xref: /netbsd-src/sys/arch/evbarm/mini2440/mini2440_machdep.c (revision f3cfa6f6ce31685c6c4a758bc430e69eb99f50a4)
1 /*-
2  * Copyright (c) 2012 The NetBSD Foundation, Inc.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to The NetBSD Foundation
6  * by Paul Fleischer <paul@xpg.dk>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
21  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27  * POSSIBILITY OF SUCH DAMAGE.
28  */
29 /* This file is based on arch/evbarm/smdk2xx0/smdk2410_machdep.c */
30 /*
31  * Copyright (c) 2002, 2003 Fujitsu Component Limited
32  * Copyright (c) 2002, 2003, 2005 Genetec Corporation
33  * All rights reserved.
34  *
35  * Redistribution and use in source and binary forms, with or without
36  * modification, are permitted provided that the following conditions
37  * are met:
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 3. Neither the name of The Fujitsu Component Limited nor the name of
44  *    Genetec corporation may not be used to endorse or promote products
45  *    derived from this software without specific prior written permission.
46  *
47  * THIS SOFTWARE IS PROVIDED BY FUJITSU COMPONENT LIMITED AND GENETEC
48  * CORPORATION ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
49  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
50  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
51  * DISCLAIMED.  IN NO EVENT SHALL FUJITSU COMPONENT LIMITED OR GENETEC
52  * CORPORATION BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
53  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
54  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
55  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
56  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
57  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
58  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60  */
61 /*
62  * Copyright (c) 2001,2002 ARM Ltd
63  * All rights reserved.
64  *
65  * Redistribution and use in source and binary forms, with or without
66  * modification, are permitted provided that the following conditions
67  * are met:
68  * 1. Redistributions of source code must retain the above copyright
69  *    notice, this list of conditions and the following disclaimer.
70  * 2. Redistributions in binary form must reproduce the above copyright
71  *    notice, this list of conditions and the following disclaimer in the
72  *    documentation and/or other materials provided with the distribution.
73  * 3. The name of the company may not be used to endorse or promote
74  *    products derived from this software without specific prior written
75  *    permission.
76  *
77  * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND
78  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
79  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
80  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL ARM LTD
81  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
82  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
83  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
84  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
85  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
86  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
87  * POSSIBILITY OF SUCH DAMAGE.
88  *
89  */
90 
91 /*
92  * Copyright (c) 1997,1998 Mark Brinicombe.
93  * Copyright (c) 1997,1998 Causality Limited.
94  * All rights reserved.
95  *
96  * Redistribution and use in source and binary forms, with or without
97  * modification, are permitted provided that the following conditions
98  * are met:
99  * 1. Redistributions of source code must retain the above copyright
100  *    notice, this list of conditions and the following disclaimer.
101  * 2. Redistributions in binary form must reproduce the above copyright
102  *    notice, this list of conditions and the following disclaimer in the
103  *    documentation and/or other materials provided with the distribution.
104  * 3. All advertising materials mentioning features or use of this software
105  *    must display the following acknowledgement:
106  *	This product includes software developed by Mark Brinicombe
107  *	for the NetBSD Project.
108  * 4. The name of the company nor the name of the author may be used to
109  *    endorse or promote products derived from this software without specific
110  *    prior written permission.
111  *
112  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
113  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
114  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
115  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
116  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
117  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
118  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
119  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
120  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
121  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
122  * SUCH DAMAGE.
123  *
124  * Machine dependant functions for kernel setup for integrator board
125  *
126  * Created      : 24/11/97
127  */
128 
129 /*
130  * Machine dependant functions for kernel setup for FriendlyARM MINI2440
131  */
132 
133 #include <sys/cdefs.h>
134 __KERNEL_RCSID(0, "$NetBSD: mini2440_machdep.c,v 1.13 2018/10/28 14:30:32 skrll Exp $");
135 
136 #include "opt_arm_debug.h"
137 #include "opt_console.h"
138 #include "opt_ddb.h"
139 #include "opt_kgdb.h"
140 #include "opt_pmap_debug.h"
141 #include "opt_md.h"
142 
143 #include <sys/param.h>
144 #include <sys/device.h>
145 #include <sys/systm.h>
146 #include <sys/kernel.h>
147 #include <sys/exec.h>
148 #include <sys/proc.h>
149 #include <sys/msgbuf.h>
150 #include <sys/reboot.h>
151 #include <sys/termios.h>
152 #include <sys/ksyms.h>
153 #include <sys/mount.h>
154 
155 #include <net/if.h>
156 #include <net/if_ether.h>
157 #include <net/if_media.h>
158 
159 #include <uvm/uvm_extern.h>
160 
161 #include <dev/cons.h>
162 #include <dev/md.h>
163 
164 #include <machine/db_machdep.h>
165 #include <ddb/db_sym.h>
166 #include <ddb/db_extern.h>
167 #ifdef KGDB
168 #include <sys/kgdb.h>
169 #endif
170 
171 #include <sys/exec_elf.h>
172 
173 #include <sys/bus.h>
174 #include <machine/cpu.h>
175 #include <machine/frame.h>
176 #include <machine/intr.h>
177 #include <arm/undefined.h>
178 
179 #include <machine/autoconf.h>
180 
181 #include <arm/locore.h>
182 #include <arm/arm32/machdep.h>
183 
184 #include <arm/s3c2xx0/s3c2440reg.h>
185 #include <arm/s3c2xx0/s3c2440var.h>
186 
187 #include <arch/evbarm/mini2440/mini2440_bootinfo.h>
188 
189 #include "ksyms.h"
190 
191 #ifndef	SDRAM_START
192 #define	SDRAM_START	S3C2440_SDRAM_START
193 #endif
194 #ifndef	SDRAM_SIZE
195 #define	SDRAM_SIZE	(64*1024*1024) /* 64 Mb */
196 #endif
197 
198 /*
199  * Address to map I/O registers in early initialize stage.
200  */
201 #define MINI2440_IO_VBASE	0xfd000000
202 
203 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
204 #define KERNEL_OFFSET		0x00200000
205 #define	KERNEL_TEXT_BASE	(KERNEL_BASE + KERNEL_OFFSET)
206 #define	KERNEL_VM_BASE		(KERNEL_BASE + 0x01000000)
207 
208 /*
209  * The range 0xc1000000 - 0xccffffff is available for kernel VM space
210  * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
211  */
212 #define KERNEL_VM_SIZE		0x0C000000
213 
214 /* Declared extern elsewhere in the kernel */
215 BootConfig bootconfig;		/* Boot config storage */
216 char *boot_args = NULL;
217 //char *boot_file = NULL;
218 
219 char bootinfo[BOOTINFO_MAXSIZE];
220 struct btinfo_rootdevice 	*bi_rdev;
221 struct btinfo_net		*bi_net;
222 struct btinfo_bootpath		*bi_path;
223 
224 vaddr_t physical_start;
225 vaddr_t physical_freestart;
226 vaddr_t physical_freeend;
227 vaddr_t physical_freeend_low;
228 vaddr_t physical_end;
229 u_int free_pages;
230 vaddr_t pagetables_start;
231 
232 /*int debug_flags;*/
233 #ifndef PMAP_STATIC_L1S
234 int max_processes = 64;		/* Default number */
235 #endif				/* !PMAP_STATIC_L1S */
236 
237 paddr_t msgbufphys;
238 
239 #ifdef PMAP_DEBUG
240 extern int pmap_debug_level;
241 #endif
242 
243 #define KERNEL_PT_SYS		0	/* L2 table for mapping zero page */
244 #define KERNEL_PT_KERNEL	1	/* L2 table for mapping kernel */
245 #define KERNEL_PT_KERNEL_NUM	3	/* L2 tables for mapping kernel VM */
246 
247 #define KERNEL_PT_VMDATA	(KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
248 
249 #define KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
250 #define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
251 
252 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
253 
254 /* Prototypes */
255 
256 void consinit(void);
257 void kgdb_port_init(void);
258 static void mini2440_ksyms(struct btinfo_symtab *bi_symtab);
259 static void *lookup_bootinfo(int type);
260 static void mini2440_device_register(device_t dev, void *aux);
261 
262 
263 #include "com.h"
264 #if NCOM > 0
265 #include <dev/ic/comreg.h>
266 #include <dev/ic/comvar.h>
267 #endif
268 
269 #include "sscom.h"
270 #if NSSCOM > 0
271 #include "opt_sscom.h"
272 #include <arm/s3c2xx0/sscom_var.h>
273 #endif
274 
275 /*
276  * Define the default console speed for the board.  This is generally
277  * what the firmware provided with the board defaults to.
278  */
279 #ifndef CONSPEED
280 #define CONSPEED B115200	/* TTYDEF_SPEED */
281 #endif
282 #ifndef CONMODE
283 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8)   /* 8N1 */
284 #endif
285 
286 int comcnspeed = CONSPEED;
287 int comcnmode = CONMODE;
288 
289 /*
290  * void cpu_reboot(int howto, char *bootstr)
291  *
292  * Reboots the system
293  *
294  * Deal with any syncing, unmounting, dumping and shutdown hooks,
295  * then reset the CPU.
296  */
297 void
298 cpu_reboot(int howto, char *bootstr)
299 {
300 #ifdef DIAGNOSTIC
301 	/* info */
302 	printf("boot: howto=%08x curproc=%p\n", howto, curproc);
303 #endif
304 
305 	cpu_reset_address_paddr = vtophys((uintptr_t)s3c2440_softreset);
306 
307 	/*
308 	 * If we are still cold then hit the air brakes
309 	 * and crash to earth fast
310 	 */
311 	if (cold) {
312 		doshutdownhooks();
313 		printf("The operating system has halted.\n");
314 		printf("Please press any key to reboot.\n\n");
315 		cngetc();
316 		printf("rebooting...\n");
317 		cpu_reset();
318 		/* NOTREACHED */
319 	}
320 	/* Disable console buffering */
321 
322 	/*
323 	 * If RB_NOSYNC was not specified sync the discs.
324 	 * Note: Unless cold is set to 1 here, syslogd will die during the
325 	 * unmount.  It looks like syslogd is getting woken up only to find
326 	 * that it cannot page part of the binary in as the filesystem has
327 	 * been unmounted.
328 	 */
329 	if (!(howto & RB_NOSYNC))
330 		bootsync();
331 
332 	/* Say NO to interrupts */
333 	splhigh();
334 
335 	/* Do a dump if requested. */
336 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
337 		dumpsys();
338 
339 	/* Run any shutdown hooks */
340 	doshutdownhooks();
341 
342 	/* Make sure IRQ's are disabled */
343 	IRQdisable;
344 
345 	if (howto & RB_HALT) {
346 		printf("The operating system has halted.\n");
347 		printf("Please press any key to reboot.\n\n");
348 		cngetc();
349 	}
350 	printf("rebooting...\n");
351 	cpu_reset();
352 	/* NOTREACHED */
353 }
354 
355 /*
356  * Static device mappings. These peripheral registers are mapped at
357  * fixed virtual addresses very early in initarm() so that we can use
358  * them while booting the kernel , and stay at the same address
359  * throughout whole kernel's life time.
360  *
361  * We use this table twice; once with bootstrap page table, and once
362  * with kernel's page table which we build up in initarm().
363  *
364  * Since we map these registers into the bootstrap page table using
365  * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
366  * registers segment-aligned and segment-rounded in order to avoid
367  * using the 2nd page tables.
368  */
369 
370 #define	_A(a)	((a) & ~L1_S_OFFSET)
371 #define	_S(s)	(((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
372 
373 #define	_V(n)	(MINI2440_IO_VBASE + (n) * L1_S_SIZE)
374 
375 #define	GPIO_VBASE	_V(0)
376 #define	INTCTL_VBASE	_V(1)
377 #define	CLKMAN_VBASE	_V(2)
378 #define	UART_VBASE	_V(3)
379 
380 static const struct pmap_devmap mini2440_devmap[] = {
381 	/* GPIO registers */
382 	{
383 		GPIO_VBASE,
384 		_A(S3C2440_GPIO_BASE),
385 		_S(S3C2440_GPIO_SIZE),
386 		VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
387 	},
388 	{
389 		INTCTL_VBASE,
390 		_A(S3C2440_INTCTL_BASE),
391 		_S(S3C2440_INTCTL_SIZE),
392 		VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
393 	},
394 	{
395 		CLKMAN_VBASE,
396 		_A(S3C2440_CLKMAN_BASE),
397 		_S(S3C24X0_CLKMAN_SIZE),
398 		VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
399 	},
400 	{	/* UART registers for UART0, 1, 2. */
401 		UART_VBASE,
402 		_A(S3C2440_UART0_BASE),
403 		_S(S3C2440_UART_BASE(3) - S3C2440_UART0_BASE),
404 		VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
405 	},
406 
407 	{ 0, 0, 0, 0 }
408 };
409 
410 #undef	_A
411 #undef	_S
412 
413 static inline	pd_entry_t *
414 read_ttb(void)
415 {
416 	long ttb;
417 
418 	__asm volatile("mrc	p15, 0, %0, c2, c0, 0" : "=r"(ttb));
419 
420 
421 	return (pd_entry_t *)(ttb & ~((1 << 14) - 1));
422 }
423 
424 
425 #define	ioreg_write32(a,v)  	(*(volatile uint32_t *)(a)=(v))
426 
427 /*
428  * u_int initarm(...)
429  *
430  * Initial entry point on startup. This gets called before main() is
431  * entered.
432  * It should be responsible for setting up everything that must be
433  * in place when main is called.
434  * This includes
435  *   Taking a copy of the boot configuration structure.
436  *   Initialising the physical console so characters can be printed.
437  *   Setting up page tables for the kernel
438  *   Relocating the kernel to the bottom of physical memory
439  */
440 
441 u_int
442 initarm(void *arg)
443 {
444 	int loop;
445 	int loop1;
446 	u_int l1pagetable;
447 	extern int etext __asm("_etext");
448 	extern int end __asm("_end");
449 	uint32_t kerneldatasize;
450 	struct btinfo_magic *bi_magic = arg;
451 	struct btinfo_bootstring *bi_bootstring;
452 	struct btinfo_symtab *bi_symtab;
453 
454 	boothowto = 0;
455 
456 	/* Copy bootinfo from boot loader into kernel memory where it remains.
457 	 */
458 	if (bi_magic != 0x0 && bi_magic->magic == BOOTINFO_MAGIC) {
459 		memcpy(bootinfo, bi_magic, sizeof(bootinfo));
460 	} else {
461 		memset(bootinfo, 0, sizeof(bootinfo));
462 	}
463 
464 	/* Extract boot_args from bootinfo */
465 	bi_bootstring = lookup_bootinfo(BTINFO_BOOTSTRING);
466 	if (bi_bootstring ) {
467 		printf("Bootloader args are %s\n", bi_bootstring->bootstring);
468 		boot_args = bi_bootstring->bootstring;
469 		parse_mi_bootargs(boot_args);
470 	}
471 
472 #define pdatb (*(volatile uint8_t *)(S3C2440_GPIO_BASE+GPIO_PBDAT))
473 
474 // 0x1E0 is the mask for GPB5, GPB6, GPB7, and GPB8
475 #define __LED(x)  (pdatb = (pdatb & ~0x1e0) | (~(1<<(x+5)) & 0x1e0))
476 
477 	__LED(0);
478 
479 	/*
480 	 * Heads up ... Setup the CPU / MMU / TLB functions
481 	 */
482 	if (set_cpufuncs())
483 		panic("cpu not recognized!");
484 
485 	/*
486 	 * Map I/O registers that are used in startup.  Now we are
487 	 * still using page table prepared by bootloader.  Later we'll
488 	 * map those registers at the same address in the kernel page
489 	 * table.
490 	 */
491 	pmap_devmap_bootstrap((vaddr_t)read_ttb(), mini2440_devmap);
492 
493 #undef	pdatb
494 #define pdatb (*(volatile uint8_t *)(GPIO_VBASE+GPIO_PBDAT))
495 
496 	/* Disable all peripheral interrupts */
497 	ioreg_write32(INTCTL_VBASE + INTCTL_INTMSK, ~0);
498 
499 	__LED(1);
500 
501 	/* initialize some variables so that splfoo() doesn't
502 	   touch illegal address.  */
503 	s3c2xx0_intr_bootstrap(INTCTL_VBASE);
504 
505 	__LED(2);
506 	consinit();
507 	__LED(3);
508 
509 	/* Extract information from the bootloader configuration */
510 	bi_rdev = lookup_bootinfo(BTINFO_ROOTDEVICE);
511 	bi_net = lookup_bootinfo(BTINFO_NET);
512 	bi_path = lookup_bootinfo(BTINFO_BOOTPATH);
513 
514 #ifdef VERBOSE_INIT_ARM
515 	printf("consinit done\n");
516 #endif
517 
518 #ifdef KGDB
519 	kgdb_port_init();
520 #endif
521 
522 #ifdef VERBOSE_INIT_ARM
523 	/* Talk to the user */
524 	printf("\nNetBSD/evbarm (MINI2440) booting ...\n");
525 #endif
526 	/*
527 	 * Ok we have the following memory map
528 	 *
529 	 * Physical Address Range     Description
530 	 * -----------------------    ----------------------------------
531 	 * 0x30000000 - 0x33ffffff    SDRAM (64MB)
532          *
533          * Kernel is loaded by bootloader at 0x30200000
534 	 *
535 	 * The initarm() has the responsibility for creating the kernel
536 	 * page tables.
537 	 * It must also set up various memory pointers that are used
538 	 * by pmap etc.
539 	 */
540 
541 	/* Fake bootconfig structure for the benefit of pmap.c */
542 	/* XXX must make the memory description h/w independent */
543 	bootconfig.dramblocks = 1;
544 	bootconfig.dram[0].address = SDRAM_START;
545 	bootconfig.dram[0].pages = SDRAM_SIZE / PAGE_SIZE;
546 
547 	/*
548 	 * Set up the variables that define the availablilty of
549 	 * physical memory.
550          * We use the 2MB between the physical start and the kernel to
551          * begin with. Allocating from 0x30200000 and downwards
552 	 * If we get too close to the bottom of SDRAM, we
553 	 * will panic.  We will update physical_freestart and
554 	 * physical_freeend later to reflect what pmap_bootstrap()
555 	 * wants to see.
556 	 *
557 	 * XXX pmap_bootstrap() needs an enema.
558 	 */
559 	physical_start = bootconfig.dram[0].address;
560 	physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
561 
562 	physical_freestart = SDRAM_START;	/* XXX */
563 	physical_freeend = SDRAM_START + KERNEL_OFFSET;
564 
565 	physmem = (physical_end - physical_start) / PAGE_SIZE;
566 
567 #ifdef VERBOSE_INIT_ARM
568 	/* Tell the user about the memory */
569 	printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
570 	    physical_start, physical_end - 1);
571 	printf("phys_end: 0x%08lx\n", physical_end);
572 #endif
573 
574 	/*
575 	 * XXX
576 	 * Okay, the kernel starts 2MB in from the bottom of physical
577 	 * memory.  We are going to allocate our bootstrap pages downwards
578 	 * from there.
579 	 *
580 	 * We need to allocate some fixed page tables to get the kernel
581 	 * going.  We allocate one page directory and a number of page
582 	 * tables and store the physical addresses in the kernel_pt_table
583 	 * array.
584 	 *
585 	 * The kernel page directory must be on a 16K boundary.  The page
586 	 * tables must be on 4K boundaries.  What we do is allocate the
587 	 * page directory on the first 16K boundary that we encounter, and
588 	 * the page tables on 4K boundaries otherwise.  Since we allocate
589 	 * at least 3 L2 page tables, we are guaranteed to encounter at
590 	 * least one 16K aligned region.
591 	 */
592 
593 #ifdef VERBOSE_INIT_ARM
594 	printf("Allocating page tables\n");
595 #endif
596 
597 	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
598 
599 #ifdef VERBOSE_INIT_ARM
600 	printf("freestart = 0x%08lx, free_pages = %d (0x%08x), freeend = 0x%08lx\n",
601 	    physical_freestart, free_pages, free_pages, physical_freeend);
602 #endif
603 
604 	/* Define a macro to simplify memory allocation */
605 #define	valloc_pages(var, np)				\
606 	alloc_pages((var).pv_pa, (np));			\
607 	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
608 
609 #define alloc_pages(var, np)				\
610 	physical_freeend -= ((np) * PAGE_SIZE);		\
611 	if (physical_freeend < physical_freestart)	\
612 		panic("initarm: out of memory");	\
613 	(var) = physical_freeend;			\
614 	free_pages -= (np);				\
615 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
616 
617 	loop1 = 0;
618 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
619 		/* Are we 16KB aligned for an L1 ? */
620 		if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
621 		    && kernel_l1pt.pv_pa == 0) {
622 			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
623 		} else {
624 			valloc_pages(kernel_pt_table[loop1],
625 			    L2_TABLE_SIZE / PAGE_SIZE);
626 			++loop1;
627 		}
628 	}
629 
630 	/* This should never be able to happen but better confirm that. */
631 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0)
632 		panic("initarm: Failed to align the kernel page directory\n");
633 
634 	/*
635 	 * Allocate a page for the system page mapped to V0x00000000
636 	 * This page will just contain the system vectors and can be
637 	 * shared by all processes.
638 	 */
639 	alloc_pages(systempage.pv_pa, 1);
640 
641 	/* Allocate stacks for all modes */
642 	valloc_pages(irqstack, IRQ_STACK_SIZE);
643 	valloc_pages(abtstack, ABT_STACK_SIZE);
644 	valloc_pages(undstack, UND_STACK_SIZE);
645 	valloc_pages(kernelstack, UPAGES);
646 
647 #ifdef VERBOSE_INIT_ARM
648 	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
649 	    irqstack.pv_va);
650 	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
651 	    abtstack.pv_va);
652 	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
653 	    undstack.pv_va);
654 	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
655 	    kernelstack.pv_va);
656 	printf("Free memory in bootstrap region: %ld bytes\n", physical_freeend - physical_freestart);
657 #endif
658 
659 	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
660 
661 	physical_freeend_low = physical_freeend;
662 
663 	/*
664 	 * Ok we have allocated physical pages for the primary kernel
665 	 * page tables
666 	 */
667 
668 #ifdef VERBOSE_INIT_ARM
669 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
670 #endif
671 
672 	/*
673 	 * Now we start construction of the L1 page table
674 	 * We start by mapping the L2 page tables into the L1.
675 	 * This means that we can replace L1 mappings later on if necessary
676 	 */
677 	l1pagetable = kernel_l1pt.pv_pa;
678 
679 	/* Map the L2 pages tables in the L1 page table */
680 	pmap_link_l2pt(l1pagetable, 0x00000000,
681 	    &kernel_pt_table[KERNEL_PT_SYS]);
682 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
683 		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
684 		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
685 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
686 		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
687 		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
688 
689 	/* update the top of the kernel VM */
690 	pmap_curmaxkvaddr =
691 	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
692 
693 #ifdef VERBOSE_INIT_ARM
694 	printf("Mapping kernel\n");
695 #endif
696 
697 	/* Now we fill in the L2 pagetable for the kernel static code/data */
698 	{
699 		/* Total size must include symbol table, if it exists.
700 		   The size of the symbol table can be acquired from the ELF
701 		   header, to which a pointer is passed in the boot info (ssym).
702 		 */
703 		size_t textsize = (uintptr_t)&etext - KERNEL_TEXT_BASE;
704 		kerneldatasize = (uintptr_t)&end - KERNEL_TEXT_BASE;
705 		u_int logical;
706 
707 		bi_symtab = lookup_bootinfo(BTINFO_SYMTAB);
708 
709 		if (bi_symtab) {
710 			Elf_Ehdr *elfHeader;
711 			Elf_Shdr *sectionHeader;
712 			int nsection;
713 			int sz = 0;
714 
715 			elfHeader = bi_symtab->ssym;
716 
717 #ifdef VERBOSE_INIT_ARM
718 			printf("Symbol table information provided by bootloader\n");
719 			printf("ELF header is at %p\n", elfHeader);
720 #endif
721 			sectionHeader = (Elf_Shdr*)((char*)(bi_symtab->ssym) +
722 						     (elfHeader->e_shoff));
723 			nsection = elfHeader->e_shnum;
724 #ifdef VERBOSE_INIT_ARM
725 			printf("Number of sections: %d\n", nsection);
726 #endif
727 			for(; nsection > 0; nsection--, sectionHeader++) {
728 				if (sectionHeader->sh_offset > 0 &&
729 				    (sectionHeader->sh_offset + sectionHeader->sh_size) > sz)
730 					sz = sectionHeader->sh_offset + sectionHeader->sh_size;
731 			}
732 #ifdef VERBOSE_INIT_ARM
733 			printf("Max size of sections: %d\n", sz);
734 #endif
735 			kerneldatasize += sz;
736 		}
737 
738 #ifdef VERBOSE_INIT_ARM
739 		printf("Textsize: %u, kerneldatasize: %u\n", (uint)textsize,
740 		       (uint)kerneldatasize);
741 		printf("&etext: 0x%x\n", (uint)&etext);
742 		printf("&end: 0x%x\n", (uint)&end);
743 		printf("KERNEL_TEXT_BASE: 0x%x\n", KERNEL_TEXT_BASE);
744 #endif
745 
746 		textsize = (textsize + PGOFSET) & ~PGOFSET;
747 		kerneldatasize = (kerneldatasize + PGOFSET) & ~PGOFSET;
748 
749 		logical = KERNEL_OFFSET;	/* offset of kernel in RAM */
750 
751 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
752 					  physical_start + logical, textsize,
753 					  VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
754 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
755 					  physical_start + logical, kerneldatasize - textsize,
756 					  VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
757 	}
758 
759 #ifdef VERBOSE_INIT_ARM
760 	printf("Constructing L2 page tables\n");
761 #endif
762 
763 	/* Map the stack pages */
764 	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
765 	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
766 	    PTE_CACHE);
767 	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
768 	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
769 	    PTE_CACHE);
770 	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
771 	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
772 	    PTE_CACHE);
773 	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
774 	    UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
775 
776 	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
777 	    L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
778 
779 	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
780 		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
781 		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
782 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
783 	}
784 
785 	/* Map the vector page. */
786 #if 0
787 	/* MULTI-ICE requires that page 0 is NC/NB so that it can download the
788 	 * cache-clean code there.  */
789 	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
790 	    VM_PROT_READ | VM_PROT_WRITE, PTE_NOCACHE);
791 #else
792 	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
793 	    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
794 #endif
795 
796 	/*
797 	 * map integrated peripherals at same address in l1pagetable
798 	 * so that we can continue to use console.
799 	 */
800 	pmap_devmap_bootstrap(l1pagetable, mini2440_devmap);
801 
802 	/*
803 	 * Now we have the real page tables in place so we can switch to them.
804 	 * Once this is done we will be running with the REAL kernel page
805 	 * tables.
806 	 */
807 	/*
808 	 * Update the physical_freestart/physical_freeend/free_pages
809 	 * variables.
810 	 */
811 	physical_freestart = physical_start +
812 	  (KERNEL_TEXT_BASE - KERNEL_BASE) + kerneldatasize;
813 	physical_freeend = physical_end;
814 	free_pages =
815 	  (physical_freeend - physical_freestart) / PAGE_SIZE;
816 
817 	/* Switch tables */
818 #ifdef VERBOSE_INIT_ARM
819 	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
820 	    physical_freestart, free_pages, free_pages);
821 	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
822 #endif
823 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
824 	cpu_setttb(kernel_l1pt.pv_pa, true);
825 	cpu_tlb_flushID();
826 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
827 
828 	/*
829 	 * Moved from cpu_startup() as data_abort_handler() references
830 	 * this during uvm init
831 	 */
832 	uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
833 
834 #ifdef VERBOSE_INIT_ARM
835 	printf("done!\n");
836 #endif
837 
838 #ifdef VERBOSE_INIT_ARM
839 	printf("bootstrap done.\n");
840 #endif
841 
842 	arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
843 
844 	/*
845 	 * Pages were allocated during the secondary bootstrap for the
846 	 * stacks for different CPU modes.
847 	 * We must now set the r13 registers in the different CPU modes to
848 	 * point to these stacks.
849 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
850 	 * of the stack memory.
851 	 */
852 #ifdef VERBOSE_INIT_ARM
853 	printf("init subsystems: stacks ");
854 #endif
855 
856 	set_stackptr(PSR_IRQ32_MODE,
857 	    irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
858 	set_stackptr(PSR_ABT32_MODE,
859 	    abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
860 	set_stackptr(PSR_UND32_MODE,
861 	    undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
862 
863 	cpu_idcache_wbinv_all();
864 
865 	/*
866 	 * Well we should set a data abort handler.
867 	 * Once things get going this will change as we will need a proper
868 	 * handler.
869 	 * Until then we will use a handler that just panics but tells us
870 	 * why.
871 	 * Initialisation of the vectors will just panic on a data abort.
872 	 * This just fills in a slightly better one.
873 	 */
874 #ifdef VERBOSE_INIT_ARM
875 	printf("vectors ");
876 #endif
877 	data_abort_handler_address = (u_int)data_abort_handler;
878 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
879 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
880 
881 	/* Initialise the undefined instruction handlers */
882 #ifdef VERBOSE_INIT_ARM
883 	printf("undefined ");
884 #endif
885 	undefined_init();
886 
887 	/* Load memory into UVM. */
888 #ifdef VERBOSE_INIT_ARM
889 	printf("page ");
890 #endif
891 	uvm_md_init();
892 	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
893 	    atop(physical_freestart), atop(physical_freeend),
894 	    VM_FREELIST_DEFAULT);
895 	uvm_page_physload(atop(SDRAM_START), atop(physical_freeend_low),
896 	    atop(SDRAM_START), atop(physical_freeend_low),
897 	    VM_FREELIST_DEFAULT);
898 
899 
900 	/* Boot strap pmap telling it where managed kernel virtual memory is */
901 #ifdef VERBOSE_INIT_ARM
902 	printf("pmap ");
903 #endif
904 	pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
905 
906 #ifdef VERBOSE_INIT_ARM
907 	printf("done.\n");
908 #endif
909 
910 #ifdef BOOTHOWTO
911 	boothowto |= BOOTHOWTO;
912 #endif
913 
914 #ifdef KGDB
915 	if (boothowto & RB_KDB) {
916 		kgdb_debug_init = 1;
917 		kgdb_connect(1);
918 	}
919 #endif
920 
921 	mini2440_ksyms(bi_symtab);
922 
923 #ifdef DDB
924 	/*db_machine_init();*/
925 	if (boothowto & RB_KDB)
926 		Debugger();
927 #endif
928 
929 	evbarm_device_register = mini2440_device_register;
930 
931 	/* We return the new stack pointer address */
932 	return (kernelstack.pv_va + USPACE_SVC_STACK_TOP);
933 }
934 
935 void
936 consinit(void)
937 {
938 	static int consinit_done = 0;
939 #if defined(SSCOM0CONSOLE) || defined(SSCOM1CONSOLE)
940 	bus_space_tag_t iot = &s3c2xx0_bs_tag;
941 #endif
942 	int pclk;
943 
944 	if (consinit_done != 0)
945 		return;
946 
947 	consinit_done = 1;
948 
949 	s3c24x0_clock_freq2(CLKMAN_VBASE, NULL, NULL, &pclk);
950 
951 #if NSSCOM > 0
952 #ifdef SSCOM0CONSOLE
953 	if (0 == s3c2440_sscom_cnattach(iot, 0, comcnspeed,
954 		pclk, comcnmode))
955 		return;
956 #endif
957 #ifdef SSCOM1CONSOLE
958 	if (0 == s3c2440_sscom_cnattach(iot, 1, comcnspeed,
959 		pclk, comcnmode))
960 		return;
961 #endif
962 #endif				/* NSSCOM */
963 #if NCOM>0 && defined(CONCOMADDR)
964 	if (comcnattach(&isa_io_bs_tag, CONCOMADDR, comcnspeed,
965 		COM_FREQ, COM_TYPE_NORMAL, comcnmode))
966 		panic("can't init serial console @%x", CONCOMADDR);
967 	return;
968 #endif
969 
970 	consinit_done = 0;
971 }
972 
973 
974 #ifdef KGDB
975 
976 #if (NSSCOM > 0)
977 
978 #ifdef KGDB_DEVNAME
979 const char kgdb_devname[] = KGDB_DEVNAME;
980 #else
981 const char kgdb_devname[] = "";
982 #endif
983 
984 #ifndef KGDB_DEVMODE
985 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE|CSTOPB|PARENB))|CS8) /* 8N1 */
986 #endif
987 int kgdb_sscom_mode = KGDB_DEVMODE;
988 
989 #endif				/* NSSCOM */
990 
991 void
992 kgdb_port_init(void)
993 {
994 #if (NSSCOM > 0)
995 	int unit = -1;
996 	int pclk;
997 
998 	if (strcmp(kgdb_devname, "sscom0") == 0)
999 		unit = 0;
1000 	else if (strcmp(kgdb_devname, "sscom1") == 0)
1001 		unit = 1;
1002 
1003 	if (unit >= 0) {
1004 		s3c24x0_clock_freq2(CLKMAN_VBASE, NULL, NULL, &pclk);
1005 
1006 		s3c2440_sscom_kgdb_attach(&s3c2xx0_bs_tag,
1007 		    unit, kgdb_rate, pclk, kgdb_sscom_mode);
1008 	}
1009 #endif
1010 }
1011 #endif
1012 
1013 
1014 static struct arm32_dma_range mini2440_dma_ranges[1];
1015 
1016 bus_dma_tag_t
1017 s3c2xx0_bus_dma_init(struct arm32_bus_dma_tag *dma_tag_template)
1018 {
1019 	extern paddr_t physical_start, physical_end;
1020 	struct arm32_bus_dma_tag *dmat;
1021 
1022 	mini2440_dma_ranges[0].dr_sysbase = physical_start;
1023 	mini2440_dma_ranges[0].dr_busbase = physical_start;
1024 	mini2440_dma_ranges[0].dr_len = physical_end - physical_start;
1025 
1026 #if 1
1027 	dmat = dma_tag_template;
1028 #else
1029 	dmat = malloc(sizeof *dmat, M_DEVBUF, M_NOWAIT);
1030 	if (dmat == NULL)
1031 		return NULL;
1032 	*dmat =  *dma_tag_template;
1033 #endif
1034 
1035 	dmat->_ranges = mini2440_dma_ranges;
1036 	dmat->_nranges = 1;
1037 
1038 	return dmat;
1039 }
1040 
1041 void
1042 mini2440_ksyms(struct btinfo_symtab *bi_symtab)
1043 {
1044 #if NKSYMS || defined(DDB) || defined(LKM)
1045 	extern int end;
1046 
1047 #ifdef DDB
1048 	db_machine_init();
1049 #endif
1050 	if (bi_symtab == NULL) {
1051 		return;
1052 	}
1053 #ifdef VERBOSE_INIT_ARM
1054 	printf("Got symbol table. nsym=%d, ssym=%p, esym=%p\n",
1055 	       bi_symtab->nsym,
1056 	       bi_symtab->ssym,
1057 	       bi_symtab->esym);
1058 #endif
1059 
1060 	ksyms_addsyms_elf(bi_symtab->nsym,
1061 			  (int*)bi_symtab->ssym,
1062 			  (int*)bi_symtab->esym);
1063 #endif
1064 }
1065 
1066 void *
1067 lookup_bootinfo(int type)
1068 {
1069 	struct btinfo_common *bt;
1070 	struct btinfo_common *help = (struct btinfo_common *)bootinfo;
1071 
1072 	if (help->next == 0)
1073 		return (NULL);  /* bootinfo[] was not made */
1074 	do {
1075 		bt = help;
1076 		if (bt->type == type)
1077 			return (help);
1078 		help = (struct btinfo_common *)((char*)help + bt->next);
1079 	} while (bt->next &&
1080 		 (size_t)help < (size_t)bootinfo + BOOTINFO_MAXSIZE);
1081 
1082 	return (NULL);
1083 }
1084 
1085 
1086 extern char *booted_kernel;
1087 
1088 static void
1089 mini2440_device_register(device_t dev, void *aux) {
1090 	if (device_class(dev) == DV_IFNET) {
1091 #ifndef MEMORY_DISK_IS_ROOT
1092 		if (bi_rdev != NULL && device_is_a(dev, bi_rdev->devname) ) {
1093 			booted_device = dev;
1094 			rootfstype = MOUNT_NFS;
1095 			if( bi_path != NULL ) {
1096 				booted_kernel = bi_path->bootpath;
1097 			}
1098 		}
1099 #endif
1100 		if (bi_net != NULL && device_is_a(dev, bi_net->devname)) {
1101 			prop_data_t pd;
1102 			pd = prop_data_create_data_nocopy(bi_net->mac_address, ETHER_ADDR_LEN);
1103 			KASSERT(pd != NULL);
1104 			if (prop_dictionary_set(device_properties(dev), "mac-address", pd) == false) {
1105 				printf("WARNING: Unable to set mac-address property for %s\n", device_xname(dev));
1106 			}
1107 			prop_object_release(pd);
1108 			bi_net = NULL;
1109 		}
1110 	}
1111 #ifndef MEMORY_DISK_IS_ROOT
1112 	if (bi_rdev != NULL && device_class(dev) == DV_DISK
1113 	    && device_is_a(dev, bi_rdev->devname)
1114 	    && device_unit(dev) == bi_rdev->cookie) {
1115 		booted_device = dev;
1116 		booted_partition = bi_rdev->partition;
1117 		rootfstype = ROOT_FSTYPE_ANY;
1118 		if( bi_path != NULL ) {
1119 			booted_kernel = bi_path->bootpath;
1120 		}
1121 	}
1122 #endif
1123 }
1124