splbio(); 538 539 hpibppclear(sc->sc_hpibno); 540 mtintr(sc); 541 (void) splx(s); 542 } 543 544 void 545 spl_mtstart(arg) 546 void *arg; 547 { 548 int s = splbio(); 549 550 mtstart(arg); 551 (void) splx(s); 552 } 553 554 void 555 mtstart(arg) 556 void *arg; 557 { 558 struct mt_softc *sc = arg; 559 struct buf *bp, *dp; 560 short cmdcount = 1; 561 u_char cmdbuf[2]; 562 563 dlog(LOG_DEBUG, "%s start", sc->sc_dev.dv_xname); 564 sc->sc_flags &= ~MTF_WRT; 565 bp = sc->sc_tab.b_actf; 566 if ((sc->sc_flags & MTF_ALIVE) == 0 && 567 ((bp->b_flags & B_CMD) == 0 || bp->b_cmd != MTRESET)) 568 goto fatalerror; 569 570 if (sc->sc_flags & MTF_REW) { 571 if (!hpibpptest(sc->sc_hpibno, sc->sc_slave)) 572 goto stillrew; 573 switch (mtreaddsj(sc, MTE_DSJ_FORCE|MTE_COMPLETE|MTE_IDLE)) { 574 case 0: 575 case 1: 576 stillrew: 577 if ((sc->sc_stat1 & SR1_BOT) || 578 !(sc->sc_stat1 & SR1_ONLINE)) { 579 sc->sc_flags &= ~MTF_REW; 580 break; 581 } 582 case -2: 583 /* 584 * -2 means "timeout" reading DSJ, which is probably 585 * temporary. This is considered OK when doing a NOP, 586 * but not otherwise. 587 */ 588 if (sc->sc_flags & (MTF_DSJTIMEO | MTF_STATTIMEO)) { 589 timeout(spl_mtstart, sc, hz >> 5); 590 return; 591 } 592 case 2: 593 if (bp->b_cmd != MTNOP || !(bp->b_flags & B_CMD)) { 594 bp->b_error = EBUSY; 595 goto errdone; 596 } 597 goto done; 598 599 default: 600 goto fatalerror; 601 } 602 } 603 if (bp->b_flags & B_CMD) { 604 if (sc->sc_flags & MTF_PASTEOT) { 605 switch(bp->b_cmd) { 606 case MTFSF: 607 case MTWEOF: 608 case MTFSR: 609 bp->b_error = ENOSPC; 610 goto errdone; 611 612 case MTBSF: 613 case MTOFFL: 614 case MTBSR: 615 case MTREW: 616 sc->sc_flags &= ~(MTF_PASTEOT | MTF_ATEOT); 617 break; 618 } 619 } 620 switch(bp->b_cmd) { 621 case MTFSF: 622 if (sc->sc_flags & MTF_HITEOF) 623 goto done; 624 cmdbuf[0] = MTTC_FSF; 625 break; 626 627 case MTBSF: 628 if (sc->sc_flags & MTF_HITBOF) 629 goto done; 630 cmdbuf[0] = MTTC_BSF; 631 break; 632 633 case MTOFFL: 634 sc->sc_flags |= MTF_REW; 635 cmdbuf[0] = MTTC_REWOFF; 636 break; 637 638 case MTWEOF: 639 cmdbuf[0] = MTTC_WFM; 640 break; 641 642 case MTBSR: 643 cmdbuf[0] = MTTC_BSR; 644 break; 645 646 case MTFSR: 647 cmdbuf[0] = MTTC_FSR; 648 break; 649 650 case MTREW: 651 sc->sc_flags |= MTF_REW; 652 cmdbuf[0] = MTTC_REW; 653 break; 654 655 case MTNOP: 656 /* 657 * NOP is supposed to set status bits. 658 * Force readdsj to do it. 659 */ 660 switch (mtreaddsj(sc, 661 MTE_DSJ_FORCE | MTE_COMPLETE | MTE_IDLE)) { 662 default: 663 goto done; 664 665 case -1: 666 /* 667 * If this fails, perform a device clear 668 * to fix any protocol problems and (most 669 * likely) get the status. 670 */ 671 bp->b_cmd = MTRESET; 672 break; 673 674 case -2: 675 timeout(spl_mtstart, sc, hz >> 5); 676 return; 677 } 678 679 case MTRESET: 680 /* 681 * 1) selected device clear (send with "-2" secondary) 682 * 2) set timeout, then wait for "service request" 683 * 3) interrupt will read DSJ (and END COMPLETE-IDLE) 684 */ 685 if (hpibsend(sc->sc_hpibno, sc->sc_slave, -2, NULL, 0)){ 686 log(LOG_ERR, "%s can't reset", 687 sc->sc_dev.dv_xname); 688 goto fatalerror; 689 } 690 timeout(spl_mtintr, sc, 4 * hz); 691 hpibawait(sc->sc_hpibno); 692 return; 693 694 case MTSET800BPI: 695 cmdbuf[0] = MTTC_800; 696 break; 697 698 case MTSET1600BPI: 699 cmdbuf[0] = MTTC_1600; 700 break; 701 702 case MTSET6250BPI: 703 cmdbuf[0] = MTTC_6250; 704 break; 705 706 case MTSET6250DC: 707 cmdbuf[0] = MTTC_DC6250; 708 break; 709 } 710 } else { 711 if (sc->sc_flags & MTF_PASTEOT) { 712 bp->b_error = ENOSPC; 713 goto errdone; 714 } 715 if (bp->b_flags & B_READ) { 716 sc->sc_flags |= MTF_IO; 717 cmdbuf[0] = MTTC_READ; 718 } else { 719 sc->sc_flags |= MTF_WRT | MTF_IO; 720 cmdbuf[0] = MTTC_WRITE; 721 cmdbuf[1] = (bp->b_bcount + ((1 << WRITE_BITS_IGNORED) - 1)) >> WRITE_BITS_IGNORED; 722 cmdcount = 2; 723 } 724 } 725 if (hpibsend(sc->sc_hpibno, sc->sc_slave, MTL_TCMD, cmdbuf, cmdcount) 726 == cmdcount) { 727 if (sc->sc_flags & MTF_REW) 728 goto done; 729 hpibawait(sc->sc_hpibno); 730 return; 731 } 732 fatalerror: 733 /* 734 * If anything fails, the drive is probably hosed, so mark it not 735 * "ALIVE" (but it EXISTS and is OPEN or we wouldn't be here, and 736 * if, last we heard, it was REWinding, remember that). 737 */ 738 sc->sc_flags &= MTF_EXISTS | MTF_OPEN | MTF_REW; 739 bp->b_error = EIO; 740 errdone: 741 bp->b_flags |= B_ERROR; 742 done: 743 sc->sc_flags &= ~(MTF_HITEOF | MTF_HITBOF); 744 iodone(bp); 745 if ((dp = bp->b_actf)) 746 dp->b_actb = bp->b_actb; 747 else 748 sc->sc_tab.b_actb = bp->b_actb; 749 *bp->b_actb = dp; 750 hpibfree(sc->sc_dev.dv_parent, &sc->sc_hq); 751 if ((bp = dp) == NULL) 752 sc->sc_tab.b_active = 0; 753 else 754 mtustart(sc); 755 } 756 757 /* 758 * The Utah code had a bug which meant that the driver was unable to read. 759 * "rw" was initialized to bp->b_flags & B_READ before "bp" was initialized. 760 * -- ajv@comp.vuw.ac.nz 761 */ 762 void 763 mtgo(arg) 764 void *arg; 765 { 766 struct mt_softc *sc = arg; 767 struct buf *bp; 768 int rw; 769 770 dlog(LOG_DEBUG, "%s go", sc->sc_dev.dv_xname); 771 bp = sc->sc_tab.b_actf; 772 rw = bp->b_flags & B_READ; 773 hpibgo(sc->sc_hpibno, sc->sc_slave, rw ? MTT_READ : MTL_WRITE, 774 bp->b_un.b_addr, bp->b_bcount, rw, rw != 0); 775 } 776 777 void 778 mtintr(arg) 779 void *arg; 780 { 781 struct mt_softc *sc = arg; 782 struct buf *bp, *dp; 783 int i; 784 u_char cmdbuf[4]; 785 786 bp = sc->sc_tab.b_actf; 787 if (bp == NULL) { 788 log(LOG_ERR, "%s intr: bp == NULL", sc->sc_dev.dv_xname); 789 return; 790 } 791 792 dlog(LOG_DEBUG, "%s intr", sc->sc_dev.dv_xname); 793 794 /* 795 * Some operation completed. Read status bytes and report errors. 796 * Clear EOF flags here `cause they're set once on specific conditions 797 * below when a command succeeds. 798 * A DSJ of 2 always means keep waiting. If the command was READ 799 * (and we're in data DMA phase) stop data transfer first. 800 */ 801 sc->sc_flags &= ~(MTF_HITEOF | MTF_HITBOF); 802 if ((bp->b_flags & (B_CMD|B_READ)) == B_READ && 803 !(sc->sc_flags & (MTF_IO | MTF_STATTIMEO | MTF_DSJTIMEO))){ 804 cmdbuf[0] = MTE_STOP; 805 (void) hpibsend(sc->sc_hpibno, sc->sc_slave, MTL_ECMD,cmdbuf,1); 806 } 807 switch (mtreaddsj(sc, 0)) { 808 case 0: 809 break; 810 811 case 1: 812 /* 813 * If we're in the middle of a READ/WRITE and have yet to 814 * start the data transfer, a DSJ of one should terminate it. 815 */ 816 sc->sc_flags &= ~MTF_IO; 817 break; 818 819 case 2: 820 (void) hpibawait(sc->sc_hpibno); 821 return; 822 823 case -2: 824 /* 825 * -2 means that the drive failed to respond quickly enough 826 * to the request for DSJ. It's probably just "busy" figuring 827 * it out and will know in a little bit... 828 */ 829 timeout(spl_mtintr, sc, hz >> 5); 830 return; 831 832 default: 833 log(LOG_ERR, "%s intr: can't get drive stat", 834 sc->sc_dev.dv_xname); 835 goto error; 836 } 837 if (sc->sc_stat1 & (SR1_ERR | SR1_REJECT)) { 838 i = sc->sc_stat4 & SR4_ERCLMASK; 839 log(LOG_ERR, "%s: %s error, retry %d, SR2/3 %x/%x, code %d", 840 sc->sc_dev.dv_xname, i == SR4_DEVICE ? "device" : 841 (i == SR4_PROTOCOL ? "protocol" : 842 (i == SR4_SELFTEST ? "selftest" : "unknown")), 843 sc->sc_stat4 & SR4_RETRYMASK, sc->sc_stat2, 844 sc->sc_stat3, sc->sc_stat5); 845 846 if ((bp->b_flags & B_CMD) && bp->b_cmd == MTRESET) 847 untimeout(spl_mtintr, sc); 848 if (sc->sc_stat3 & SR3_POWERUP) 849 sc->sc_flags &= MTF_OPEN | MTF_EXISTS; 850 goto error; 851 } 852 /* 853 * Report and clear any soft errors. 854 */ 855 if (sc->sc_stat1 & SR1_SOFTERR) { 856 log(LOG_WARNING, "%s: soft error, retry %d\n", 857 sc->sc_dev.dv_xname, sc->sc_stat4 & SR4_RETRYMASK); 858 sc->sc_stat1 &= ~SR1_SOFTERR; 859 } 860 /* 861 * We've initiated a read or write, but haven't actually started to 862 * DMA the data yet. At this point, the drive's ready. 863 */ 864 if (sc->sc_flags & MTF_IO) { 865 sc->sc_flags &= ~MTF_IO; 866 if (hpibustart(sc->sc_hpibno)) 867 mtgo(sc); 868 return; 869 } 870 /* 871 * Check for End Of Tape - we're allowed to hit EOT and then write (or 872 * read) one more record. If we get here and have not already hit EOT, 873 * return ENOSPC to inform the process that it's hit it. If we get 874 * here and HAVE already hit EOT, don't allow any more operations that 875 * move the tape forward. 876 */ 877 if (sc->sc_stat1 & SR1_EOT) { 878 if (sc->sc_flags & MTF_ATEOT) 879 sc->sc_flags |= MTF_PASTEOT; 880 else { 881 bp->b_flags |= B_ERROR; 882 bp->b_error = ENOSPC; 883 sc->sc_flags |= MTF_ATEOT; 884 } 885 } 886 /* 887 * If a motion command was being executed, check for Tape Marks. 888 * If we were doing data, make sure we got the right amount, and 889 * check for hitting tape marks on reads. 890 */ 891 if (bp->b_flags & B_CMD) { 892 if (sc->sc_stat1 & SR1_EOF) { 893 if (bp->b_cmd == MTFSR) 894 sc->sc_flags |= MTF_HITEOF; 895 if (bp->b_cmd == MTBSR) 896 sc->sc_flags |= MTF_HITBOF; 897 } 898 if (bp->b_cmd == MTRESET) { 899 untimeout(spl_mtintr, sc); 900 sc->sc_flags |= MTF_ALIVE; 901 } 902 } else { 903 i = hpibrecv(sc->sc_hpibno, sc->sc_slave, MTT_BCNT, cmdbuf, 2); 904 if (i != 2) { 905 log(LOG_ERR, "%s intr: can't get xfer length\n", 906 sc->sc_dev.dv_xname); 907 goto error; 908 } 909 i = (int) *((u_short *) cmdbuf); 910 if (i <= bp->b_bcount) { 911 if (i == 0) 912 sc->sc_flags |= MTF_HITEOF; 913 bp->b_resid = bp->b_bcount - i; 914 dlog(LOG_DEBUG, "%s intr: bcount %ld, resid %ld", 915 sc->sc_dev.dv_xname, bp->b_bcount, bp->b_resid); 916 } else { 917 tprintf(sc->sc_ttyp, 918 "%s: record (%d) larger than wanted (%ld)\n", 919 sc->sc_dev.dv_xname, i, bp->b_bcount); 920 error: 921 sc->sc_flags &= ~MTF_IO; 922 bp->b_error = EIO; 923 bp->b_flags |= B_ERROR; 924 } 925 } 926 /* 927 * The operation is completely done. 928 * Let the drive know with an END command. 929 */ 930 cmdbuf[0] = MTE_COMPLETE | MTE_IDLE; 931 (void) hpibsend(sc->sc_hpibno, sc->sc_slave, MTL_ECMD, cmdbuf, 1); 932 bp->b_flags &= ~B_CMD; 933 iodone(bp); 934 if ((dp = bp->b_actf)) 935 dp->b_actb = bp->b_actb; 936 else 937 sc->sc_tab.b_actb = bp->b_actb; 938 *bp->b_actb = dp; 939 hpibfree(sc->sc_dev.dv_parent, &sc->sc_hq); 940 #if 0 941 if (bp /*sc->sc_tab.b_actf*/ == NULL) 942 #else 943 if (sc->sc_tab.b_actf == NULL) 944 #endif 945 sc->sc_tab.b_active = 0; 946 else 947 mtustart(sc); 948 } 949 950 int 951 mtread(dev, uio, flags) 952 dev_t dev; 953 struct uio *uio; 954 int flags; 955 { 956 struct mt_softc *sc = mt_cd.cd_devs[UNIT(dev)]; 957 958 return(physio(mtstrategy, &sc->sc_bufstore, 959 dev, B_READ, minphys, uio)); 960 } 961 962 int 963 mtwrite(dev, uio, flags) 964 dev_t dev; 965 struct uio *uio; 966 int flags; 967 { 968 struct mt_softc *sc = mt_cd.cd_devs[UNIT(dev)]; 969 970 return(physio(mtstrategy, &sc->sc_bufstore, 971 dev, B_WRITE, minphys, uio)); 972 } 973 974 int 975 mtioctl(dev, cmd, data, flag, p) 976 dev_t dev; 977 u_long cmd; 978 caddr_t data; 979 int flag; 980 struct proc *p; 981 { 982 struct mtop *op; 983 int cnt; 984 985 switch (cmd) { 986 case MTIOCTOP: 987 op = (struct mtop *)data; 988 switch(op->mt_op) { 989 case MTWEOF: 990 case MTFSF: 991 case MTBSR: 992 case MTBSF: 993 case MTFSR: 994 cnt = op->mt_count; 995 break; 996 997 case MTOFFL: 998 case MTREW: 999 case MTNOP: 1000 cnt = 0; 1001 break; 1002 1003 default: 1004 return (EINVAL); 1005 } 1006 return (mtcommand(dev, op->mt_op, cnt)); 1007 1008 case MTIOCGET: 1009 break; 1010 1011 default: 1012 return (EINVAL); 1013 } 1014 return (0); 1015 } 1016 1017 /*ARGSUSED*/ 1018 int 1019 mtdump(dev, blkno, va, size) 1020 dev_t dev; 1021 daddr_t blkno; 1022 caddr_t va; 1023 size_t size; 1024 { 1025 return (ENODEV); 1026 } 1027