xref: /netbsd-src/sys/arch/evbarm/mini2440/mini2440_machdep.c (revision 6a493d6bc668897c91594964a732d38505b70cbb)
1 /*-
2  * Copyright (c) 2012 The NetBSD Foundation, Inc.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to The NetBSD Foundation
6  * by Paul Fleischer <paul@xpg.dk>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
21  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27  * POSSIBILITY OF SUCH DAMAGE.
28  */
29 /* This file is based on arch/evbarm/smdk2xx0/smdk2410_machdep.c */
30 /*
31  * Copyright (c) 2002, 2003 Fujitsu Component Limited
32  * Copyright (c) 2002, 2003, 2005 Genetec Corporation
33  * All rights reserved.
34  *
35  * Redistribution and use in source and binary forms, with or without
36  * modification, are permitted provided that the following conditions
37  * are met:
38  * 1. Redistributions of source code must retain the above copyright
39  *    notice, this list of conditions and the following disclaimer.
40  * 2. Redistributions in binary form must reproduce the above copyright
41  *    notice, this list of conditions and the following disclaimer in the
42  *    documentation and/or other materials provided with the distribution.
43  * 3. Neither the name of The Fujitsu Component Limited nor the name of
44  *    Genetec corporation may not be used to endorse or promote products
45  *    derived from this software without specific prior written permission.
46  *
47  * THIS SOFTWARE IS PROVIDED BY FUJITSU COMPONENT LIMITED AND GENETEC
48  * CORPORATION ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
49  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
50  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
51  * DISCLAIMED.  IN NO EVENT SHALL FUJITSU COMPONENT LIMITED OR GENETEC
52  * CORPORATION BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
53  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
54  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
55  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
56  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
57  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
58  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60  */
61 /*
62  * Copyright (c) 2001,2002 ARM Ltd
63  * All rights reserved.
64  *
65  * Redistribution and use in source and binary forms, with or without
66  * modification, are permitted provided that the following conditions
67  * are met:
68  * 1. Redistributions of source code must retain the above copyright
69  *    notice, this list of conditions and the following disclaimer.
70  * 2. Redistributions in binary form must reproduce the above copyright
71  *    notice, this list of conditions and the following disclaimer in the
72  *    documentation and/or other materials provided with the distribution.
73  * 3. The name of the company may not be used to endorse or promote
74  *    products derived from this software without specific prior written
75  *    permission.
76  *
77  * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND
78  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
79  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
80  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL ARM LTD
81  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
82  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
83  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
84  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
85  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
86  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
87  * POSSIBILITY OF SUCH DAMAGE.
88  *
89  */
90 
91 /*
92  * Copyright (c) 1997,1998 Mark Brinicombe.
93  * Copyright (c) 1997,1998 Causality Limited.
94  * All rights reserved.
95  *
96  * Redistribution and use in source and binary forms, with or without
97  * modification, are permitted provided that the following conditions
98  * are met:
99  * 1. Redistributions of source code must retain the above copyright
100  *    notice, this list of conditions and the following disclaimer.
101  * 2. Redistributions in binary form must reproduce the above copyright
102  *    notice, this list of conditions and the following disclaimer in the
103  *    documentation and/or other materials provided with the distribution.
104  * 3. All advertising materials mentioning features or use of this software
105  *    must display the following acknowledgement:
106  *	This product includes software developed by Mark Brinicombe
107  *	for the NetBSD Project.
108  * 4. The name of the company nor the name of the author may be used to
109  *    endorse or promote products derived from this software without specific
110  *    prior written permission.
111  *
112  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
113  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
114  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
115  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
116  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
117  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
118  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
119  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
120  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
121  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
122  * SUCH DAMAGE.
123  *
124  * Machine dependant functions for kernel setup for integrator board
125  *
126  * Created      : 24/11/97
127  */
128 
129 /*
130  * Machine dependant functions for kernel setup for FriendlyARM MINI2440
131  */
132 
133 #include <sys/cdefs.h>
134 __KERNEL_RCSID(0, "$NetBSD: mini2440_machdep.c,v 1.7 2013/10/30 06:47:18 uebayasi Exp $");
135 
136 #include "opt_ddb.h"
137 #include "opt_kgdb.h"
138 #include "opt_pmap_debug.h"
139 #include "opt_md.h"
140 
141 #include <sys/param.h>
142 #include <sys/device.h>
143 #include <sys/systm.h>
144 #include <sys/kernel.h>
145 #include <sys/exec.h>
146 #include <sys/proc.h>
147 #include <sys/msgbuf.h>
148 #include <sys/reboot.h>
149 #include <sys/termios.h>
150 #include <sys/ksyms.h>
151 #include <sys/mount.h>
152 
153 #include <net/if.h>
154 #include <net/if_ether.h>
155 #include <net/if_media.h>
156 
157 #include <uvm/uvm_extern.h>
158 
159 #include <dev/cons.h>
160 #include <dev/md.h>
161 
162 #include <machine/db_machdep.h>
163 #include <ddb/db_sym.h>
164 #include <ddb/db_extern.h>
165 #ifdef KGDB
166 #include <sys/kgdb.h>
167 #endif
168 
169 #include <sys/exec_elf.h>
170 
171 #include <sys/bus.h>
172 #include <machine/cpu.h>
173 #include <machine/frame.h>
174 #include <machine/intr.h>
175 #include <arm/undefined.h>
176 
177 #include <machine/autoconf.h>
178 
179 #include <arm/arm32/machdep.h>
180 
181 #include <arm/s3c2xx0/s3c2440reg.h>
182 #include <arm/s3c2xx0/s3c2440var.h>
183 
184 #include <arch/evbarm/mini2440/mini2440_bootinfo.h>
185 
186 #include "ksyms.h"
187 
188 #ifndef	SDRAM_START
189 #define	SDRAM_START	S3C2440_SDRAM_START
190 #endif
191 #ifndef	SDRAM_SIZE
192 #define	SDRAM_SIZE	(64*1024*1024) /* 64 Mb */
193 #endif
194 
195 /*
196  * Address to map I/O registers in early initialize stage.
197  */
198 #define MINI2440_IO_VBASE	0xfd000000
199 
200 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
201 #define KERNEL_OFFSET		0x00200000
202 #define	KERNEL_TEXT_BASE	(KERNEL_BASE + KERNEL_OFFSET)
203 #define	KERNEL_VM_BASE		(KERNEL_BASE + 0x01000000)
204 
205 /*
206  * The range 0xc1000000 - 0xccffffff is available for kernel VM space
207  * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
208  */
209 #define KERNEL_VM_SIZE		0x0C000000
210 
211 /* Declared extern elsewhere in the kernel */
212 BootConfig bootconfig;		/* Boot config storage */
213 char *boot_args = NULL;
214 //char *boot_file = NULL;
215 
216 char bootinfo[BOOTINFO_MAXSIZE];
217 struct btinfo_rootdevice 	*bi_rdev;
218 struct btinfo_net		*bi_net;
219 struct btinfo_bootpath		*bi_path;
220 
221 vm_offset_t physical_start;
222 vm_offset_t physical_freestart;
223 vm_offset_t physical_freeend;
224 vm_offset_t physical_freeend_low;
225 vm_offset_t physical_end;
226 u_int free_pages;
227 vm_offset_t pagetables_start;
228 
229 /*int debug_flags;*/
230 #ifndef PMAP_STATIC_L1S
231 int max_processes = 64;		/* Default number */
232 #endif				/* !PMAP_STATIC_L1S */
233 
234 vm_offset_t msgbufphys;
235 
236 #ifdef PMAP_DEBUG
237 extern int pmap_debug_level;
238 #endif
239 
240 #define KERNEL_PT_SYS		0	/* L2 table for mapping zero page */
241 #define KERNEL_PT_KERNEL	1	/* L2 table for mapping kernel */
242 #define KERNEL_PT_KERNEL_NUM	3	/* L2 tables for mapping kernel VM */
243 
244 #define KERNEL_PT_VMDATA	(KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
245 
246 #define KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
247 #define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
248 
249 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
250 
251 /* Prototypes */
252 
253 void consinit(void);
254 void kgdb_port_init(void);
255 static void mini2440_ksyms(struct btinfo_symtab *bi_symtab);
256 static void *lookup_bootinfo(int type);
257 static void mini2440_device_register(device_t dev, void *aux);
258 
259 
260 #include "com.h"
261 #if NCOM > 0
262 #include <dev/ic/comreg.h>
263 #include <dev/ic/comvar.h>
264 #endif
265 
266 #include "sscom.h"
267 #if NSSCOM > 0
268 #include "opt_sscom.h"
269 #include <arm/s3c2xx0/sscom_var.h>
270 #endif
271 
272 /*
273  * Define the default console speed for the board.  This is generally
274  * what the firmware provided with the board defaults to.
275  */
276 #ifndef CONSPEED
277 #define CONSPEED B115200	/* TTYDEF_SPEED */
278 #endif
279 #ifndef CONMODE
280 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8)   /* 8N1 */
281 #endif
282 
283 int comcnspeed = CONSPEED;
284 int comcnmode = CONMODE;
285 
286 /*
287  * void cpu_reboot(int howto, char *bootstr)
288  *
289  * Reboots the system
290  *
291  * Deal with any syncing, unmounting, dumping and shutdown hooks,
292  * then reset the CPU.
293  */
294 void
295 cpu_reboot(int howto, char *bootstr)
296 {
297 #ifdef DIAGNOSTIC
298 	/* info */
299 	printf("boot: howto=%08x curproc=%p\n", howto, curproc);
300 #endif
301 
302 	cpu_reset_address_paddr = vtophys((uintptr_t)s3c2440_softreset);
303 
304 	/*
305 	 * If we are still cold then hit the air brakes
306 	 * and crash to earth fast
307 	 */
308 	if (cold) {
309 		doshutdownhooks();
310 		printf("The operating system has halted.\n");
311 		printf("Please press any key to reboot.\n\n");
312 		cngetc();
313 		printf("rebooting...\n");
314 		cpu_reset();
315 		/* NOTREACHED */
316 	}
317 	/* Disable console buffering */
318 
319 	/*
320 	 * If RB_NOSYNC was not specified sync the discs.
321 	 * Note: Unless cold is set to 1 here, syslogd will die during the
322 	 * unmount.  It looks like syslogd is getting woken up only to find
323 	 * that it cannot page part of the binary in as the filesystem has
324 	 * been unmounted.
325 	 */
326 	if (!(howto & RB_NOSYNC))
327 		bootsync();
328 
329 	/* Say NO to interrupts */
330 	splhigh();
331 
332 	/* Do a dump if requested. */
333 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
334 		dumpsys();
335 
336 	/* Run any shutdown hooks */
337 	doshutdownhooks();
338 
339 	/* Make sure IRQ's are disabled */
340 	IRQdisable;
341 
342 	if (howto & RB_HALT) {
343 		printf("The operating system has halted.\n");
344 		printf("Please press any key to reboot.\n\n");
345 		cngetc();
346 	}
347 	printf("rebooting...\n");
348 	cpu_reset();
349 	/* NOTREACHED */
350 }
351 
352 /*
353  * Static device mappings. These peripheral registers are mapped at
354  * fixed virtual addresses very early in initarm() so that we can use
355  * them while booting the kernel , and stay at the same address
356  * throughout whole kernel's life time.
357  *
358  * We use this table twice; once with bootstrap page table, and once
359  * with kernel's page table which we build up in initarm().
360  *
361  * Since we map these registers into the bootstrap page table using
362  * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
363  * registers segment-aligned and segment-rounded in order to avoid
364  * using the 2nd page tables.
365  */
366 
367 #define	_A(a)	((a) & ~L1_S_OFFSET)
368 #define	_S(s)	(((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
369 
370 #define	_V(n)	(MINI2440_IO_VBASE + (n) * L1_S_SIZE)
371 
372 #define	GPIO_VBASE	_V(0)
373 #define	INTCTL_VBASE	_V(1)
374 #define	CLKMAN_VBASE	_V(2)
375 #define	UART_VBASE	_V(3)
376 
377 static const struct pmap_devmap mini2440_devmap[] = {
378 	/* GPIO registers */
379 	{
380 		GPIO_VBASE,
381 		_A(S3C2440_GPIO_BASE),
382 		_S(S3C2440_GPIO_SIZE),
383 		VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
384 	},
385 	{
386 		INTCTL_VBASE,
387 		_A(S3C2440_INTCTL_BASE),
388 		_S(S3C2440_INTCTL_SIZE),
389 		VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
390 	},
391 	{
392 		CLKMAN_VBASE,
393 		_A(S3C2440_CLKMAN_BASE),
394 		_S(S3C24X0_CLKMAN_SIZE),
395 		VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
396 	},
397 	{	/* UART registers for UART0, 1, 2. */
398 		UART_VBASE,
399 		_A(S3C2440_UART0_BASE),
400 		_S(S3C2440_UART_BASE(3) - S3C2440_UART0_BASE),
401 		VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
402 	},
403 
404 	{ 0, 0, 0, 0 }
405 };
406 
407 #undef	_A
408 #undef	_S
409 
410 static inline	pd_entry_t *
411 read_ttb(void)
412 {
413 	long ttb;
414 
415 	__asm volatile("mrc	p15, 0, %0, c2, c0, 0" : "=r"(ttb));
416 
417 
418 	return (pd_entry_t *)(ttb & ~((1 << 14) - 1));
419 }
420 
421 
422 #define	ioreg_write32(a,v)  	(*(volatile uint32_t *)(a)=(v))
423 
424 /*
425  * u_int initarm(...)
426  *
427  * Initial entry point on startup. This gets called before main() is
428  * entered.
429  * It should be responsible for setting up everything that must be
430  * in place when main is called.
431  * This includes
432  *   Taking a copy of the boot configuration structure.
433  *   Initialising the physical console so characters can be printed.
434  *   Setting up page tables for the kernel
435  *   Relocating the kernel to the bottom of physical memory
436  */
437 
438 u_int
439 initarm(void *arg)
440 {
441 	int loop;
442 	int loop1;
443 	u_int l1pagetable;
444 	extern int etext __asm("_etext");
445 	extern int end __asm("_end");
446 	uint32_t kerneldatasize;
447 	struct btinfo_magic *bi_magic = arg;
448 	struct btinfo_bootstring *bi_bootstring;
449 	struct btinfo_symtab *bi_symtab;
450 
451 	boothowto = 0;
452 
453 	/* Copy bootinfo from boot loader into kernel memory where it remains.
454 	 */
455 	if (bi_magic != 0x0 && bi_magic->magic == BOOTINFO_MAGIC) {
456 		memcpy(bootinfo, bi_magic, sizeof(bootinfo));
457 	} else {
458 		memset(bootinfo, 0, sizeof(bootinfo));
459 	}
460 
461 	/* Extract boot_args from bootinfo */
462 	bi_bootstring = lookup_bootinfo(BTINFO_BOOTSTRING);
463 	if (bi_bootstring ) {
464 		printf("Bootloader args are %s\n", bi_bootstring->bootstring);
465 		boot_args = bi_bootstring->bootstring;
466 		parse_mi_bootargs(boot_args);
467 	}
468 
469 #define pdatb (*(volatile uint8_t *)(S3C2440_GPIO_BASE+GPIO_PBDAT))
470 
471 // 0x1E0 is the mask for GPB5, GPB6, GPB7, and GPB8
472 #define __LED(x)  (pdatb = (pdatb & ~0x1e0) | (~(1<<(x+5)) & 0x1e0))
473 
474 	__LED(0);
475 
476 	/*
477 	 * Heads up ... Setup the CPU / MMU / TLB functions
478 	 */
479 	if (set_cpufuncs())
480 		panic("cpu not recognized!");
481 
482 	/*
483 	 * Map I/O registers that are used in startup.  Now we are
484 	 * still using page table prepared by bootloader.  Later we'll
485 	 * map those registers at the same address in the kernel page
486 	 * table.
487 	 */
488 	pmap_devmap_bootstrap((vaddr_t)read_ttb(), mini2440_devmap);
489 
490 #undef	pdatb
491 #define pdatb (*(volatile uint8_t *)(GPIO_VBASE+GPIO_PBDAT))
492 
493 	/* Disable all peripheral interrupts */
494 	ioreg_write32(INTCTL_VBASE + INTCTL_INTMSK, ~0);
495 
496 	__LED(1);
497 
498 	/* initialize some variables so that splfoo() doesn't
499 	   touch illegal address.  */
500 	s3c2xx0_intr_bootstrap(INTCTL_VBASE);
501 
502 	__LED(2);
503 	consinit();
504 	__LED(3);
505 
506 	/* Extract information from the bootloader configuration */
507 	bi_rdev = lookup_bootinfo(BTINFO_ROOTDEVICE);
508 	bi_net = lookup_bootinfo(BTINFO_NET);
509 	bi_path = lookup_bootinfo(BTINFO_BOOTPATH);
510 
511 #ifdef VERBOSE_INIT_ARM
512 	printf("consinit done\n");
513 #endif
514 
515 #ifdef KGDB
516 	kgdb_port_init();
517 #endif
518 
519 #ifdef VERBOSE_INIT_ARM
520 	/* Talk to the user */
521 	printf("\nNetBSD/evbarm (MINI2440) booting ...\n");
522 #endif
523 	/*
524 	 * Ok we have the following memory map
525 	 *
526 	 * Physical Address Range     Description
527 	 * -----------------------    ----------------------------------
528 	 * 0x30000000 - 0x33ffffff    SDRAM (64MB)
529          *
530          * Kernel is loaded by bootloader at 0x30200000
531 	 *
532 	 * The initarm() has the responsibility for creating the kernel
533 	 * page tables.
534 	 * It must also set up various memory pointers that are used
535 	 * by pmap etc.
536 	 */
537 
538 	/* Fake bootconfig structure for the benefit of pmap.c */
539 	/* XXX must make the memory description h/w independent */
540 	bootconfig.dramblocks = 1;
541 	bootconfig.dram[0].address = SDRAM_START;
542 	bootconfig.dram[0].pages = SDRAM_SIZE / PAGE_SIZE;
543 
544 	/*
545 	 * Set up the variables that define the availablilty of
546 	 * physical memory.
547          * We use the 2MB between the physical start and the kernel to
548          * begin with. Allocating from 0x30200000 and downwards
549 	 * If we get too close to the bottom of SDRAM, we
550 	 * will panic.  We will update physical_freestart and
551 	 * physical_freeend later to reflect what pmap_bootstrap()
552 	 * wants to see.
553 	 *
554 	 * XXX pmap_bootstrap() needs an enema.
555 	 */
556 	physical_start = bootconfig.dram[0].address;
557 	physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
558 
559 	physical_freestart = SDRAM_START;	/* XXX */
560 	physical_freeend = SDRAM_START + KERNEL_OFFSET;
561 
562 	physmem = (physical_end - physical_start) / PAGE_SIZE;
563 
564 #ifdef VERBOSE_INIT_ARM
565 	/* Tell the user about the memory */
566 	printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
567 	    physical_start, physical_end - 1);
568 	printf("phys_end: 0x%08lx\n", physical_end);
569 #endif
570 
571 	/*
572 	 * XXX
573 	 * Okay, the kernel starts 2MB in from the bottom of physical
574 	 * memory.  We are going to allocate our bootstrap pages downwards
575 	 * from there.
576 	 *
577 	 * We need to allocate some fixed page tables to get the kernel
578 	 * going.  We allocate one page directory and a number of page
579 	 * tables and store the physical addresses in the kernel_pt_table
580 	 * array.
581 	 *
582 	 * The kernel page directory must be on a 16K boundary.  The page
583 	 * tables must be on 4K boundaries.  What we do is allocate the
584 	 * page directory on the first 16K boundary that we encounter, and
585 	 * the page tables on 4K boundaries otherwise.  Since we allocate
586 	 * at least 3 L2 page tables, we are guaranteed to encounter at
587 	 * least one 16K aligned region.
588 	 */
589 
590 #ifdef VERBOSE_INIT_ARM
591 	printf("Allocating page tables\n");
592 #endif
593 
594 	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
595 
596 #ifdef VERBOSE_INIT_ARM
597 	printf("freestart = 0x%08lx, free_pages = %d (0x%08x), freeend = 0x%08lx\n",
598 	    physical_freestart, free_pages, free_pages, physical_freeend);
599 #endif
600 
601 	/* Define a macro to simplify memory allocation */
602 #define	valloc_pages(var, np)				\
603 	alloc_pages((var).pv_pa, (np));			\
604 	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
605 
606 #define alloc_pages(var, np)				\
607 	physical_freeend -= ((np) * PAGE_SIZE);		\
608 	if (physical_freeend < physical_freestart)	\
609 		panic("initarm: out of memory");	\
610 	(var) = physical_freeend;			\
611 	free_pages -= (np);				\
612 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
613 
614 	loop1 = 0;
615 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
616 		/* Are we 16KB aligned for an L1 ? */
617 		if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
618 		    && kernel_l1pt.pv_pa == 0) {
619 			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
620 		} else {
621 			valloc_pages(kernel_pt_table[loop1],
622 			    L2_TABLE_SIZE / PAGE_SIZE);
623 			++loop1;
624 		}
625 	}
626 
627 	/* This should never be able to happen but better confirm that. */
628 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0)
629 		panic("initarm: Failed to align the kernel page directory\n");
630 
631 	/*
632 	 * Allocate a page for the system page mapped to V0x00000000
633 	 * This page will just contain the system vectors and can be
634 	 * shared by all processes.
635 	 */
636 	alloc_pages(systempage.pv_pa, 1);
637 
638 	/* Allocate stacks for all modes */
639 	valloc_pages(irqstack, IRQ_STACK_SIZE);
640 	valloc_pages(abtstack, ABT_STACK_SIZE);
641 	valloc_pages(undstack, UND_STACK_SIZE);
642 	valloc_pages(kernelstack, UPAGES);
643 
644 #ifdef VERBOSE_INIT_ARM
645 	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
646 	    irqstack.pv_va);
647 	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
648 	    abtstack.pv_va);
649 	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
650 	    undstack.pv_va);
651 	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
652 	    kernelstack.pv_va);
653 	printf("Free memory in bootstrap region: %ld bytes\n", physical_freeend - physical_freestart);
654 #endif
655 
656 	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
657 
658 	physical_freeend_low = physical_freeend;
659 
660 	/*
661 	 * Ok we have allocated physical pages for the primary kernel
662 	 * page tables
663 	 */
664 
665 #ifdef VERBOSE_INIT_ARM
666 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
667 #endif
668 
669 	/*
670 	 * Now we start construction of the L1 page table
671 	 * We start by mapping the L2 page tables into the L1.
672 	 * This means that we can replace L1 mappings later on if necessary
673 	 */
674 	l1pagetable = kernel_l1pt.pv_pa;
675 
676 	/* Map the L2 pages tables in the L1 page table */
677 	pmap_link_l2pt(l1pagetable, 0x00000000,
678 	    &kernel_pt_table[KERNEL_PT_SYS]);
679 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
680 		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
681 		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
682 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
683 		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
684 		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
685 
686 	/* update the top of the kernel VM */
687 	pmap_curmaxkvaddr =
688 	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
689 
690 #ifdef VERBOSE_INIT_ARM
691 	printf("Mapping kernel\n");
692 #endif
693 
694 	/* Now we fill in the L2 pagetable for the kernel static code/data */
695 	{
696 		/* Total size must include symbol table, if it exists.
697 		   The size of the symbol table can be acquired from the ELF
698 		   header, to which a pointer is passed in the boot info (ssym).
699 		 */
700 		size_t textsize = (uintptr_t)&etext - KERNEL_TEXT_BASE;
701 		kerneldatasize = (uintptr_t)&end - KERNEL_TEXT_BASE;
702 		u_int logical;
703 
704 		bi_symtab = lookup_bootinfo(BTINFO_SYMTAB);
705 
706 		if (bi_symtab) {
707 			Elf_Ehdr *elfHeader;
708 			Elf_Shdr *sectionHeader;
709 			int nsection;
710 			int sz = 0;
711 
712 			elfHeader = bi_symtab->ssym;
713 
714 #ifdef VERBOSE_INIT_ARM
715 			printf("Symbol table information provided by bootloader\n");
716 			printf("ELF header is at %p\n", elfHeader);
717 #endif
718 			sectionHeader = (Elf_Shdr*)((char*)(bi_symtab->ssym) +
719 						     (elfHeader->e_shoff));
720 			nsection = elfHeader->e_shnum;
721 #ifdef VERBOSE_INIT_ARM
722 			printf("Number of sections: %d\n", nsection);
723 #endif
724 			for(; nsection > 0; nsection--, sectionHeader++) {
725 				if (sectionHeader->sh_offset > 0 &&
726 				    (sectionHeader->sh_offset + sectionHeader->sh_size) > sz)
727 					sz = sectionHeader->sh_offset + sectionHeader->sh_size;
728 			}
729 #ifdef VERBOSE_INIT_ARM
730 			printf("Max size of sections: %d\n", sz);
731 #endif
732 			kerneldatasize += sz;
733 		}
734 
735 #ifdef VERBOSE_INIT_ARM
736 		printf("Textsize: %u, kerneldatasize: %u\n", (uint)textsize,
737 		       (uint)kerneldatasize);
738 		printf("&etext: 0x%x\n", (uint)&etext);
739 		printf("&end: 0x%x\n", (uint)&end);
740 		printf("KERNEL_TEXT_BASE: 0x%x\n", KERNEL_TEXT_BASE);
741 #endif
742 
743 		textsize = (textsize + PGOFSET) & ~PGOFSET;
744 		kerneldatasize = (kerneldatasize + PGOFSET) & ~PGOFSET;
745 
746 		logical = KERNEL_OFFSET;	/* offset of kernel in RAM */
747 
748 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
749 					  physical_start + logical, textsize,
750 					  VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
751 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
752 					  physical_start + logical, kerneldatasize - textsize,
753 					  VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
754 	}
755 
756 #ifdef VERBOSE_INIT_ARM
757 	printf("Constructing L2 page tables\n");
758 #endif
759 
760 	/* Map the stack pages */
761 	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
762 	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
763 	    PTE_CACHE);
764 	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
765 	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
766 	    PTE_CACHE);
767 	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
768 	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
769 	    PTE_CACHE);
770 	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
771 	    UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
772 
773 	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
774 	    L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
775 
776 	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
777 		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
778 		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
779 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
780 	}
781 
782 	/* Map the vector page. */
783 #if 0
784 	/* MULTI-ICE requires that page 0 is NC/NB so that it can download the
785 	 * cache-clean code there.  */
786 	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
787 	    VM_PROT_READ | VM_PROT_WRITE, PTE_NOCACHE);
788 #else
789 	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
790 	    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
791 #endif
792 
793 	/*
794 	 * map integrated peripherals at same address in l1pagetable
795 	 * so that we can continue to use console.
796 	 */
797 	pmap_devmap_bootstrap(l1pagetable, mini2440_devmap);
798 
799 	/*
800 	 * Now we have the real page tables in place so we can switch to them.
801 	 * Once this is done we will be running with the REAL kernel page
802 	 * tables.
803 	 */
804 	/*
805 	 * Update the physical_freestart/physical_freeend/free_pages
806 	 * variables.
807 	 */
808 	physical_freestart = physical_start +
809 	  (KERNEL_TEXT_BASE - KERNEL_BASE) + kerneldatasize;
810 	physical_freeend = physical_end;
811 	free_pages =
812 	  (physical_freeend - physical_freestart) / PAGE_SIZE;
813 
814 	/* Switch tables */
815 #ifdef VERBOSE_INIT_ARM
816 	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
817 	    physical_freestart, free_pages, free_pages);
818 	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
819 #endif
820 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
821 	cpu_setttb(kernel_l1pt.pv_pa, true);
822 	cpu_tlb_flushID();
823 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
824 
825 	/*
826 	 * Moved from cpu_startup() as data_abort_handler() references
827 	 * this during uvm init
828 	 */
829 	uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
830 
831 #ifdef VERBOSE_INIT_ARM
832 	printf("done!\n");
833 #endif
834 
835 #ifdef VERBOSE_INIT_ARM
836 	printf("bootstrap done.\n");
837 #endif
838 
839 	arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
840 
841 	/*
842 	 * Pages were allocated during the secondary bootstrap for the
843 	 * stacks for different CPU modes.
844 	 * We must now set the r13 registers in the different CPU modes to
845 	 * point to these stacks.
846 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
847 	 * of the stack memory.
848 	 */
849 #ifdef VERBOSE_INIT_ARM
850 	printf("init subsystems: stacks ");
851 #endif
852 
853 	set_stackptr(PSR_IRQ32_MODE,
854 	    irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
855 	set_stackptr(PSR_ABT32_MODE,
856 	    abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
857 	set_stackptr(PSR_UND32_MODE,
858 	    undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
859 
860 	cpu_idcache_wbinv_all();
861 
862 	/*
863 	 * Well we should set a data abort handler.
864 	 * Once things get going this will change as we will need a proper
865 	 * handler.
866 	 * Until then we will use a handler that just panics but tells us
867 	 * why.
868 	 * Initialisation of the vectors will just panic on a data abort.
869 	 * This just fills in a slightly better one.
870 	 */
871 #ifdef VERBOSE_INIT_ARM
872 	printf("vectors ");
873 #endif
874 	data_abort_handler_address = (u_int)data_abort_handler;
875 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
876 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
877 
878 	/* Initialise the undefined instruction handlers */
879 #ifdef VERBOSE_INIT_ARM
880 	printf("undefined ");
881 #endif
882 	undefined_init();
883 
884 	/* Load memory into UVM. */
885 #ifdef VERBOSE_INIT_ARM
886 	printf("page ");
887 #endif
888 	uvm_setpagesize();	/* initialize PAGE_SIZE-dependent variables */
889 	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
890 	    atop(physical_freestart), atop(physical_freeend),
891 	    VM_FREELIST_DEFAULT);
892 	uvm_page_physload(atop(SDRAM_START), atop(physical_freeend_low),
893 	    atop(SDRAM_START), atop(physical_freeend_low),
894 	    VM_FREELIST_DEFAULT);
895 
896 
897 	/* Boot strap pmap telling it where the kernel page table is */
898 #ifdef VERBOSE_INIT_ARM
899 	printf("pmap ");
900 #endif
901 	pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
902 
903 #ifdef VERBOSE_INIT_ARM
904 	printf("done.\n");
905 #endif
906 
907 #ifdef BOOTHOWTO
908 	boothowto |= BOOTHOWTO;
909 #endif
910 
911 #ifdef KGDB
912 	if (boothowto & RB_KDB) {
913 		kgdb_debug_init = 1;
914 		kgdb_connect(1);
915 	}
916 #endif
917 
918 	mini2440_ksyms(bi_symtab);
919 
920 #ifdef DDB
921 	/*db_machine_init();*/
922 	if (boothowto & RB_KDB)
923 		Debugger();
924 #endif
925 
926 	evbarm_device_register = mini2440_device_register;
927 
928 	/* We return the new stack pointer address */
929 	return (kernelstack.pv_va + USPACE_SVC_STACK_TOP);
930 }
931 
932 void
933 consinit(void)
934 {
935 	static int consinit_done = 0;
936 #if defined(SSCOM0CONSOLE) || defined(SSCOM1CONSOLE)
937 	bus_space_tag_t iot = &s3c2xx0_bs_tag;
938 #endif
939 	int pclk;
940 
941 	if (consinit_done != 0)
942 		return;
943 
944 	consinit_done = 1;
945 
946 	s3c24x0_clock_freq2(CLKMAN_VBASE, NULL, NULL, &pclk);
947 
948 #if NSSCOM > 0
949 #ifdef SSCOM0CONSOLE
950 	if (0 == s3c2440_sscom_cnattach(iot, 0, comcnspeed,
951 		pclk, comcnmode))
952 		return;
953 #endif
954 #ifdef SSCOM1CONSOLE
955 	if (0 == s3c2440_sscom_cnattach(iot, 1, comcnspeed,
956 		pclk, comcnmode))
957 		return;
958 #endif
959 #endif				/* NSSCOM */
960 #if NCOM>0 && defined(CONCOMADDR)
961 	if (comcnattach(&isa_io_bs_tag, CONCOMADDR, comcnspeed,
962 		COM_FREQ, COM_TYPE_NORMAL, comcnmode))
963 		panic("can't init serial console @%x", CONCOMADDR);
964 	return;
965 #endif
966 
967 	consinit_done = 0;
968 }
969 
970 
971 #ifdef KGDB
972 
973 #if (NSSCOM > 0)
974 
975 #ifdef KGDB_DEVNAME
976 const char kgdb_devname[] = KGDB_DEVNAME;
977 #else
978 const char kgdb_devname[] = "";
979 #endif
980 
981 #ifndef KGDB_DEVMODE
982 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE|CSTOPB|PARENB))|CS8) /* 8N1 */
983 #endif
984 int kgdb_sscom_mode = KGDB_DEVMODE;
985 
986 #endif				/* NSSCOM */
987 
988 void
989 kgdb_port_init(void)
990 {
991 #if (NSSCOM > 0)
992 	int unit = -1;
993 	int pclk;
994 
995 	if (strcmp(kgdb_devname, "sscom0") == 0)
996 		unit = 0;
997 	else if (strcmp(kgdb_devname, "sscom1") == 0)
998 		unit = 1;
999 
1000 	if (unit >= 0) {
1001 		s3c24x0_clock_freq2(CLKMAN_VBASE, NULL, NULL, &pclk);
1002 
1003 		s3c2440_sscom_kgdb_attach(&s3c2xx0_bs_tag,
1004 		    unit, kgdb_rate, pclk, kgdb_sscom_mode);
1005 	}
1006 #endif
1007 }
1008 #endif
1009 
1010 
1011 static struct arm32_dma_range mini2440_dma_ranges[1];
1012 
1013 bus_dma_tag_t
1014 s3c2xx0_bus_dma_init(struct arm32_bus_dma_tag *dma_tag_template)
1015 {
1016 	extern paddr_t physical_start, physical_end;
1017 	struct arm32_bus_dma_tag *dmat;
1018 
1019 	mini2440_dma_ranges[0].dr_sysbase = physical_start;
1020 	mini2440_dma_ranges[0].dr_busbase = physical_start;
1021 	mini2440_dma_ranges[0].dr_len = physical_end - physical_start;
1022 
1023 #if 1
1024 	dmat = dma_tag_template;
1025 #else
1026 	dmat = malloc(sizeof *dmat, M_DEVBUF, M_NOWAIT);
1027 	if (dmat == NULL)
1028 		return NULL;
1029 	*dmat =  *dma_tag_template;
1030 #endif
1031 
1032 	dmat->_ranges = mini2440_dma_ranges;
1033 	dmat->_nranges = 1;
1034 
1035 	return dmat;
1036 }
1037 
1038 void
1039 mini2440_ksyms(struct btinfo_symtab *bi_symtab)
1040 {
1041 #if NKSYMS || defined(DDB) || defined(LKM)
1042 	extern int end;
1043 
1044 #ifdef DDB
1045 	db_machine_init();
1046 #endif
1047 	if (bi_symtab == NULL) {
1048 		return;
1049 	}
1050 #ifdef VERBOSE_INIT_ARM
1051 	printf("Got symbol table. nsym=%d, ssym=%p, esym=%p\n",
1052 	       bi_symtab->nsym,
1053 	       bi_symtab->ssym,
1054 	       bi_symtab->esym);
1055 #endif
1056 
1057 	ksyms_addsyms_elf(bi_symtab->nsym,
1058 			  (int*)bi_symtab->ssym,
1059 			  (int*)bi_symtab->esym);
1060 #endif
1061 }
1062 
1063 void *
1064 lookup_bootinfo(int type)
1065 {
1066 	struct btinfo_common *bt;
1067 	struct btinfo_common *help = (struct btinfo_common *)bootinfo;
1068 
1069 	if (help->next == 0)
1070 		return (NULL);  /* bootinfo[] was not made */
1071 	do {
1072 		bt = help;
1073 		if (bt->type == type)
1074 			return (help);
1075 		help = (struct btinfo_common *)((char*)help + bt->next);
1076 	} while (bt->next &&
1077 		 (size_t)help < (size_t)bootinfo + BOOTINFO_MAXSIZE);
1078 
1079 	return (NULL);
1080 }
1081 
1082 
1083 extern char *booted_kernel;
1084 
1085 static void
1086 mini2440_device_register(device_t dev, void *aux) {
1087 	if (device_class(dev) == DV_IFNET) {
1088 #ifndef MEMORY_DISK_IS_ROOT
1089 		if (bi_rdev != NULL && device_is_a(dev, bi_rdev->devname) ) {
1090 			booted_device = dev;
1091 			rootfstype = MOUNT_NFS;
1092 			if( bi_path != NULL ) {
1093 				booted_kernel = bi_path->bootpath;
1094 			}
1095 		}
1096 #endif
1097 		if (bi_net != NULL && device_is_a(dev, bi_net->devname)) {
1098 			prop_data_t pd;
1099 			pd = prop_data_create_data_nocopy(bi_net->mac_address, ETHER_ADDR_LEN);
1100 			KASSERT(pd != NULL);
1101 			if (prop_dictionary_set(device_properties(dev), "mac-address", pd) == false) {
1102 				printf("WARNING: Unable to set mac-address property for %s\n", device_xname(dev));
1103 			}
1104 			prop_object_release(pd);
1105 			bi_net = NULL;
1106 		}
1107 	}
1108 #ifndef MEMORY_DISK_IS_ROOT
1109 	if (bi_rdev != NULL && device_class(dev) == DV_DISK
1110 	    && device_is_a(dev, bi_rdev->devname)
1111 	    && device_unit(dev) == bi_rdev->cookie) {
1112 		booted_device = dev;
1113 		booted_partition = bi_rdev->partition;
1114 		rootfstype = ROOT_FSTYPE_ANY;
1115 		if( bi_path != NULL ) {
1116 			booted_kernel = bi_path->bootpath;
1117 		}
1118 	}
1119 #endif
1120 }
1121