1 /*- 2 * Copyright (c) 2012 The NetBSD Foundation, Inc. 3 * All rights reserved. 4 * 5 * This code is derived from software contributed to The NetBSD Foundation 6 * by Paul Fleischer <paul@xpg.dk> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 19 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 21 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 22 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 25 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 27 * POSSIBILITY OF SUCH DAMAGE. 28 */ 29 /* This file is based on arch/evbarm/smdk2xx0/smdk2410_machdep.c */ 30 /* 31 * Copyright (c) 2002, 2003 Fujitsu Component Limited 32 * Copyright (c) 2002, 2003, 2005 Genetec Corporation 33 * All rights reserved. 34 * 35 * Redistribution and use in source and binary forms, with or without 36 * modification, are permitted provided that the following conditions 37 * are met: 38 * 1. Redistributions of source code must retain the above copyright 39 * notice, this list of conditions and the following disclaimer. 40 * 2. Redistributions in binary form must reproduce the above copyright 41 * notice, this list of conditions and the following disclaimer in the 42 * documentation and/or other materials provided with the distribution. 43 * 3. Neither the name of The Fujitsu Component Limited nor the name of 44 * Genetec corporation may not be used to endorse or promote products 45 * derived from this software without specific prior written permission. 46 * 47 * THIS SOFTWARE IS PROVIDED BY FUJITSU COMPONENT LIMITED AND GENETEC 48 * CORPORATION ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, 49 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 50 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 51 * DISCLAIMED. IN NO EVENT SHALL FUJITSU COMPONENT LIMITED OR GENETEC 52 * CORPORATION BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 53 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 54 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 55 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 56 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 57 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 58 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 */ 61 /* 62 * Copyright (c) 2001,2002 ARM Ltd 63 * All rights reserved. 64 * 65 * Redistribution and use in source and binary forms, with or without 66 * modification, are permitted provided that the following conditions 67 * are met: 68 * 1. Redistributions of source code must retain the above copyright 69 * notice, this list of conditions and the following disclaimer. 70 * 2. Redistributions in binary form must reproduce the above copyright 71 * notice, this list of conditions and the following disclaimer in the 72 * documentation and/or other materials provided with the distribution. 73 * 3. The name of the company may not be used to endorse or promote 74 * products derived from this software without specific prior written 75 * permission. 76 * 77 * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND 78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 79 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 80 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ARM LTD 81 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 82 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 83 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 84 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 85 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 86 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 87 * POSSIBILITY OF SUCH DAMAGE. 88 * 89 */ 90 91 /* 92 * Copyright (c) 1997,1998 Mark Brinicombe. 93 * Copyright (c) 1997,1998 Causality Limited. 94 * All rights reserved. 95 * 96 * Redistribution and use in source and binary forms, with or without 97 * modification, are permitted provided that the following conditions 98 * are met: 99 * 1. Redistributions of source code must retain the above copyright 100 * notice, this list of conditions and the following disclaimer. 101 * 2. Redistributions in binary form must reproduce the above copyright 102 * notice, this list of conditions and the following disclaimer in the 103 * documentation and/or other materials provided with the distribution. 104 * 3. All advertising materials mentioning features or use of this software 105 * must display the following acknowledgement: 106 * This product includes software developed by Mark Brinicombe 107 * for the NetBSD Project. 108 * 4. The name of the company nor the name of the author may be used to 109 * endorse or promote products derived from this software without specific 110 * prior written permission. 111 * 112 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 113 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 114 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 115 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 116 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 117 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 118 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 119 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 120 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 121 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 122 * SUCH DAMAGE. 123 * 124 * Machine dependant functions for kernel setup for integrator board 125 * 126 * Created : 24/11/97 127 */ 128 129 /* 130 * Machine dependant functions for kernel setup for FriendlyARM MINI2440 131 */ 132 133 #include <sys/cdefs.h> 134 __KERNEL_RCSID(0, "$NetBSD: mini2440_machdep.c,v 1.8 2014/03/14 21:39:48 matt Exp $"); 135 136 #include "opt_ddb.h" 137 #include "opt_kgdb.h" 138 #include "opt_pmap_debug.h" 139 #include "opt_md.h" 140 141 #include <sys/param.h> 142 #include <sys/device.h> 143 #include <sys/systm.h> 144 #include <sys/kernel.h> 145 #include <sys/exec.h> 146 #include <sys/proc.h> 147 #include <sys/msgbuf.h> 148 #include <sys/reboot.h> 149 #include <sys/termios.h> 150 #include <sys/ksyms.h> 151 #include <sys/mount.h> 152 153 #include <net/if.h> 154 #include <net/if_ether.h> 155 #include <net/if_media.h> 156 157 #include <uvm/uvm_extern.h> 158 159 #include <dev/cons.h> 160 #include <dev/md.h> 161 162 #include <machine/db_machdep.h> 163 #include <ddb/db_sym.h> 164 #include <ddb/db_extern.h> 165 #ifdef KGDB 166 #include <sys/kgdb.h> 167 #endif 168 169 #include <sys/exec_elf.h> 170 171 #include <sys/bus.h> 172 #include <machine/cpu.h> 173 #include <machine/frame.h> 174 #include <machine/intr.h> 175 #include <arm/undefined.h> 176 177 #include <machine/autoconf.h> 178 179 #include <arm/locore.h> 180 #include <arm/arm32/machdep.h> 181 182 #include <arm/s3c2xx0/s3c2440reg.h> 183 #include <arm/s3c2xx0/s3c2440var.h> 184 185 #include <arch/evbarm/mini2440/mini2440_bootinfo.h> 186 187 #include "ksyms.h" 188 189 #ifndef SDRAM_START 190 #define SDRAM_START S3C2440_SDRAM_START 191 #endif 192 #ifndef SDRAM_SIZE 193 #define SDRAM_SIZE (64*1024*1024) /* 64 Mb */ 194 #endif 195 196 /* 197 * Address to map I/O registers in early initialize stage. 198 */ 199 #define MINI2440_IO_VBASE 0xfd000000 200 201 /* Kernel text starts 2MB in from the bottom of the kernel address space. */ 202 #define KERNEL_OFFSET 0x00200000 203 #define KERNEL_TEXT_BASE (KERNEL_BASE + KERNEL_OFFSET) 204 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000) 205 206 /* 207 * The range 0xc1000000 - 0xccffffff is available for kernel VM space 208 * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff 209 */ 210 #define KERNEL_VM_SIZE 0x0C000000 211 212 /* Declared extern elsewhere in the kernel */ 213 BootConfig bootconfig; /* Boot config storage */ 214 char *boot_args = NULL; 215 //char *boot_file = NULL; 216 217 char bootinfo[BOOTINFO_MAXSIZE]; 218 struct btinfo_rootdevice *bi_rdev; 219 struct btinfo_net *bi_net; 220 struct btinfo_bootpath *bi_path; 221 222 vm_offset_t physical_start; 223 vm_offset_t physical_freestart; 224 vm_offset_t physical_freeend; 225 vm_offset_t physical_freeend_low; 226 vm_offset_t physical_end; 227 u_int free_pages; 228 vm_offset_t pagetables_start; 229 230 /*int debug_flags;*/ 231 #ifndef PMAP_STATIC_L1S 232 int max_processes = 64; /* Default number */ 233 #endif /* !PMAP_STATIC_L1S */ 234 235 vm_offset_t msgbufphys; 236 237 #ifdef PMAP_DEBUG 238 extern int pmap_debug_level; 239 #endif 240 241 #define KERNEL_PT_SYS 0 /* L2 table for mapping zero page */ 242 #define KERNEL_PT_KERNEL 1 /* L2 table for mapping kernel */ 243 #define KERNEL_PT_KERNEL_NUM 3 /* L2 tables for mapping kernel VM */ 244 245 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM) 246 247 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */ 248 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM) 249 250 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS]; 251 252 /* Prototypes */ 253 254 void consinit(void); 255 void kgdb_port_init(void); 256 static void mini2440_ksyms(struct btinfo_symtab *bi_symtab); 257 static void *lookup_bootinfo(int type); 258 static void mini2440_device_register(device_t dev, void *aux); 259 260 261 #include "com.h" 262 #if NCOM > 0 263 #include <dev/ic/comreg.h> 264 #include <dev/ic/comvar.h> 265 #endif 266 267 #include "sscom.h" 268 #if NSSCOM > 0 269 #include "opt_sscom.h" 270 #include <arm/s3c2xx0/sscom_var.h> 271 #endif 272 273 /* 274 * Define the default console speed for the board. This is generally 275 * what the firmware provided with the board defaults to. 276 */ 277 #ifndef CONSPEED 278 #define CONSPEED B115200 /* TTYDEF_SPEED */ 279 #endif 280 #ifndef CONMODE 281 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ 282 #endif 283 284 int comcnspeed = CONSPEED; 285 int comcnmode = CONMODE; 286 287 /* 288 * void cpu_reboot(int howto, char *bootstr) 289 * 290 * Reboots the system 291 * 292 * Deal with any syncing, unmounting, dumping and shutdown hooks, 293 * then reset the CPU. 294 */ 295 void 296 cpu_reboot(int howto, char *bootstr) 297 { 298 #ifdef DIAGNOSTIC 299 /* info */ 300 printf("boot: howto=%08x curproc=%p\n", howto, curproc); 301 #endif 302 303 cpu_reset_address_paddr = vtophys((uintptr_t)s3c2440_softreset); 304 305 /* 306 * If we are still cold then hit the air brakes 307 * and crash to earth fast 308 */ 309 if (cold) { 310 doshutdownhooks(); 311 printf("The operating system has halted.\n"); 312 printf("Please press any key to reboot.\n\n"); 313 cngetc(); 314 printf("rebooting...\n"); 315 cpu_reset(); 316 /* NOTREACHED */ 317 } 318 /* Disable console buffering */ 319 320 /* 321 * If RB_NOSYNC was not specified sync the discs. 322 * Note: Unless cold is set to 1 here, syslogd will die during the 323 * unmount. It looks like syslogd is getting woken up only to find 324 * that it cannot page part of the binary in as the filesystem has 325 * been unmounted. 326 */ 327 if (!(howto & RB_NOSYNC)) 328 bootsync(); 329 330 /* Say NO to interrupts */ 331 splhigh(); 332 333 /* Do a dump if requested. */ 334 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) 335 dumpsys(); 336 337 /* Run any shutdown hooks */ 338 doshutdownhooks(); 339 340 /* Make sure IRQ's are disabled */ 341 IRQdisable; 342 343 if (howto & RB_HALT) { 344 printf("The operating system has halted.\n"); 345 printf("Please press any key to reboot.\n\n"); 346 cngetc(); 347 } 348 printf("rebooting...\n"); 349 cpu_reset(); 350 /* NOTREACHED */ 351 } 352 353 /* 354 * Static device mappings. These peripheral registers are mapped at 355 * fixed virtual addresses very early in initarm() so that we can use 356 * them while booting the kernel , and stay at the same address 357 * throughout whole kernel's life time. 358 * 359 * We use this table twice; once with bootstrap page table, and once 360 * with kernel's page table which we build up in initarm(). 361 * 362 * Since we map these registers into the bootstrap page table using 363 * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map 364 * registers segment-aligned and segment-rounded in order to avoid 365 * using the 2nd page tables. 366 */ 367 368 #define _A(a) ((a) & ~L1_S_OFFSET) 369 #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1)) 370 371 #define _V(n) (MINI2440_IO_VBASE + (n) * L1_S_SIZE) 372 373 #define GPIO_VBASE _V(0) 374 #define INTCTL_VBASE _V(1) 375 #define CLKMAN_VBASE _V(2) 376 #define UART_VBASE _V(3) 377 378 static const struct pmap_devmap mini2440_devmap[] = { 379 /* GPIO registers */ 380 { 381 GPIO_VBASE, 382 _A(S3C2440_GPIO_BASE), 383 _S(S3C2440_GPIO_SIZE), 384 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 385 }, 386 { 387 INTCTL_VBASE, 388 _A(S3C2440_INTCTL_BASE), 389 _S(S3C2440_INTCTL_SIZE), 390 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 391 }, 392 { 393 CLKMAN_VBASE, 394 _A(S3C2440_CLKMAN_BASE), 395 _S(S3C24X0_CLKMAN_SIZE), 396 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 397 }, 398 { /* UART registers for UART0, 1, 2. */ 399 UART_VBASE, 400 _A(S3C2440_UART0_BASE), 401 _S(S3C2440_UART_BASE(3) - S3C2440_UART0_BASE), 402 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 403 }, 404 405 { 0, 0, 0, 0 } 406 }; 407 408 #undef _A 409 #undef _S 410 411 static inline pd_entry_t * 412 read_ttb(void) 413 { 414 long ttb; 415 416 __asm volatile("mrc p15, 0, %0, c2, c0, 0" : "=r"(ttb)); 417 418 419 return (pd_entry_t *)(ttb & ~((1 << 14) - 1)); 420 } 421 422 423 #define ioreg_write32(a,v) (*(volatile uint32_t *)(a)=(v)) 424 425 /* 426 * u_int initarm(...) 427 * 428 * Initial entry point on startup. This gets called before main() is 429 * entered. 430 * It should be responsible for setting up everything that must be 431 * in place when main is called. 432 * This includes 433 * Taking a copy of the boot configuration structure. 434 * Initialising the physical console so characters can be printed. 435 * Setting up page tables for the kernel 436 * Relocating the kernel to the bottom of physical memory 437 */ 438 439 u_int 440 initarm(void *arg) 441 { 442 int loop; 443 int loop1; 444 u_int l1pagetable; 445 extern int etext __asm("_etext"); 446 extern int end __asm("_end"); 447 uint32_t kerneldatasize; 448 struct btinfo_magic *bi_magic = arg; 449 struct btinfo_bootstring *bi_bootstring; 450 struct btinfo_symtab *bi_symtab; 451 452 boothowto = 0; 453 454 /* Copy bootinfo from boot loader into kernel memory where it remains. 455 */ 456 if (bi_magic != 0x0 && bi_magic->magic == BOOTINFO_MAGIC) { 457 memcpy(bootinfo, bi_magic, sizeof(bootinfo)); 458 } else { 459 memset(bootinfo, 0, sizeof(bootinfo)); 460 } 461 462 /* Extract boot_args from bootinfo */ 463 bi_bootstring = lookup_bootinfo(BTINFO_BOOTSTRING); 464 if (bi_bootstring ) { 465 printf("Bootloader args are %s\n", bi_bootstring->bootstring); 466 boot_args = bi_bootstring->bootstring; 467 parse_mi_bootargs(boot_args); 468 } 469 470 #define pdatb (*(volatile uint8_t *)(S3C2440_GPIO_BASE+GPIO_PBDAT)) 471 472 // 0x1E0 is the mask for GPB5, GPB6, GPB7, and GPB8 473 #define __LED(x) (pdatb = (pdatb & ~0x1e0) | (~(1<<(x+5)) & 0x1e0)) 474 475 __LED(0); 476 477 /* 478 * Heads up ... Setup the CPU / MMU / TLB functions 479 */ 480 if (set_cpufuncs()) 481 panic("cpu not recognized!"); 482 483 /* 484 * Map I/O registers that are used in startup. Now we are 485 * still using page table prepared by bootloader. Later we'll 486 * map those registers at the same address in the kernel page 487 * table. 488 */ 489 pmap_devmap_bootstrap((vaddr_t)read_ttb(), mini2440_devmap); 490 491 #undef pdatb 492 #define pdatb (*(volatile uint8_t *)(GPIO_VBASE+GPIO_PBDAT)) 493 494 /* Disable all peripheral interrupts */ 495 ioreg_write32(INTCTL_VBASE + INTCTL_INTMSK, ~0); 496 497 __LED(1); 498 499 /* initialize some variables so that splfoo() doesn't 500 touch illegal address. */ 501 s3c2xx0_intr_bootstrap(INTCTL_VBASE); 502 503 __LED(2); 504 consinit(); 505 __LED(3); 506 507 /* Extract information from the bootloader configuration */ 508 bi_rdev = lookup_bootinfo(BTINFO_ROOTDEVICE); 509 bi_net = lookup_bootinfo(BTINFO_NET); 510 bi_path = lookup_bootinfo(BTINFO_BOOTPATH); 511 512 #ifdef VERBOSE_INIT_ARM 513 printf("consinit done\n"); 514 #endif 515 516 #ifdef KGDB 517 kgdb_port_init(); 518 #endif 519 520 #ifdef VERBOSE_INIT_ARM 521 /* Talk to the user */ 522 printf("\nNetBSD/evbarm (MINI2440) booting ...\n"); 523 #endif 524 /* 525 * Ok we have the following memory map 526 * 527 * Physical Address Range Description 528 * ----------------------- ---------------------------------- 529 * 0x30000000 - 0x33ffffff SDRAM (64MB) 530 * 531 * Kernel is loaded by bootloader at 0x30200000 532 * 533 * The initarm() has the responsibility for creating the kernel 534 * page tables. 535 * It must also set up various memory pointers that are used 536 * by pmap etc. 537 */ 538 539 /* Fake bootconfig structure for the benefit of pmap.c */ 540 /* XXX must make the memory description h/w independent */ 541 bootconfig.dramblocks = 1; 542 bootconfig.dram[0].address = SDRAM_START; 543 bootconfig.dram[0].pages = SDRAM_SIZE / PAGE_SIZE; 544 545 /* 546 * Set up the variables that define the availablilty of 547 * physical memory. 548 * We use the 2MB between the physical start and the kernel to 549 * begin with. Allocating from 0x30200000 and downwards 550 * If we get too close to the bottom of SDRAM, we 551 * will panic. We will update physical_freestart and 552 * physical_freeend later to reflect what pmap_bootstrap() 553 * wants to see. 554 * 555 * XXX pmap_bootstrap() needs an enema. 556 */ 557 physical_start = bootconfig.dram[0].address; 558 physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE); 559 560 physical_freestart = SDRAM_START; /* XXX */ 561 physical_freeend = SDRAM_START + KERNEL_OFFSET; 562 563 physmem = (physical_end - physical_start) / PAGE_SIZE; 564 565 #ifdef VERBOSE_INIT_ARM 566 /* Tell the user about the memory */ 567 printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem, 568 physical_start, physical_end - 1); 569 printf("phys_end: 0x%08lx\n", physical_end); 570 #endif 571 572 /* 573 * XXX 574 * Okay, the kernel starts 2MB in from the bottom of physical 575 * memory. We are going to allocate our bootstrap pages downwards 576 * from there. 577 * 578 * We need to allocate some fixed page tables to get the kernel 579 * going. We allocate one page directory and a number of page 580 * tables and store the physical addresses in the kernel_pt_table 581 * array. 582 * 583 * The kernel page directory must be on a 16K boundary. The page 584 * tables must be on 4K boundaries. What we do is allocate the 585 * page directory on the first 16K boundary that we encounter, and 586 * the page tables on 4K boundaries otherwise. Since we allocate 587 * at least 3 L2 page tables, we are guaranteed to encounter at 588 * least one 16K aligned region. 589 */ 590 591 #ifdef VERBOSE_INIT_ARM 592 printf("Allocating page tables\n"); 593 #endif 594 595 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; 596 597 #ifdef VERBOSE_INIT_ARM 598 printf("freestart = 0x%08lx, free_pages = %d (0x%08x), freeend = 0x%08lx\n", 599 physical_freestart, free_pages, free_pages, physical_freeend); 600 #endif 601 602 /* Define a macro to simplify memory allocation */ 603 #define valloc_pages(var, np) \ 604 alloc_pages((var).pv_pa, (np)); \ 605 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start; 606 607 #define alloc_pages(var, np) \ 608 physical_freeend -= ((np) * PAGE_SIZE); \ 609 if (physical_freeend < physical_freestart) \ 610 panic("initarm: out of memory"); \ 611 (var) = physical_freeend; \ 612 free_pages -= (np); \ 613 memset((char *)(var), 0, ((np) * PAGE_SIZE)); 614 615 loop1 = 0; 616 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { 617 /* Are we 16KB aligned for an L1 ? */ 618 if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0 619 && kernel_l1pt.pv_pa == 0) { 620 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); 621 } else { 622 valloc_pages(kernel_pt_table[loop1], 623 L2_TABLE_SIZE / PAGE_SIZE); 624 ++loop1; 625 } 626 } 627 628 /* This should never be able to happen but better confirm that. */ 629 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0) 630 panic("initarm: Failed to align the kernel page directory\n"); 631 632 /* 633 * Allocate a page for the system page mapped to V0x00000000 634 * This page will just contain the system vectors and can be 635 * shared by all processes. 636 */ 637 alloc_pages(systempage.pv_pa, 1); 638 639 /* Allocate stacks for all modes */ 640 valloc_pages(irqstack, IRQ_STACK_SIZE); 641 valloc_pages(abtstack, ABT_STACK_SIZE); 642 valloc_pages(undstack, UND_STACK_SIZE); 643 valloc_pages(kernelstack, UPAGES); 644 645 #ifdef VERBOSE_INIT_ARM 646 printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, 647 irqstack.pv_va); 648 printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, 649 abtstack.pv_va); 650 printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, 651 undstack.pv_va); 652 printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, 653 kernelstack.pv_va); 654 printf("Free memory in bootstrap region: %ld bytes\n", physical_freeend - physical_freestart); 655 #endif 656 657 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); 658 659 physical_freeend_low = physical_freeend; 660 661 /* 662 * Ok we have allocated physical pages for the primary kernel 663 * page tables 664 */ 665 666 #ifdef VERBOSE_INIT_ARM 667 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa); 668 #endif 669 670 /* 671 * Now we start construction of the L1 page table 672 * We start by mapping the L2 page tables into the L1. 673 * This means that we can replace L1 mappings later on if necessary 674 */ 675 l1pagetable = kernel_l1pt.pv_pa; 676 677 /* Map the L2 pages tables in the L1 page table */ 678 pmap_link_l2pt(l1pagetable, 0x00000000, 679 &kernel_pt_table[KERNEL_PT_SYS]); 680 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) 681 pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000, 682 &kernel_pt_table[KERNEL_PT_KERNEL + loop]); 683 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++) 684 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, 685 &kernel_pt_table[KERNEL_PT_VMDATA + loop]); 686 687 /* update the top of the kernel VM */ 688 pmap_curmaxkvaddr = 689 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); 690 691 #ifdef VERBOSE_INIT_ARM 692 printf("Mapping kernel\n"); 693 #endif 694 695 /* Now we fill in the L2 pagetable for the kernel static code/data */ 696 { 697 /* Total size must include symbol table, if it exists. 698 The size of the symbol table can be acquired from the ELF 699 header, to which a pointer is passed in the boot info (ssym). 700 */ 701 size_t textsize = (uintptr_t)&etext - KERNEL_TEXT_BASE; 702 kerneldatasize = (uintptr_t)&end - KERNEL_TEXT_BASE; 703 u_int logical; 704 705 bi_symtab = lookup_bootinfo(BTINFO_SYMTAB); 706 707 if (bi_symtab) { 708 Elf_Ehdr *elfHeader; 709 Elf_Shdr *sectionHeader; 710 int nsection; 711 int sz = 0; 712 713 elfHeader = bi_symtab->ssym; 714 715 #ifdef VERBOSE_INIT_ARM 716 printf("Symbol table information provided by bootloader\n"); 717 printf("ELF header is at %p\n", elfHeader); 718 #endif 719 sectionHeader = (Elf_Shdr*)((char*)(bi_symtab->ssym) + 720 (elfHeader->e_shoff)); 721 nsection = elfHeader->e_shnum; 722 #ifdef VERBOSE_INIT_ARM 723 printf("Number of sections: %d\n", nsection); 724 #endif 725 for(; nsection > 0; nsection--, sectionHeader++) { 726 if (sectionHeader->sh_offset > 0 && 727 (sectionHeader->sh_offset + sectionHeader->sh_size) > sz) 728 sz = sectionHeader->sh_offset + sectionHeader->sh_size; 729 } 730 #ifdef VERBOSE_INIT_ARM 731 printf("Max size of sections: %d\n", sz); 732 #endif 733 kerneldatasize += sz; 734 } 735 736 #ifdef VERBOSE_INIT_ARM 737 printf("Textsize: %u, kerneldatasize: %u\n", (uint)textsize, 738 (uint)kerneldatasize); 739 printf("&etext: 0x%x\n", (uint)&etext); 740 printf("&end: 0x%x\n", (uint)&end); 741 printf("KERNEL_TEXT_BASE: 0x%x\n", KERNEL_TEXT_BASE); 742 #endif 743 744 textsize = (textsize + PGOFSET) & ~PGOFSET; 745 kerneldatasize = (kerneldatasize + PGOFSET) & ~PGOFSET; 746 747 logical = KERNEL_OFFSET; /* offset of kernel in RAM */ 748 749 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, 750 physical_start + logical, textsize, 751 VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); 752 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, 753 physical_start + logical, kerneldatasize - textsize, 754 VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); 755 } 756 757 #ifdef VERBOSE_INIT_ARM 758 printf("Constructing L2 page tables\n"); 759 #endif 760 761 /* Map the stack pages */ 762 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, 763 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, 764 PTE_CACHE); 765 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, 766 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, 767 PTE_CACHE); 768 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, 769 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, 770 PTE_CACHE); 771 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, 772 UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); 773 774 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, 775 L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE); 776 777 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { 778 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, 779 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, 780 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); 781 } 782 783 /* Map the vector page. */ 784 #if 0 785 /* MULTI-ICE requires that page 0 is NC/NB so that it can download the 786 * cache-clean code there. */ 787 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, 788 VM_PROT_READ | VM_PROT_WRITE, PTE_NOCACHE); 789 #else 790 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, 791 VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); 792 #endif 793 794 /* 795 * map integrated peripherals at same address in l1pagetable 796 * so that we can continue to use console. 797 */ 798 pmap_devmap_bootstrap(l1pagetable, mini2440_devmap); 799 800 /* 801 * Now we have the real page tables in place so we can switch to them. 802 * Once this is done we will be running with the REAL kernel page 803 * tables. 804 */ 805 /* 806 * Update the physical_freestart/physical_freeend/free_pages 807 * variables. 808 */ 809 physical_freestart = physical_start + 810 (KERNEL_TEXT_BASE - KERNEL_BASE) + kerneldatasize; 811 physical_freeend = physical_end; 812 free_pages = 813 (physical_freeend - physical_freestart) / PAGE_SIZE; 814 815 /* Switch tables */ 816 #ifdef VERBOSE_INIT_ARM 817 printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n", 818 physical_freestart, free_pages, free_pages); 819 printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa); 820 #endif 821 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); 822 cpu_setttb(kernel_l1pt.pv_pa, true); 823 cpu_tlb_flushID(); 824 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); 825 826 /* 827 * Moved from cpu_startup() as data_abort_handler() references 828 * this during uvm init 829 */ 830 uvm_lwp_setuarea(&lwp0, kernelstack.pv_va); 831 832 #ifdef VERBOSE_INIT_ARM 833 printf("done!\n"); 834 #endif 835 836 #ifdef VERBOSE_INIT_ARM 837 printf("bootstrap done.\n"); 838 #endif 839 840 arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL); 841 842 /* 843 * Pages were allocated during the secondary bootstrap for the 844 * stacks for different CPU modes. 845 * We must now set the r13 registers in the different CPU modes to 846 * point to these stacks. 847 * Since the ARM stacks use STMFD etc. we must set r13 to the top end 848 * of the stack memory. 849 */ 850 #ifdef VERBOSE_INIT_ARM 851 printf("init subsystems: stacks "); 852 #endif 853 854 set_stackptr(PSR_IRQ32_MODE, 855 irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); 856 set_stackptr(PSR_ABT32_MODE, 857 abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); 858 set_stackptr(PSR_UND32_MODE, 859 undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); 860 861 cpu_idcache_wbinv_all(); 862 863 /* 864 * Well we should set a data abort handler. 865 * Once things get going this will change as we will need a proper 866 * handler. 867 * Until then we will use a handler that just panics but tells us 868 * why. 869 * Initialisation of the vectors will just panic on a data abort. 870 * This just fills in a slightly better one. 871 */ 872 #ifdef VERBOSE_INIT_ARM 873 printf("vectors "); 874 #endif 875 data_abort_handler_address = (u_int)data_abort_handler; 876 prefetch_abort_handler_address = (u_int)prefetch_abort_handler; 877 undefined_handler_address = (u_int)undefinedinstruction_bounce; 878 879 /* Initialise the undefined instruction handlers */ 880 #ifdef VERBOSE_INIT_ARM 881 printf("undefined "); 882 #endif 883 undefined_init(); 884 885 /* Load memory into UVM. */ 886 #ifdef VERBOSE_INIT_ARM 887 printf("page "); 888 #endif 889 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */ 890 uvm_page_physload(atop(physical_freestart), atop(physical_freeend), 891 atop(physical_freestart), atop(physical_freeend), 892 VM_FREELIST_DEFAULT); 893 uvm_page_physload(atop(SDRAM_START), atop(physical_freeend_low), 894 atop(SDRAM_START), atop(physical_freeend_low), 895 VM_FREELIST_DEFAULT); 896 897 898 /* Boot strap pmap telling it where the kernel page table is */ 899 #ifdef VERBOSE_INIT_ARM 900 printf("pmap "); 901 #endif 902 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); 903 904 #ifdef VERBOSE_INIT_ARM 905 printf("done.\n"); 906 #endif 907 908 #ifdef BOOTHOWTO 909 boothowto |= BOOTHOWTO; 910 #endif 911 912 #ifdef KGDB 913 if (boothowto & RB_KDB) { 914 kgdb_debug_init = 1; 915 kgdb_connect(1); 916 } 917 #endif 918 919 mini2440_ksyms(bi_symtab); 920 921 #ifdef DDB 922 /*db_machine_init();*/ 923 if (boothowto & RB_KDB) 924 Debugger(); 925 #endif 926 927 evbarm_device_register = mini2440_device_register; 928 929 /* We return the new stack pointer address */ 930 return (kernelstack.pv_va + USPACE_SVC_STACK_TOP); 931 } 932 933 void 934 consinit(void) 935 { 936 static int consinit_done = 0; 937 #if defined(SSCOM0CONSOLE) || defined(SSCOM1CONSOLE) 938 bus_space_tag_t iot = &s3c2xx0_bs_tag; 939 #endif 940 int pclk; 941 942 if (consinit_done != 0) 943 return; 944 945 consinit_done = 1; 946 947 s3c24x0_clock_freq2(CLKMAN_VBASE, NULL, NULL, &pclk); 948 949 #if NSSCOM > 0 950 #ifdef SSCOM0CONSOLE 951 if (0 == s3c2440_sscom_cnattach(iot, 0, comcnspeed, 952 pclk, comcnmode)) 953 return; 954 #endif 955 #ifdef SSCOM1CONSOLE 956 if (0 == s3c2440_sscom_cnattach(iot, 1, comcnspeed, 957 pclk, comcnmode)) 958 return; 959 #endif 960 #endif /* NSSCOM */ 961 #if NCOM>0 && defined(CONCOMADDR) 962 if (comcnattach(&isa_io_bs_tag, CONCOMADDR, comcnspeed, 963 COM_FREQ, COM_TYPE_NORMAL, comcnmode)) 964 panic("can't init serial console @%x", CONCOMADDR); 965 return; 966 #endif 967 968 consinit_done = 0; 969 } 970 971 972 #ifdef KGDB 973 974 #if (NSSCOM > 0) 975 976 #ifdef KGDB_DEVNAME 977 const char kgdb_devname[] = KGDB_DEVNAME; 978 #else 979 const char kgdb_devname[] = ""; 980 #endif 981 982 #ifndef KGDB_DEVMODE 983 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE|CSTOPB|PARENB))|CS8) /* 8N1 */ 984 #endif 985 int kgdb_sscom_mode = KGDB_DEVMODE; 986 987 #endif /* NSSCOM */ 988 989 void 990 kgdb_port_init(void) 991 { 992 #if (NSSCOM > 0) 993 int unit = -1; 994 int pclk; 995 996 if (strcmp(kgdb_devname, "sscom0") == 0) 997 unit = 0; 998 else if (strcmp(kgdb_devname, "sscom1") == 0) 999 unit = 1; 1000 1001 if (unit >= 0) { 1002 s3c24x0_clock_freq2(CLKMAN_VBASE, NULL, NULL, &pclk); 1003 1004 s3c2440_sscom_kgdb_attach(&s3c2xx0_bs_tag, 1005 unit, kgdb_rate, pclk, kgdb_sscom_mode); 1006 } 1007 #endif 1008 } 1009 #endif 1010 1011 1012 static struct arm32_dma_range mini2440_dma_ranges[1]; 1013 1014 bus_dma_tag_t 1015 s3c2xx0_bus_dma_init(struct arm32_bus_dma_tag *dma_tag_template) 1016 { 1017 extern paddr_t physical_start, physical_end; 1018 struct arm32_bus_dma_tag *dmat; 1019 1020 mini2440_dma_ranges[0].dr_sysbase = physical_start; 1021 mini2440_dma_ranges[0].dr_busbase = physical_start; 1022 mini2440_dma_ranges[0].dr_len = physical_end - physical_start; 1023 1024 #if 1 1025 dmat = dma_tag_template; 1026 #else 1027 dmat = malloc(sizeof *dmat, M_DEVBUF, M_NOWAIT); 1028 if (dmat == NULL) 1029 return NULL; 1030 *dmat = *dma_tag_template; 1031 #endif 1032 1033 dmat->_ranges = mini2440_dma_ranges; 1034 dmat->_nranges = 1; 1035 1036 return dmat; 1037 } 1038 1039 void 1040 mini2440_ksyms(struct btinfo_symtab *bi_symtab) 1041 { 1042 #if NKSYMS || defined(DDB) || defined(LKM) 1043 extern int end; 1044 1045 #ifdef DDB 1046 db_machine_init(); 1047 #endif 1048 if (bi_symtab == NULL) { 1049 return; 1050 } 1051 #ifdef VERBOSE_INIT_ARM 1052 printf("Got symbol table. nsym=%d, ssym=%p, esym=%p\n", 1053 bi_symtab->nsym, 1054 bi_symtab->ssym, 1055 bi_symtab->esym); 1056 #endif 1057 1058 ksyms_addsyms_elf(bi_symtab->nsym, 1059 (int*)bi_symtab->ssym, 1060 (int*)bi_symtab->esym); 1061 #endif 1062 } 1063 1064 void * 1065 lookup_bootinfo(int type) 1066 { 1067 struct btinfo_common *bt; 1068 struct btinfo_common *help = (struct btinfo_common *)bootinfo; 1069 1070 if (help->next == 0) 1071 return (NULL); /* bootinfo[] was not made */ 1072 do { 1073 bt = help; 1074 if (bt->type == type) 1075 return (help); 1076 help = (struct btinfo_common *)((char*)help + bt->next); 1077 } while (bt->next && 1078 (size_t)help < (size_t)bootinfo + BOOTINFO_MAXSIZE); 1079 1080 return (NULL); 1081 } 1082 1083 1084 extern char *booted_kernel; 1085 1086 static void 1087 mini2440_device_register(device_t dev, void *aux) { 1088 if (device_class(dev) == DV_IFNET) { 1089 #ifndef MEMORY_DISK_IS_ROOT 1090 if (bi_rdev != NULL && device_is_a(dev, bi_rdev->devname) ) { 1091 booted_device = dev; 1092 rootfstype = MOUNT_NFS; 1093 if( bi_path != NULL ) { 1094 booted_kernel = bi_path->bootpath; 1095 } 1096 } 1097 #endif 1098 if (bi_net != NULL && device_is_a(dev, bi_net->devname)) { 1099 prop_data_t pd; 1100 pd = prop_data_create_data_nocopy(bi_net->mac_address, ETHER_ADDR_LEN); 1101 KASSERT(pd != NULL); 1102 if (prop_dictionary_set(device_properties(dev), "mac-address", pd) == false) { 1103 printf("WARNING: Unable to set mac-address property for %s\n", device_xname(dev)); 1104 } 1105 prop_object_release(pd); 1106 bi_net = NULL; 1107 } 1108 } 1109 #ifndef MEMORY_DISK_IS_ROOT 1110 if (bi_rdev != NULL && device_class(dev) == DV_DISK 1111 && device_is_a(dev, bi_rdev->devname) 1112 && device_unit(dev) == bi_rdev->cookie) { 1113 booted_device = dev; 1114 booted_partition = bi_rdev->partition; 1115 rootfstype = ROOT_FSTYPE_ANY; 1116 if( bi_path != NULL ) { 1117 booted_kernel = bi_path->bootpath; 1118 } 1119 } 1120 #endif 1121 } 1122