1 /*- 2 * Copyright (c) 2012 The NetBSD Foundation, Inc. 3 * All rights reserved. 4 * 5 * This code is derived from software contributed to The NetBSD Foundation 6 * by Paul Fleischer <paul@xpg.dk> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 19 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 21 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 22 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 25 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 27 * POSSIBILITY OF SUCH DAMAGE. 28 */ 29 /* This file is based on arch/evbarm/smdk2xx0/smdk2410_machdep.c */ 30 /* 31 * Copyright (c) 2002, 2003 Fujitsu Component Limited 32 * Copyright (c) 2002, 2003, 2005 Genetec Corporation 33 * All rights reserved. 34 * 35 * Redistribution and use in source and binary forms, with or without 36 * modification, are permitted provided that the following conditions 37 * are met: 38 * 1. Redistributions of source code must retain the above copyright 39 * notice, this list of conditions and the following disclaimer. 40 * 2. Redistributions in binary form must reproduce the above copyright 41 * notice, this list of conditions and the following disclaimer in the 42 * documentation and/or other materials provided with the distribution. 43 * 3. Neither the name of The Fujitsu Component Limited nor the name of 44 * Genetec corporation may not be used to endorse or promote products 45 * derived from this software without specific prior written permission. 46 * 47 * THIS SOFTWARE IS PROVIDED BY FUJITSU COMPONENT LIMITED AND GENETEC 48 * CORPORATION ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, 49 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 50 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 51 * DISCLAIMED. IN NO EVENT SHALL FUJITSU COMPONENT LIMITED OR GENETEC 52 * CORPORATION BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 53 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 54 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 55 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 56 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 57 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 58 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 */ 61 /* 62 * Copyright (c) 2001,2002 ARM Ltd 63 * All rights reserved. 64 * 65 * Redistribution and use in source and binary forms, with or without 66 * modification, are permitted provided that the following conditions 67 * are met: 68 * 1. Redistributions of source code must retain the above copyright 69 * notice, this list of conditions and the following disclaimer. 70 * 2. Redistributions in binary form must reproduce the above copyright 71 * notice, this list of conditions and the following disclaimer in the 72 * documentation and/or other materials provided with the distribution. 73 * 3. The name of the company may not be used to endorse or promote 74 * products derived from this software without specific prior written 75 * permission. 76 * 77 * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND 78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 79 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 80 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ARM LTD 81 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 82 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 83 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 84 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 85 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 86 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 87 * POSSIBILITY OF SUCH DAMAGE. 88 * 89 */ 90 91 /* 92 * Copyright (c) 1997,1998 Mark Brinicombe. 93 * Copyright (c) 1997,1998 Causality Limited. 94 * All rights reserved. 95 * 96 * Redistribution and use in source and binary forms, with or without 97 * modification, are permitted provided that the following conditions 98 * are met: 99 * 1. Redistributions of source code must retain the above copyright 100 * notice, this list of conditions and the following disclaimer. 101 * 2. Redistributions in binary form must reproduce the above copyright 102 * notice, this list of conditions and the following disclaimer in the 103 * documentation and/or other materials provided with the distribution. 104 * 3. All advertising materials mentioning features or use of this software 105 * must display the following acknowledgement: 106 * This product includes software developed by Mark Brinicombe 107 * for the NetBSD Project. 108 * 4. The name of the company nor the name of the author may be used to 109 * endorse or promote products derived from this software without specific 110 * prior written permission. 111 * 112 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 113 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 114 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 115 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 116 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 117 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 118 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 119 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 120 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 121 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 122 * SUCH DAMAGE. 123 * 124 * Machine dependant functions for kernel setup for integrator board 125 * 126 * Created : 24/11/97 127 */ 128 129 /* 130 * Machine dependant functions for kernel setup for FriendlyARM MINI2440 131 */ 132 133 #include <sys/cdefs.h> 134 __KERNEL_RCSID(0, "$NetBSD: mini2440_machdep.c,v 1.13 2018/10/28 14:30:32 skrll Exp $"); 135 136 #include "opt_arm_debug.h" 137 #include "opt_console.h" 138 #include "opt_ddb.h" 139 #include "opt_kgdb.h" 140 #include "opt_pmap_debug.h" 141 #include "opt_md.h" 142 143 #include <sys/param.h> 144 #include <sys/device.h> 145 #include <sys/systm.h> 146 #include <sys/kernel.h> 147 #include <sys/exec.h> 148 #include <sys/proc.h> 149 #include <sys/msgbuf.h> 150 #include <sys/reboot.h> 151 #include <sys/termios.h> 152 #include <sys/ksyms.h> 153 #include <sys/mount.h> 154 155 #include <net/if.h> 156 #include <net/if_ether.h> 157 #include <net/if_media.h> 158 159 #include <uvm/uvm_extern.h> 160 161 #include <dev/cons.h> 162 #include <dev/md.h> 163 164 #include <machine/db_machdep.h> 165 #include <ddb/db_sym.h> 166 #include <ddb/db_extern.h> 167 #ifdef KGDB 168 #include <sys/kgdb.h> 169 #endif 170 171 #include <sys/exec_elf.h> 172 173 #include <sys/bus.h> 174 #include <machine/cpu.h> 175 #include <machine/frame.h> 176 #include <machine/intr.h> 177 #include <arm/undefined.h> 178 179 #include <machine/autoconf.h> 180 181 #include <arm/locore.h> 182 #include <arm/arm32/machdep.h> 183 184 #include <arm/s3c2xx0/s3c2440reg.h> 185 #include <arm/s3c2xx0/s3c2440var.h> 186 187 #include <arch/evbarm/mini2440/mini2440_bootinfo.h> 188 189 #include "ksyms.h" 190 191 #ifndef SDRAM_START 192 #define SDRAM_START S3C2440_SDRAM_START 193 #endif 194 #ifndef SDRAM_SIZE 195 #define SDRAM_SIZE (64*1024*1024) /* 64 Mb */ 196 #endif 197 198 /* 199 * Address to map I/O registers in early initialize stage. 200 */ 201 #define MINI2440_IO_VBASE 0xfd000000 202 203 /* Kernel text starts 2MB in from the bottom of the kernel address space. */ 204 #define KERNEL_OFFSET 0x00200000 205 #define KERNEL_TEXT_BASE (KERNEL_BASE + KERNEL_OFFSET) 206 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000) 207 208 /* 209 * The range 0xc1000000 - 0xccffffff is available for kernel VM space 210 * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff 211 */ 212 #define KERNEL_VM_SIZE 0x0C000000 213 214 /* Declared extern elsewhere in the kernel */ 215 BootConfig bootconfig; /* Boot config storage */ 216 char *boot_args = NULL; 217 //char *boot_file = NULL; 218 219 char bootinfo[BOOTINFO_MAXSIZE]; 220 struct btinfo_rootdevice *bi_rdev; 221 struct btinfo_net *bi_net; 222 struct btinfo_bootpath *bi_path; 223 224 vaddr_t physical_start; 225 vaddr_t physical_freestart; 226 vaddr_t physical_freeend; 227 vaddr_t physical_freeend_low; 228 vaddr_t physical_end; 229 u_int free_pages; 230 vaddr_t pagetables_start; 231 232 /*int debug_flags;*/ 233 #ifndef PMAP_STATIC_L1S 234 int max_processes = 64; /* Default number */ 235 #endif /* !PMAP_STATIC_L1S */ 236 237 paddr_t msgbufphys; 238 239 #ifdef PMAP_DEBUG 240 extern int pmap_debug_level; 241 #endif 242 243 #define KERNEL_PT_SYS 0 /* L2 table for mapping zero page */ 244 #define KERNEL_PT_KERNEL 1 /* L2 table for mapping kernel */ 245 #define KERNEL_PT_KERNEL_NUM 3 /* L2 tables for mapping kernel VM */ 246 247 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM) 248 249 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */ 250 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM) 251 252 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS]; 253 254 /* Prototypes */ 255 256 void consinit(void); 257 void kgdb_port_init(void); 258 static void mini2440_ksyms(struct btinfo_symtab *bi_symtab); 259 static void *lookup_bootinfo(int type); 260 static void mini2440_device_register(device_t dev, void *aux); 261 262 263 #include "com.h" 264 #if NCOM > 0 265 #include <dev/ic/comreg.h> 266 #include <dev/ic/comvar.h> 267 #endif 268 269 #include "sscom.h" 270 #if NSSCOM > 0 271 #include "opt_sscom.h" 272 #include <arm/s3c2xx0/sscom_var.h> 273 #endif 274 275 /* 276 * Define the default console speed for the board. This is generally 277 * what the firmware provided with the board defaults to. 278 */ 279 #ifndef CONSPEED 280 #define CONSPEED B115200 /* TTYDEF_SPEED */ 281 #endif 282 #ifndef CONMODE 283 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ 284 #endif 285 286 int comcnspeed = CONSPEED; 287 int comcnmode = CONMODE; 288 289 /* 290 * void cpu_reboot(int howto, char *bootstr) 291 * 292 * Reboots the system 293 * 294 * Deal with any syncing, unmounting, dumping and shutdown hooks, 295 * then reset the CPU. 296 */ 297 void 298 cpu_reboot(int howto, char *bootstr) 299 { 300 #ifdef DIAGNOSTIC 301 /* info */ 302 printf("boot: howto=%08x curproc=%p\n", howto, curproc); 303 #endif 304 305 cpu_reset_address_paddr = vtophys((uintptr_t)s3c2440_softreset); 306 307 /* 308 * If we are still cold then hit the air brakes 309 * and crash to earth fast 310 */ 311 if (cold) { 312 doshutdownhooks(); 313 printf("The operating system has halted.\n"); 314 printf("Please press any key to reboot.\n\n"); 315 cngetc(); 316 printf("rebooting...\n"); 317 cpu_reset(); 318 /* NOTREACHED */ 319 } 320 /* Disable console buffering */ 321 322 /* 323 * If RB_NOSYNC was not specified sync the discs. 324 * Note: Unless cold is set to 1 here, syslogd will die during the 325 * unmount. It looks like syslogd is getting woken up only to find 326 * that it cannot page part of the binary in as the filesystem has 327 * been unmounted. 328 */ 329 if (!(howto & RB_NOSYNC)) 330 bootsync(); 331 332 /* Say NO to interrupts */ 333 splhigh(); 334 335 /* Do a dump if requested. */ 336 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) 337 dumpsys(); 338 339 /* Run any shutdown hooks */ 340 doshutdownhooks(); 341 342 /* Make sure IRQ's are disabled */ 343 IRQdisable; 344 345 if (howto & RB_HALT) { 346 printf("The operating system has halted.\n"); 347 printf("Please press any key to reboot.\n\n"); 348 cngetc(); 349 } 350 printf("rebooting...\n"); 351 cpu_reset(); 352 /* NOTREACHED */ 353 } 354 355 /* 356 * Static device mappings. These peripheral registers are mapped at 357 * fixed virtual addresses very early in initarm() so that we can use 358 * them while booting the kernel , and stay at the same address 359 * throughout whole kernel's life time. 360 * 361 * We use this table twice; once with bootstrap page table, and once 362 * with kernel's page table which we build up in initarm(). 363 * 364 * Since we map these registers into the bootstrap page table using 365 * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map 366 * registers segment-aligned and segment-rounded in order to avoid 367 * using the 2nd page tables. 368 */ 369 370 #define _A(a) ((a) & ~L1_S_OFFSET) 371 #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1)) 372 373 #define _V(n) (MINI2440_IO_VBASE + (n) * L1_S_SIZE) 374 375 #define GPIO_VBASE _V(0) 376 #define INTCTL_VBASE _V(1) 377 #define CLKMAN_VBASE _V(2) 378 #define UART_VBASE _V(3) 379 380 static const struct pmap_devmap mini2440_devmap[] = { 381 /* GPIO registers */ 382 { 383 GPIO_VBASE, 384 _A(S3C2440_GPIO_BASE), 385 _S(S3C2440_GPIO_SIZE), 386 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 387 }, 388 { 389 INTCTL_VBASE, 390 _A(S3C2440_INTCTL_BASE), 391 _S(S3C2440_INTCTL_SIZE), 392 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 393 }, 394 { 395 CLKMAN_VBASE, 396 _A(S3C2440_CLKMAN_BASE), 397 _S(S3C24X0_CLKMAN_SIZE), 398 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 399 }, 400 { /* UART registers for UART0, 1, 2. */ 401 UART_VBASE, 402 _A(S3C2440_UART0_BASE), 403 _S(S3C2440_UART_BASE(3) - S3C2440_UART0_BASE), 404 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 405 }, 406 407 { 0, 0, 0, 0 } 408 }; 409 410 #undef _A 411 #undef _S 412 413 static inline pd_entry_t * 414 read_ttb(void) 415 { 416 long ttb; 417 418 __asm volatile("mrc p15, 0, %0, c2, c0, 0" : "=r"(ttb)); 419 420 421 return (pd_entry_t *)(ttb & ~((1 << 14) - 1)); 422 } 423 424 425 #define ioreg_write32(a,v) (*(volatile uint32_t *)(a)=(v)) 426 427 /* 428 * u_int initarm(...) 429 * 430 * Initial entry point on startup. This gets called before main() is 431 * entered. 432 * It should be responsible for setting up everything that must be 433 * in place when main is called. 434 * This includes 435 * Taking a copy of the boot configuration structure. 436 * Initialising the physical console so characters can be printed. 437 * Setting up page tables for the kernel 438 * Relocating the kernel to the bottom of physical memory 439 */ 440 441 u_int 442 initarm(void *arg) 443 { 444 int loop; 445 int loop1; 446 u_int l1pagetable; 447 extern int etext __asm("_etext"); 448 extern int end __asm("_end"); 449 uint32_t kerneldatasize; 450 struct btinfo_magic *bi_magic = arg; 451 struct btinfo_bootstring *bi_bootstring; 452 struct btinfo_symtab *bi_symtab; 453 454 boothowto = 0; 455 456 /* Copy bootinfo from boot loader into kernel memory where it remains. 457 */ 458 if (bi_magic != 0x0 && bi_magic->magic == BOOTINFO_MAGIC) { 459 memcpy(bootinfo, bi_magic, sizeof(bootinfo)); 460 } else { 461 memset(bootinfo, 0, sizeof(bootinfo)); 462 } 463 464 /* Extract boot_args from bootinfo */ 465 bi_bootstring = lookup_bootinfo(BTINFO_BOOTSTRING); 466 if (bi_bootstring ) { 467 printf("Bootloader args are %s\n", bi_bootstring->bootstring); 468 boot_args = bi_bootstring->bootstring; 469 parse_mi_bootargs(boot_args); 470 } 471 472 #define pdatb (*(volatile uint8_t *)(S3C2440_GPIO_BASE+GPIO_PBDAT)) 473 474 // 0x1E0 is the mask for GPB5, GPB6, GPB7, and GPB8 475 #define __LED(x) (pdatb = (pdatb & ~0x1e0) | (~(1<<(x+5)) & 0x1e0)) 476 477 __LED(0); 478 479 /* 480 * Heads up ... Setup the CPU / MMU / TLB functions 481 */ 482 if (set_cpufuncs()) 483 panic("cpu not recognized!"); 484 485 /* 486 * Map I/O registers that are used in startup. Now we are 487 * still using page table prepared by bootloader. Later we'll 488 * map those registers at the same address in the kernel page 489 * table. 490 */ 491 pmap_devmap_bootstrap((vaddr_t)read_ttb(), mini2440_devmap); 492 493 #undef pdatb 494 #define pdatb (*(volatile uint8_t *)(GPIO_VBASE+GPIO_PBDAT)) 495 496 /* Disable all peripheral interrupts */ 497 ioreg_write32(INTCTL_VBASE + INTCTL_INTMSK, ~0); 498 499 __LED(1); 500 501 /* initialize some variables so that splfoo() doesn't 502 touch illegal address. */ 503 s3c2xx0_intr_bootstrap(INTCTL_VBASE); 504 505 __LED(2); 506 consinit(); 507 __LED(3); 508 509 /* Extract information from the bootloader configuration */ 510 bi_rdev = lookup_bootinfo(BTINFO_ROOTDEVICE); 511 bi_net = lookup_bootinfo(BTINFO_NET); 512 bi_path = lookup_bootinfo(BTINFO_BOOTPATH); 513 514 #ifdef VERBOSE_INIT_ARM 515 printf("consinit done\n"); 516 #endif 517 518 #ifdef KGDB 519 kgdb_port_init(); 520 #endif 521 522 #ifdef VERBOSE_INIT_ARM 523 /* Talk to the user */ 524 printf("\nNetBSD/evbarm (MINI2440) booting ...\n"); 525 #endif 526 /* 527 * Ok we have the following memory map 528 * 529 * Physical Address Range Description 530 * ----------------------- ---------------------------------- 531 * 0x30000000 - 0x33ffffff SDRAM (64MB) 532 * 533 * Kernel is loaded by bootloader at 0x30200000 534 * 535 * The initarm() has the responsibility for creating the kernel 536 * page tables. 537 * It must also set up various memory pointers that are used 538 * by pmap etc. 539 */ 540 541 /* Fake bootconfig structure for the benefit of pmap.c */ 542 /* XXX must make the memory description h/w independent */ 543 bootconfig.dramblocks = 1; 544 bootconfig.dram[0].address = SDRAM_START; 545 bootconfig.dram[0].pages = SDRAM_SIZE / PAGE_SIZE; 546 547 /* 548 * Set up the variables that define the availablilty of 549 * physical memory. 550 * We use the 2MB between the physical start and the kernel to 551 * begin with. Allocating from 0x30200000 and downwards 552 * If we get too close to the bottom of SDRAM, we 553 * will panic. We will update physical_freestart and 554 * physical_freeend later to reflect what pmap_bootstrap() 555 * wants to see. 556 * 557 * XXX pmap_bootstrap() needs an enema. 558 */ 559 physical_start = bootconfig.dram[0].address; 560 physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE); 561 562 physical_freestart = SDRAM_START; /* XXX */ 563 physical_freeend = SDRAM_START + KERNEL_OFFSET; 564 565 physmem = (physical_end - physical_start) / PAGE_SIZE; 566 567 #ifdef VERBOSE_INIT_ARM 568 /* Tell the user about the memory */ 569 printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem, 570 physical_start, physical_end - 1); 571 printf("phys_end: 0x%08lx\n", physical_end); 572 #endif 573 574 /* 575 * XXX 576 * Okay, the kernel starts 2MB in from the bottom of physical 577 * memory. We are going to allocate our bootstrap pages downwards 578 * from there. 579 * 580 * We need to allocate some fixed page tables to get the kernel 581 * going. We allocate one page directory and a number of page 582 * tables and store the physical addresses in the kernel_pt_table 583 * array. 584 * 585 * The kernel page directory must be on a 16K boundary. The page 586 * tables must be on 4K boundaries. What we do is allocate the 587 * page directory on the first 16K boundary that we encounter, and 588 * the page tables on 4K boundaries otherwise. Since we allocate 589 * at least 3 L2 page tables, we are guaranteed to encounter at 590 * least one 16K aligned region. 591 */ 592 593 #ifdef VERBOSE_INIT_ARM 594 printf("Allocating page tables\n"); 595 #endif 596 597 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; 598 599 #ifdef VERBOSE_INIT_ARM 600 printf("freestart = 0x%08lx, free_pages = %d (0x%08x), freeend = 0x%08lx\n", 601 physical_freestart, free_pages, free_pages, physical_freeend); 602 #endif 603 604 /* Define a macro to simplify memory allocation */ 605 #define valloc_pages(var, np) \ 606 alloc_pages((var).pv_pa, (np)); \ 607 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start; 608 609 #define alloc_pages(var, np) \ 610 physical_freeend -= ((np) * PAGE_SIZE); \ 611 if (physical_freeend < physical_freestart) \ 612 panic("initarm: out of memory"); \ 613 (var) = physical_freeend; \ 614 free_pages -= (np); \ 615 memset((char *)(var), 0, ((np) * PAGE_SIZE)); 616 617 loop1 = 0; 618 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { 619 /* Are we 16KB aligned for an L1 ? */ 620 if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0 621 && kernel_l1pt.pv_pa == 0) { 622 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); 623 } else { 624 valloc_pages(kernel_pt_table[loop1], 625 L2_TABLE_SIZE / PAGE_SIZE); 626 ++loop1; 627 } 628 } 629 630 /* This should never be able to happen but better confirm that. */ 631 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0) 632 panic("initarm: Failed to align the kernel page directory\n"); 633 634 /* 635 * Allocate a page for the system page mapped to V0x00000000 636 * This page will just contain the system vectors and can be 637 * shared by all processes. 638 */ 639 alloc_pages(systempage.pv_pa, 1); 640 641 /* Allocate stacks for all modes */ 642 valloc_pages(irqstack, IRQ_STACK_SIZE); 643 valloc_pages(abtstack, ABT_STACK_SIZE); 644 valloc_pages(undstack, UND_STACK_SIZE); 645 valloc_pages(kernelstack, UPAGES); 646 647 #ifdef VERBOSE_INIT_ARM 648 printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, 649 irqstack.pv_va); 650 printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, 651 abtstack.pv_va); 652 printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, 653 undstack.pv_va); 654 printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, 655 kernelstack.pv_va); 656 printf("Free memory in bootstrap region: %ld bytes\n", physical_freeend - physical_freestart); 657 #endif 658 659 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); 660 661 physical_freeend_low = physical_freeend; 662 663 /* 664 * Ok we have allocated physical pages for the primary kernel 665 * page tables 666 */ 667 668 #ifdef VERBOSE_INIT_ARM 669 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa); 670 #endif 671 672 /* 673 * Now we start construction of the L1 page table 674 * We start by mapping the L2 page tables into the L1. 675 * This means that we can replace L1 mappings later on if necessary 676 */ 677 l1pagetable = kernel_l1pt.pv_pa; 678 679 /* Map the L2 pages tables in the L1 page table */ 680 pmap_link_l2pt(l1pagetable, 0x00000000, 681 &kernel_pt_table[KERNEL_PT_SYS]); 682 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) 683 pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000, 684 &kernel_pt_table[KERNEL_PT_KERNEL + loop]); 685 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++) 686 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, 687 &kernel_pt_table[KERNEL_PT_VMDATA + loop]); 688 689 /* update the top of the kernel VM */ 690 pmap_curmaxkvaddr = 691 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); 692 693 #ifdef VERBOSE_INIT_ARM 694 printf("Mapping kernel\n"); 695 #endif 696 697 /* Now we fill in the L2 pagetable for the kernel static code/data */ 698 { 699 /* Total size must include symbol table, if it exists. 700 The size of the symbol table can be acquired from the ELF 701 header, to which a pointer is passed in the boot info (ssym). 702 */ 703 size_t textsize = (uintptr_t)&etext - KERNEL_TEXT_BASE; 704 kerneldatasize = (uintptr_t)&end - KERNEL_TEXT_BASE; 705 u_int logical; 706 707 bi_symtab = lookup_bootinfo(BTINFO_SYMTAB); 708 709 if (bi_symtab) { 710 Elf_Ehdr *elfHeader; 711 Elf_Shdr *sectionHeader; 712 int nsection; 713 int sz = 0; 714 715 elfHeader = bi_symtab->ssym; 716 717 #ifdef VERBOSE_INIT_ARM 718 printf("Symbol table information provided by bootloader\n"); 719 printf("ELF header is at %p\n", elfHeader); 720 #endif 721 sectionHeader = (Elf_Shdr*)((char*)(bi_symtab->ssym) + 722 (elfHeader->e_shoff)); 723 nsection = elfHeader->e_shnum; 724 #ifdef VERBOSE_INIT_ARM 725 printf("Number of sections: %d\n", nsection); 726 #endif 727 for(; nsection > 0; nsection--, sectionHeader++) { 728 if (sectionHeader->sh_offset > 0 && 729 (sectionHeader->sh_offset + sectionHeader->sh_size) > sz) 730 sz = sectionHeader->sh_offset + sectionHeader->sh_size; 731 } 732 #ifdef VERBOSE_INIT_ARM 733 printf("Max size of sections: %d\n", sz); 734 #endif 735 kerneldatasize += sz; 736 } 737 738 #ifdef VERBOSE_INIT_ARM 739 printf("Textsize: %u, kerneldatasize: %u\n", (uint)textsize, 740 (uint)kerneldatasize); 741 printf("&etext: 0x%x\n", (uint)&etext); 742 printf("&end: 0x%x\n", (uint)&end); 743 printf("KERNEL_TEXT_BASE: 0x%x\n", KERNEL_TEXT_BASE); 744 #endif 745 746 textsize = (textsize + PGOFSET) & ~PGOFSET; 747 kerneldatasize = (kerneldatasize + PGOFSET) & ~PGOFSET; 748 749 logical = KERNEL_OFFSET; /* offset of kernel in RAM */ 750 751 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, 752 physical_start + logical, textsize, 753 VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); 754 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, 755 physical_start + logical, kerneldatasize - textsize, 756 VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); 757 } 758 759 #ifdef VERBOSE_INIT_ARM 760 printf("Constructing L2 page tables\n"); 761 #endif 762 763 /* Map the stack pages */ 764 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, 765 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, 766 PTE_CACHE); 767 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, 768 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, 769 PTE_CACHE); 770 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, 771 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, 772 PTE_CACHE); 773 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, 774 UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); 775 776 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, 777 L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE); 778 779 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { 780 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, 781 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, 782 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); 783 } 784 785 /* Map the vector page. */ 786 #if 0 787 /* MULTI-ICE requires that page 0 is NC/NB so that it can download the 788 * cache-clean code there. */ 789 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, 790 VM_PROT_READ | VM_PROT_WRITE, PTE_NOCACHE); 791 #else 792 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, 793 VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); 794 #endif 795 796 /* 797 * map integrated peripherals at same address in l1pagetable 798 * so that we can continue to use console. 799 */ 800 pmap_devmap_bootstrap(l1pagetable, mini2440_devmap); 801 802 /* 803 * Now we have the real page tables in place so we can switch to them. 804 * Once this is done we will be running with the REAL kernel page 805 * tables. 806 */ 807 /* 808 * Update the physical_freestart/physical_freeend/free_pages 809 * variables. 810 */ 811 physical_freestart = physical_start + 812 (KERNEL_TEXT_BASE - KERNEL_BASE) + kerneldatasize; 813 physical_freeend = physical_end; 814 free_pages = 815 (physical_freeend - physical_freestart) / PAGE_SIZE; 816 817 /* Switch tables */ 818 #ifdef VERBOSE_INIT_ARM 819 printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n", 820 physical_freestart, free_pages, free_pages); 821 printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa); 822 #endif 823 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); 824 cpu_setttb(kernel_l1pt.pv_pa, true); 825 cpu_tlb_flushID(); 826 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); 827 828 /* 829 * Moved from cpu_startup() as data_abort_handler() references 830 * this during uvm init 831 */ 832 uvm_lwp_setuarea(&lwp0, kernelstack.pv_va); 833 834 #ifdef VERBOSE_INIT_ARM 835 printf("done!\n"); 836 #endif 837 838 #ifdef VERBOSE_INIT_ARM 839 printf("bootstrap done.\n"); 840 #endif 841 842 arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL); 843 844 /* 845 * Pages were allocated during the secondary bootstrap for the 846 * stacks for different CPU modes. 847 * We must now set the r13 registers in the different CPU modes to 848 * point to these stacks. 849 * Since the ARM stacks use STMFD etc. we must set r13 to the top end 850 * of the stack memory. 851 */ 852 #ifdef VERBOSE_INIT_ARM 853 printf("init subsystems: stacks "); 854 #endif 855 856 set_stackptr(PSR_IRQ32_MODE, 857 irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); 858 set_stackptr(PSR_ABT32_MODE, 859 abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); 860 set_stackptr(PSR_UND32_MODE, 861 undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); 862 863 cpu_idcache_wbinv_all(); 864 865 /* 866 * Well we should set a data abort handler. 867 * Once things get going this will change as we will need a proper 868 * handler. 869 * Until then we will use a handler that just panics but tells us 870 * why. 871 * Initialisation of the vectors will just panic on a data abort. 872 * This just fills in a slightly better one. 873 */ 874 #ifdef VERBOSE_INIT_ARM 875 printf("vectors "); 876 #endif 877 data_abort_handler_address = (u_int)data_abort_handler; 878 prefetch_abort_handler_address = (u_int)prefetch_abort_handler; 879 undefined_handler_address = (u_int)undefinedinstruction_bounce; 880 881 /* Initialise the undefined instruction handlers */ 882 #ifdef VERBOSE_INIT_ARM 883 printf("undefined "); 884 #endif 885 undefined_init(); 886 887 /* Load memory into UVM. */ 888 #ifdef VERBOSE_INIT_ARM 889 printf("page "); 890 #endif 891 uvm_md_init(); 892 uvm_page_physload(atop(physical_freestart), atop(physical_freeend), 893 atop(physical_freestart), atop(physical_freeend), 894 VM_FREELIST_DEFAULT); 895 uvm_page_physload(atop(SDRAM_START), atop(physical_freeend_low), 896 atop(SDRAM_START), atop(physical_freeend_low), 897 VM_FREELIST_DEFAULT); 898 899 900 /* Boot strap pmap telling it where managed kernel virtual memory is */ 901 #ifdef VERBOSE_INIT_ARM 902 printf("pmap "); 903 #endif 904 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); 905 906 #ifdef VERBOSE_INIT_ARM 907 printf("done.\n"); 908 #endif 909 910 #ifdef BOOTHOWTO 911 boothowto |= BOOTHOWTO; 912 #endif 913 914 #ifdef KGDB 915 if (boothowto & RB_KDB) { 916 kgdb_debug_init = 1; 917 kgdb_connect(1); 918 } 919 #endif 920 921 mini2440_ksyms(bi_symtab); 922 923 #ifdef DDB 924 /*db_machine_init();*/ 925 if (boothowto & RB_KDB) 926 Debugger(); 927 #endif 928 929 evbarm_device_register = mini2440_device_register; 930 931 /* We return the new stack pointer address */ 932 return (kernelstack.pv_va + USPACE_SVC_STACK_TOP); 933 } 934 935 void 936 consinit(void) 937 { 938 static int consinit_done = 0; 939 #if defined(SSCOM0CONSOLE) || defined(SSCOM1CONSOLE) 940 bus_space_tag_t iot = &s3c2xx0_bs_tag; 941 #endif 942 int pclk; 943 944 if (consinit_done != 0) 945 return; 946 947 consinit_done = 1; 948 949 s3c24x0_clock_freq2(CLKMAN_VBASE, NULL, NULL, &pclk); 950 951 #if NSSCOM > 0 952 #ifdef SSCOM0CONSOLE 953 if (0 == s3c2440_sscom_cnattach(iot, 0, comcnspeed, 954 pclk, comcnmode)) 955 return; 956 #endif 957 #ifdef SSCOM1CONSOLE 958 if (0 == s3c2440_sscom_cnattach(iot, 1, comcnspeed, 959 pclk, comcnmode)) 960 return; 961 #endif 962 #endif /* NSSCOM */ 963 #if NCOM>0 && defined(CONCOMADDR) 964 if (comcnattach(&isa_io_bs_tag, CONCOMADDR, comcnspeed, 965 COM_FREQ, COM_TYPE_NORMAL, comcnmode)) 966 panic("can't init serial console @%x", CONCOMADDR); 967 return; 968 #endif 969 970 consinit_done = 0; 971 } 972 973 974 #ifdef KGDB 975 976 #if (NSSCOM > 0) 977 978 #ifdef KGDB_DEVNAME 979 const char kgdb_devname[] = KGDB_DEVNAME; 980 #else 981 const char kgdb_devname[] = ""; 982 #endif 983 984 #ifndef KGDB_DEVMODE 985 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE|CSTOPB|PARENB))|CS8) /* 8N1 */ 986 #endif 987 int kgdb_sscom_mode = KGDB_DEVMODE; 988 989 #endif /* NSSCOM */ 990 991 void 992 kgdb_port_init(void) 993 { 994 #if (NSSCOM > 0) 995 int unit = -1; 996 int pclk; 997 998 if (strcmp(kgdb_devname, "sscom0") == 0) 999 unit = 0; 1000 else if (strcmp(kgdb_devname, "sscom1") == 0) 1001 unit = 1; 1002 1003 if (unit >= 0) { 1004 s3c24x0_clock_freq2(CLKMAN_VBASE, NULL, NULL, &pclk); 1005 1006 s3c2440_sscom_kgdb_attach(&s3c2xx0_bs_tag, 1007 unit, kgdb_rate, pclk, kgdb_sscom_mode); 1008 } 1009 #endif 1010 } 1011 #endif 1012 1013 1014 static struct arm32_dma_range mini2440_dma_ranges[1]; 1015 1016 bus_dma_tag_t 1017 s3c2xx0_bus_dma_init(struct arm32_bus_dma_tag *dma_tag_template) 1018 { 1019 extern paddr_t physical_start, physical_end; 1020 struct arm32_bus_dma_tag *dmat; 1021 1022 mini2440_dma_ranges[0].dr_sysbase = physical_start; 1023 mini2440_dma_ranges[0].dr_busbase = physical_start; 1024 mini2440_dma_ranges[0].dr_len = physical_end - physical_start; 1025 1026 #if 1 1027 dmat = dma_tag_template; 1028 #else 1029 dmat = malloc(sizeof *dmat, M_DEVBUF, M_NOWAIT); 1030 if (dmat == NULL) 1031 return NULL; 1032 *dmat = *dma_tag_template; 1033 #endif 1034 1035 dmat->_ranges = mini2440_dma_ranges; 1036 dmat->_nranges = 1; 1037 1038 return dmat; 1039 } 1040 1041 void 1042 mini2440_ksyms(struct btinfo_symtab *bi_symtab) 1043 { 1044 #if NKSYMS || defined(DDB) || defined(LKM) 1045 extern int end; 1046 1047 #ifdef DDB 1048 db_machine_init(); 1049 #endif 1050 if (bi_symtab == NULL) { 1051 return; 1052 } 1053 #ifdef VERBOSE_INIT_ARM 1054 printf("Got symbol table. nsym=%d, ssym=%p, esym=%p\n", 1055 bi_symtab->nsym, 1056 bi_symtab->ssym, 1057 bi_symtab->esym); 1058 #endif 1059 1060 ksyms_addsyms_elf(bi_symtab->nsym, 1061 (int*)bi_symtab->ssym, 1062 (int*)bi_symtab->esym); 1063 #endif 1064 } 1065 1066 void * 1067 lookup_bootinfo(int type) 1068 { 1069 struct btinfo_common *bt; 1070 struct btinfo_common *help = (struct btinfo_common *)bootinfo; 1071 1072 if (help->next == 0) 1073 return (NULL); /* bootinfo[] was not made */ 1074 do { 1075 bt = help; 1076 if (bt->type == type) 1077 return (help); 1078 help = (struct btinfo_common *)((char*)help + bt->next); 1079 } while (bt->next && 1080 (size_t)help < (size_t)bootinfo + BOOTINFO_MAXSIZE); 1081 1082 return (NULL); 1083 } 1084 1085 1086 extern char *booted_kernel; 1087 1088 static void 1089 mini2440_device_register(device_t dev, void *aux) { 1090 if (device_class(dev) == DV_IFNET) { 1091 #ifndef MEMORY_DISK_IS_ROOT 1092 if (bi_rdev != NULL && device_is_a(dev, bi_rdev->devname) ) { 1093 booted_device = dev; 1094 rootfstype = MOUNT_NFS; 1095 if( bi_path != NULL ) { 1096 booted_kernel = bi_path->bootpath; 1097 } 1098 } 1099 #endif 1100 if (bi_net != NULL && device_is_a(dev, bi_net->devname)) { 1101 prop_data_t pd; 1102 pd = prop_data_create_data_nocopy(bi_net->mac_address, ETHER_ADDR_LEN); 1103 KASSERT(pd != NULL); 1104 if (prop_dictionary_set(device_properties(dev), "mac-address", pd) == false) { 1105 printf("WARNING: Unable to set mac-address property for %s\n", device_xname(dev)); 1106 } 1107 prop_object_release(pd); 1108 bi_net = NULL; 1109 } 1110 } 1111 #ifndef MEMORY_DISK_IS_ROOT 1112 if (bi_rdev != NULL && device_class(dev) == DV_DISK 1113 && device_is_a(dev, bi_rdev->devname) 1114 && device_unit(dev) == bi_rdev->cookie) { 1115 booted_device = dev; 1116 booted_partition = bi_rdev->partition; 1117 rootfstype = ROOT_FSTYPE_ANY; 1118 if( bi_path != NULL ) { 1119 booted_kernel = bi_path->bootpath; 1120 } 1121 } 1122 #endif 1123 } 1124