1 /*- 2 * Copyright (c) 2012 The NetBSD Foundation, Inc. 3 * All rights reserved. 4 * 5 * This code is derived from software contributed to The NetBSD Foundation 6 * by Paul Fleischer <paul@xpg.dk> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 19 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 21 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 22 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 25 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 27 * POSSIBILITY OF SUCH DAMAGE. 28 */ 29 /* This file is based on arch/evbarm/smdk2xx0/smdk2410_machdep.c */ 30 /* 31 * Copyright (c) 2002, 2003 Fujitsu Component Limited 32 * Copyright (c) 2002, 2003, 2005 Genetec Corporation 33 * All rights reserved. 34 * 35 * Redistribution and use in source and binary forms, with or without 36 * modification, are permitted provided that the following conditions 37 * are met: 38 * 1. Redistributions of source code must retain the above copyright 39 * notice, this list of conditions and the following disclaimer. 40 * 2. Redistributions in binary form must reproduce the above copyright 41 * notice, this list of conditions and the following disclaimer in the 42 * documentation and/or other materials provided with the distribution. 43 * 3. Neither the name of The Fujitsu Component Limited nor the name of 44 * Genetec corporation may not be used to endorse or promote products 45 * derived from this software without specific prior written permission. 46 * 47 * THIS SOFTWARE IS PROVIDED BY FUJITSU COMPONENT LIMITED AND GENETEC 48 * CORPORATION ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, 49 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 50 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 51 * DISCLAIMED. IN NO EVENT SHALL FUJITSU COMPONENT LIMITED OR GENETEC 52 * CORPORATION BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 53 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 54 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 55 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 56 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 57 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 58 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 */ 61 /* 62 * Copyright (c) 2001,2002 ARM Ltd 63 * All rights reserved. 64 * 65 * Redistribution and use in source and binary forms, with or without 66 * modification, are permitted provided that the following conditions 67 * are met: 68 * 1. Redistributions of source code must retain the above copyright 69 * notice, this list of conditions and the following disclaimer. 70 * 2. Redistributions in binary form must reproduce the above copyright 71 * notice, this list of conditions and the following disclaimer in the 72 * documentation and/or other materials provided with the distribution. 73 * 3. The name of the company may not be used to endorse or promote 74 * products derived from this software without specific prior written 75 * permission. 76 * 77 * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND 78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 79 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 80 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ARM LTD 81 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 82 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 83 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 84 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 85 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 86 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 87 * POSSIBILITY OF SUCH DAMAGE. 88 * 89 */ 90 91 /* 92 * Copyright (c) 1997,1998 Mark Brinicombe. 93 * Copyright (c) 1997,1998 Causality Limited. 94 * All rights reserved. 95 * 96 * Redistribution and use in source and binary forms, with or without 97 * modification, are permitted provided that the following conditions 98 * are met: 99 * 1. Redistributions of source code must retain the above copyright 100 * notice, this list of conditions and the following disclaimer. 101 * 2. Redistributions in binary form must reproduce the above copyright 102 * notice, this list of conditions and the following disclaimer in the 103 * documentation and/or other materials provided with the distribution. 104 * 3. All advertising materials mentioning features or use of this software 105 * must display the following acknowledgement: 106 * This product includes software developed by Mark Brinicombe 107 * for the NetBSD Project. 108 * 4. The name of the company nor the name of the author may be used to 109 * endorse or promote products derived from this software without specific 110 * prior written permission. 111 * 112 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 113 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 114 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 115 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 116 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 117 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 118 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 119 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 120 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 121 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 122 * SUCH DAMAGE. 123 * 124 * Machine dependant functions for kernel setup for integrator board 125 * 126 * Created : 24/11/97 127 */ 128 129 /* 130 * Machine dependant functions for kernel setup for FriendlyARM MINI2440 131 */ 132 133 #include <sys/cdefs.h> 134 __KERNEL_RCSID(0, "$NetBSD: mini2440_machdep.c,v 1.7 2013/10/30 06:47:18 uebayasi Exp $"); 135 136 #include "opt_ddb.h" 137 #include "opt_kgdb.h" 138 #include "opt_pmap_debug.h" 139 #include "opt_md.h" 140 141 #include <sys/param.h> 142 #include <sys/device.h> 143 #include <sys/systm.h> 144 #include <sys/kernel.h> 145 #include <sys/exec.h> 146 #include <sys/proc.h> 147 #include <sys/msgbuf.h> 148 #include <sys/reboot.h> 149 #include <sys/termios.h> 150 #include <sys/ksyms.h> 151 #include <sys/mount.h> 152 153 #include <net/if.h> 154 #include <net/if_ether.h> 155 #include <net/if_media.h> 156 157 #include <uvm/uvm_extern.h> 158 159 #include <dev/cons.h> 160 #include <dev/md.h> 161 162 #include <machine/db_machdep.h> 163 #include <ddb/db_sym.h> 164 #include <ddb/db_extern.h> 165 #ifdef KGDB 166 #include <sys/kgdb.h> 167 #endif 168 169 #include <sys/exec_elf.h> 170 171 #include <sys/bus.h> 172 #include <machine/cpu.h> 173 #include <machine/frame.h> 174 #include <machine/intr.h> 175 #include <arm/undefined.h> 176 177 #include <machine/autoconf.h> 178 179 #include <arm/arm32/machdep.h> 180 181 #include <arm/s3c2xx0/s3c2440reg.h> 182 #include <arm/s3c2xx0/s3c2440var.h> 183 184 #include <arch/evbarm/mini2440/mini2440_bootinfo.h> 185 186 #include "ksyms.h" 187 188 #ifndef SDRAM_START 189 #define SDRAM_START S3C2440_SDRAM_START 190 #endif 191 #ifndef SDRAM_SIZE 192 #define SDRAM_SIZE (64*1024*1024) /* 64 Mb */ 193 #endif 194 195 /* 196 * Address to map I/O registers in early initialize stage. 197 */ 198 #define MINI2440_IO_VBASE 0xfd000000 199 200 /* Kernel text starts 2MB in from the bottom of the kernel address space. */ 201 #define KERNEL_OFFSET 0x00200000 202 #define KERNEL_TEXT_BASE (KERNEL_BASE + KERNEL_OFFSET) 203 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000) 204 205 /* 206 * The range 0xc1000000 - 0xccffffff is available for kernel VM space 207 * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff 208 */ 209 #define KERNEL_VM_SIZE 0x0C000000 210 211 /* Declared extern elsewhere in the kernel */ 212 BootConfig bootconfig; /* Boot config storage */ 213 char *boot_args = NULL; 214 //char *boot_file = NULL; 215 216 char bootinfo[BOOTINFO_MAXSIZE]; 217 struct btinfo_rootdevice *bi_rdev; 218 struct btinfo_net *bi_net; 219 struct btinfo_bootpath *bi_path; 220 221 vm_offset_t physical_start; 222 vm_offset_t physical_freestart; 223 vm_offset_t physical_freeend; 224 vm_offset_t physical_freeend_low; 225 vm_offset_t physical_end; 226 u_int free_pages; 227 vm_offset_t pagetables_start; 228 229 /*int debug_flags;*/ 230 #ifndef PMAP_STATIC_L1S 231 int max_processes = 64; /* Default number */ 232 #endif /* !PMAP_STATIC_L1S */ 233 234 vm_offset_t msgbufphys; 235 236 #ifdef PMAP_DEBUG 237 extern int pmap_debug_level; 238 #endif 239 240 #define KERNEL_PT_SYS 0 /* L2 table for mapping zero page */ 241 #define KERNEL_PT_KERNEL 1 /* L2 table for mapping kernel */ 242 #define KERNEL_PT_KERNEL_NUM 3 /* L2 tables for mapping kernel VM */ 243 244 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM) 245 246 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */ 247 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM) 248 249 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS]; 250 251 /* Prototypes */ 252 253 void consinit(void); 254 void kgdb_port_init(void); 255 static void mini2440_ksyms(struct btinfo_symtab *bi_symtab); 256 static void *lookup_bootinfo(int type); 257 static void mini2440_device_register(device_t dev, void *aux); 258 259 260 #include "com.h" 261 #if NCOM > 0 262 #include <dev/ic/comreg.h> 263 #include <dev/ic/comvar.h> 264 #endif 265 266 #include "sscom.h" 267 #if NSSCOM > 0 268 #include "opt_sscom.h" 269 #include <arm/s3c2xx0/sscom_var.h> 270 #endif 271 272 /* 273 * Define the default console speed for the board. This is generally 274 * what the firmware provided with the board defaults to. 275 */ 276 #ifndef CONSPEED 277 #define CONSPEED B115200 /* TTYDEF_SPEED */ 278 #endif 279 #ifndef CONMODE 280 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ 281 #endif 282 283 int comcnspeed = CONSPEED; 284 int comcnmode = CONMODE; 285 286 /* 287 * void cpu_reboot(int howto, char *bootstr) 288 * 289 * Reboots the system 290 * 291 * Deal with any syncing, unmounting, dumping and shutdown hooks, 292 * then reset the CPU. 293 */ 294 void 295 cpu_reboot(int howto, char *bootstr) 296 { 297 #ifdef DIAGNOSTIC 298 /* info */ 299 printf("boot: howto=%08x curproc=%p\n", howto, curproc); 300 #endif 301 302 cpu_reset_address_paddr = vtophys((uintptr_t)s3c2440_softreset); 303 304 /* 305 * If we are still cold then hit the air brakes 306 * and crash to earth fast 307 */ 308 if (cold) { 309 doshutdownhooks(); 310 printf("The operating system has halted.\n"); 311 printf("Please press any key to reboot.\n\n"); 312 cngetc(); 313 printf("rebooting...\n"); 314 cpu_reset(); 315 /* NOTREACHED */ 316 } 317 /* Disable console buffering */ 318 319 /* 320 * If RB_NOSYNC was not specified sync the discs. 321 * Note: Unless cold is set to 1 here, syslogd will die during the 322 * unmount. It looks like syslogd is getting woken up only to find 323 * that it cannot page part of the binary in as the filesystem has 324 * been unmounted. 325 */ 326 if (!(howto & RB_NOSYNC)) 327 bootsync(); 328 329 /* Say NO to interrupts */ 330 splhigh(); 331 332 /* Do a dump if requested. */ 333 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) 334 dumpsys(); 335 336 /* Run any shutdown hooks */ 337 doshutdownhooks(); 338 339 /* Make sure IRQ's are disabled */ 340 IRQdisable; 341 342 if (howto & RB_HALT) { 343 printf("The operating system has halted.\n"); 344 printf("Please press any key to reboot.\n\n"); 345 cngetc(); 346 } 347 printf("rebooting...\n"); 348 cpu_reset(); 349 /* NOTREACHED */ 350 } 351 352 /* 353 * Static device mappings. These peripheral registers are mapped at 354 * fixed virtual addresses very early in initarm() so that we can use 355 * them while booting the kernel , and stay at the same address 356 * throughout whole kernel's life time. 357 * 358 * We use this table twice; once with bootstrap page table, and once 359 * with kernel's page table which we build up in initarm(). 360 * 361 * Since we map these registers into the bootstrap page table using 362 * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map 363 * registers segment-aligned and segment-rounded in order to avoid 364 * using the 2nd page tables. 365 */ 366 367 #define _A(a) ((a) & ~L1_S_OFFSET) 368 #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1)) 369 370 #define _V(n) (MINI2440_IO_VBASE + (n) * L1_S_SIZE) 371 372 #define GPIO_VBASE _V(0) 373 #define INTCTL_VBASE _V(1) 374 #define CLKMAN_VBASE _V(2) 375 #define UART_VBASE _V(3) 376 377 static const struct pmap_devmap mini2440_devmap[] = { 378 /* GPIO registers */ 379 { 380 GPIO_VBASE, 381 _A(S3C2440_GPIO_BASE), 382 _S(S3C2440_GPIO_SIZE), 383 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 384 }, 385 { 386 INTCTL_VBASE, 387 _A(S3C2440_INTCTL_BASE), 388 _S(S3C2440_INTCTL_SIZE), 389 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 390 }, 391 { 392 CLKMAN_VBASE, 393 _A(S3C2440_CLKMAN_BASE), 394 _S(S3C24X0_CLKMAN_SIZE), 395 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 396 }, 397 { /* UART registers for UART0, 1, 2. */ 398 UART_VBASE, 399 _A(S3C2440_UART0_BASE), 400 _S(S3C2440_UART_BASE(3) - S3C2440_UART0_BASE), 401 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 402 }, 403 404 { 0, 0, 0, 0 } 405 }; 406 407 #undef _A 408 #undef _S 409 410 static inline pd_entry_t * 411 read_ttb(void) 412 { 413 long ttb; 414 415 __asm volatile("mrc p15, 0, %0, c2, c0, 0" : "=r"(ttb)); 416 417 418 return (pd_entry_t *)(ttb & ~((1 << 14) - 1)); 419 } 420 421 422 #define ioreg_write32(a,v) (*(volatile uint32_t *)(a)=(v)) 423 424 /* 425 * u_int initarm(...) 426 * 427 * Initial entry point on startup. This gets called before main() is 428 * entered. 429 * It should be responsible for setting up everything that must be 430 * in place when main is called. 431 * This includes 432 * Taking a copy of the boot configuration structure. 433 * Initialising the physical console so characters can be printed. 434 * Setting up page tables for the kernel 435 * Relocating the kernel to the bottom of physical memory 436 */ 437 438 u_int 439 initarm(void *arg) 440 { 441 int loop; 442 int loop1; 443 u_int l1pagetable; 444 extern int etext __asm("_etext"); 445 extern int end __asm("_end"); 446 uint32_t kerneldatasize; 447 struct btinfo_magic *bi_magic = arg; 448 struct btinfo_bootstring *bi_bootstring; 449 struct btinfo_symtab *bi_symtab; 450 451 boothowto = 0; 452 453 /* Copy bootinfo from boot loader into kernel memory where it remains. 454 */ 455 if (bi_magic != 0x0 && bi_magic->magic == BOOTINFO_MAGIC) { 456 memcpy(bootinfo, bi_magic, sizeof(bootinfo)); 457 } else { 458 memset(bootinfo, 0, sizeof(bootinfo)); 459 } 460 461 /* Extract boot_args from bootinfo */ 462 bi_bootstring = lookup_bootinfo(BTINFO_BOOTSTRING); 463 if (bi_bootstring ) { 464 printf("Bootloader args are %s\n", bi_bootstring->bootstring); 465 boot_args = bi_bootstring->bootstring; 466 parse_mi_bootargs(boot_args); 467 } 468 469 #define pdatb (*(volatile uint8_t *)(S3C2440_GPIO_BASE+GPIO_PBDAT)) 470 471 // 0x1E0 is the mask for GPB5, GPB6, GPB7, and GPB8 472 #define __LED(x) (pdatb = (pdatb & ~0x1e0) | (~(1<<(x+5)) & 0x1e0)) 473 474 __LED(0); 475 476 /* 477 * Heads up ... Setup the CPU / MMU / TLB functions 478 */ 479 if (set_cpufuncs()) 480 panic("cpu not recognized!"); 481 482 /* 483 * Map I/O registers that are used in startup. Now we are 484 * still using page table prepared by bootloader. Later we'll 485 * map those registers at the same address in the kernel page 486 * table. 487 */ 488 pmap_devmap_bootstrap((vaddr_t)read_ttb(), mini2440_devmap); 489 490 #undef pdatb 491 #define pdatb (*(volatile uint8_t *)(GPIO_VBASE+GPIO_PBDAT)) 492 493 /* Disable all peripheral interrupts */ 494 ioreg_write32(INTCTL_VBASE + INTCTL_INTMSK, ~0); 495 496 __LED(1); 497 498 /* initialize some variables so that splfoo() doesn't 499 touch illegal address. */ 500 s3c2xx0_intr_bootstrap(INTCTL_VBASE); 501 502 __LED(2); 503 consinit(); 504 __LED(3); 505 506 /* Extract information from the bootloader configuration */ 507 bi_rdev = lookup_bootinfo(BTINFO_ROOTDEVICE); 508 bi_net = lookup_bootinfo(BTINFO_NET); 509 bi_path = lookup_bootinfo(BTINFO_BOOTPATH); 510 511 #ifdef VERBOSE_INIT_ARM 512 printf("consinit done\n"); 513 #endif 514 515 #ifdef KGDB 516 kgdb_port_init(); 517 #endif 518 519 #ifdef VERBOSE_INIT_ARM 520 /* Talk to the user */ 521 printf("\nNetBSD/evbarm (MINI2440) booting ...\n"); 522 #endif 523 /* 524 * Ok we have the following memory map 525 * 526 * Physical Address Range Description 527 * ----------------------- ---------------------------------- 528 * 0x30000000 - 0x33ffffff SDRAM (64MB) 529 * 530 * Kernel is loaded by bootloader at 0x30200000 531 * 532 * The initarm() has the responsibility for creating the kernel 533 * page tables. 534 * It must also set up various memory pointers that are used 535 * by pmap etc. 536 */ 537 538 /* Fake bootconfig structure for the benefit of pmap.c */ 539 /* XXX must make the memory description h/w independent */ 540 bootconfig.dramblocks = 1; 541 bootconfig.dram[0].address = SDRAM_START; 542 bootconfig.dram[0].pages = SDRAM_SIZE / PAGE_SIZE; 543 544 /* 545 * Set up the variables that define the availablilty of 546 * physical memory. 547 * We use the 2MB between the physical start and the kernel to 548 * begin with. Allocating from 0x30200000 and downwards 549 * If we get too close to the bottom of SDRAM, we 550 * will panic. We will update physical_freestart and 551 * physical_freeend later to reflect what pmap_bootstrap() 552 * wants to see. 553 * 554 * XXX pmap_bootstrap() needs an enema. 555 */ 556 physical_start = bootconfig.dram[0].address; 557 physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE); 558 559 physical_freestart = SDRAM_START; /* XXX */ 560 physical_freeend = SDRAM_START + KERNEL_OFFSET; 561 562 physmem = (physical_end - physical_start) / PAGE_SIZE; 563 564 #ifdef VERBOSE_INIT_ARM 565 /* Tell the user about the memory */ 566 printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem, 567 physical_start, physical_end - 1); 568 printf("phys_end: 0x%08lx\n", physical_end); 569 #endif 570 571 /* 572 * XXX 573 * Okay, the kernel starts 2MB in from the bottom of physical 574 * memory. We are going to allocate our bootstrap pages downwards 575 * from there. 576 * 577 * We need to allocate some fixed page tables to get the kernel 578 * going. We allocate one page directory and a number of page 579 * tables and store the physical addresses in the kernel_pt_table 580 * array. 581 * 582 * The kernel page directory must be on a 16K boundary. The page 583 * tables must be on 4K boundaries. What we do is allocate the 584 * page directory on the first 16K boundary that we encounter, and 585 * the page tables on 4K boundaries otherwise. Since we allocate 586 * at least 3 L2 page tables, we are guaranteed to encounter at 587 * least one 16K aligned region. 588 */ 589 590 #ifdef VERBOSE_INIT_ARM 591 printf("Allocating page tables\n"); 592 #endif 593 594 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; 595 596 #ifdef VERBOSE_INIT_ARM 597 printf("freestart = 0x%08lx, free_pages = %d (0x%08x), freeend = 0x%08lx\n", 598 physical_freestart, free_pages, free_pages, physical_freeend); 599 #endif 600 601 /* Define a macro to simplify memory allocation */ 602 #define valloc_pages(var, np) \ 603 alloc_pages((var).pv_pa, (np)); \ 604 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start; 605 606 #define alloc_pages(var, np) \ 607 physical_freeend -= ((np) * PAGE_SIZE); \ 608 if (physical_freeend < physical_freestart) \ 609 panic("initarm: out of memory"); \ 610 (var) = physical_freeend; \ 611 free_pages -= (np); \ 612 memset((char *)(var), 0, ((np) * PAGE_SIZE)); 613 614 loop1 = 0; 615 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { 616 /* Are we 16KB aligned for an L1 ? */ 617 if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0 618 && kernel_l1pt.pv_pa == 0) { 619 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); 620 } else { 621 valloc_pages(kernel_pt_table[loop1], 622 L2_TABLE_SIZE / PAGE_SIZE); 623 ++loop1; 624 } 625 } 626 627 /* This should never be able to happen but better confirm that. */ 628 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0) 629 panic("initarm: Failed to align the kernel page directory\n"); 630 631 /* 632 * Allocate a page for the system page mapped to V0x00000000 633 * This page will just contain the system vectors and can be 634 * shared by all processes. 635 */ 636 alloc_pages(systempage.pv_pa, 1); 637 638 /* Allocate stacks for all modes */ 639 valloc_pages(irqstack, IRQ_STACK_SIZE); 640 valloc_pages(abtstack, ABT_STACK_SIZE); 641 valloc_pages(undstack, UND_STACK_SIZE); 642 valloc_pages(kernelstack, UPAGES); 643 644 #ifdef VERBOSE_INIT_ARM 645 printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, 646 irqstack.pv_va); 647 printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, 648 abtstack.pv_va); 649 printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, 650 undstack.pv_va); 651 printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, 652 kernelstack.pv_va); 653 printf("Free memory in bootstrap region: %ld bytes\n", physical_freeend - physical_freestart); 654 #endif 655 656 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); 657 658 physical_freeend_low = physical_freeend; 659 660 /* 661 * Ok we have allocated physical pages for the primary kernel 662 * page tables 663 */ 664 665 #ifdef VERBOSE_INIT_ARM 666 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa); 667 #endif 668 669 /* 670 * Now we start construction of the L1 page table 671 * We start by mapping the L2 page tables into the L1. 672 * This means that we can replace L1 mappings later on if necessary 673 */ 674 l1pagetable = kernel_l1pt.pv_pa; 675 676 /* Map the L2 pages tables in the L1 page table */ 677 pmap_link_l2pt(l1pagetable, 0x00000000, 678 &kernel_pt_table[KERNEL_PT_SYS]); 679 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) 680 pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000, 681 &kernel_pt_table[KERNEL_PT_KERNEL + loop]); 682 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++) 683 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, 684 &kernel_pt_table[KERNEL_PT_VMDATA + loop]); 685 686 /* update the top of the kernel VM */ 687 pmap_curmaxkvaddr = 688 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); 689 690 #ifdef VERBOSE_INIT_ARM 691 printf("Mapping kernel\n"); 692 #endif 693 694 /* Now we fill in the L2 pagetable for the kernel static code/data */ 695 { 696 /* Total size must include symbol table, if it exists. 697 The size of the symbol table can be acquired from the ELF 698 header, to which a pointer is passed in the boot info (ssym). 699 */ 700 size_t textsize = (uintptr_t)&etext - KERNEL_TEXT_BASE; 701 kerneldatasize = (uintptr_t)&end - KERNEL_TEXT_BASE; 702 u_int logical; 703 704 bi_symtab = lookup_bootinfo(BTINFO_SYMTAB); 705 706 if (bi_symtab) { 707 Elf_Ehdr *elfHeader; 708 Elf_Shdr *sectionHeader; 709 int nsection; 710 int sz = 0; 711 712 elfHeader = bi_symtab->ssym; 713 714 #ifdef VERBOSE_INIT_ARM 715 printf("Symbol table information provided by bootloader\n"); 716 printf("ELF header is at %p\n", elfHeader); 717 #endif 718 sectionHeader = (Elf_Shdr*)((char*)(bi_symtab->ssym) + 719 (elfHeader->e_shoff)); 720 nsection = elfHeader->e_shnum; 721 #ifdef VERBOSE_INIT_ARM 722 printf("Number of sections: %d\n", nsection); 723 #endif 724 for(; nsection > 0; nsection--, sectionHeader++) { 725 if (sectionHeader->sh_offset > 0 && 726 (sectionHeader->sh_offset + sectionHeader->sh_size) > sz) 727 sz = sectionHeader->sh_offset + sectionHeader->sh_size; 728 } 729 #ifdef VERBOSE_INIT_ARM 730 printf("Max size of sections: %d\n", sz); 731 #endif 732 kerneldatasize += sz; 733 } 734 735 #ifdef VERBOSE_INIT_ARM 736 printf("Textsize: %u, kerneldatasize: %u\n", (uint)textsize, 737 (uint)kerneldatasize); 738 printf("&etext: 0x%x\n", (uint)&etext); 739 printf("&end: 0x%x\n", (uint)&end); 740 printf("KERNEL_TEXT_BASE: 0x%x\n", KERNEL_TEXT_BASE); 741 #endif 742 743 textsize = (textsize + PGOFSET) & ~PGOFSET; 744 kerneldatasize = (kerneldatasize + PGOFSET) & ~PGOFSET; 745 746 logical = KERNEL_OFFSET; /* offset of kernel in RAM */ 747 748 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, 749 physical_start + logical, textsize, 750 VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); 751 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, 752 physical_start + logical, kerneldatasize - textsize, 753 VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); 754 } 755 756 #ifdef VERBOSE_INIT_ARM 757 printf("Constructing L2 page tables\n"); 758 #endif 759 760 /* Map the stack pages */ 761 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, 762 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, 763 PTE_CACHE); 764 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, 765 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, 766 PTE_CACHE); 767 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, 768 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, 769 PTE_CACHE); 770 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, 771 UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); 772 773 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, 774 L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE); 775 776 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { 777 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, 778 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, 779 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); 780 } 781 782 /* Map the vector page. */ 783 #if 0 784 /* MULTI-ICE requires that page 0 is NC/NB so that it can download the 785 * cache-clean code there. */ 786 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, 787 VM_PROT_READ | VM_PROT_WRITE, PTE_NOCACHE); 788 #else 789 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, 790 VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); 791 #endif 792 793 /* 794 * map integrated peripherals at same address in l1pagetable 795 * so that we can continue to use console. 796 */ 797 pmap_devmap_bootstrap(l1pagetable, mini2440_devmap); 798 799 /* 800 * Now we have the real page tables in place so we can switch to them. 801 * Once this is done we will be running with the REAL kernel page 802 * tables. 803 */ 804 /* 805 * Update the physical_freestart/physical_freeend/free_pages 806 * variables. 807 */ 808 physical_freestart = physical_start + 809 (KERNEL_TEXT_BASE - KERNEL_BASE) + kerneldatasize; 810 physical_freeend = physical_end; 811 free_pages = 812 (physical_freeend - physical_freestart) / PAGE_SIZE; 813 814 /* Switch tables */ 815 #ifdef VERBOSE_INIT_ARM 816 printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n", 817 physical_freestart, free_pages, free_pages); 818 printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa); 819 #endif 820 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); 821 cpu_setttb(kernel_l1pt.pv_pa, true); 822 cpu_tlb_flushID(); 823 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); 824 825 /* 826 * Moved from cpu_startup() as data_abort_handler() references 827 * this during uvm init 828 */ 829 uvm_lwp_setuarea(&lwp0, kernelstack.pv_va); 830 831 #ifdef VERBOSE_INIT_ARM 832 printf("done!\n"); 833 #endif 834 835 #ifdef VERBOSE_INIT_ARM 836 printf("bootstrap done.\n"); 837 #endif 838 839 arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL); 840 841 /* 842 * Pages were allocated during the secondary bootstrap for the 843 * stacks for different CPU modes. 844 * We must now set the r13 registers in the different CPU modes to 845 * point to these stacks. 846 * Since the ARM stacks use STMFD etc. we must set r13 to the top end 847 * of the stack memory. 848 */ 849 #ifdef VERBOSE_INIT_ARM 850 printf("init subsystems: stacks "); 851 #endif 852 853 set_stackptr(PSR_IRQ32_MODE, 854 irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); 855 set_stackptr(PSR_ABT32_MODE, 856 abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); 857 set_stackptr(PSR_UND32_MODE, 858 undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); 859 860 cpu_idcache_wbinv_all(); 861 862 /* 863 * Well we should set a data abort handler. 864 * Once things get going this will change as we will need a proper 865 * handler. 866 * Until then we will use a handler that just panics but tells us 867 * why. 868 * Initialisation of the vectors will just panic on a data abort. 869 * This just fills in a slightly better one. 870 */ 871 #ifdef VERBOSE_INIT_ARM 872 printf("vectors "); 873 #endif 874 data_abort_handler_address = (u_int)data_abort_handler; 875 prefetch_abort_handler_address = (u_int)prefetch_abort_handler; 876 undefined_handler_address = (u_int)undefinedinstruction_bounce; 877 878 /* Initialise the undefined instruction handlers */ 879 #ifdef VERBOSE_INIT_ARM 880 printf("undefined "); 881 #endif 882 undefined_init(); 883 884 /* Load memory into UVM. */ 885 #ifdef VERBOSE_INIT_ARM 886 printf("page "); 887 #endif 888 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */ 889 uvm_page_physload(atop(physical_freestart), atop(physical_freeend), 890 atop(physical_freestart), atop(physical_freeend), 891 VM_FREELIST_DEFAULT); 892 uvm_page_physload(atop(SDRAM_START), atop(physical_freeend_low), 893 atop(SDRAM_START), atop(physical_freeend_low), 894 VM_FREELIST_DEFAULT); 895 896 897 /* Boot strap pmap telling it where the kernel page table is */ 898 #ifdef VERBOSE_INIT_ARM 899 printf("pmap "); 900 #endif 901 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); 902 903 #ifdef VERBOSE_INIT_ARM 904 printf("done.\n"); 905 #endif 906 907 #ifdef BOOTHOWTO 908 boothowto |= BOOTHOWTO; 909 #endif 910 911 #ifdef KGDB 912 if (boothowto & RB_KDB) { 913 kgdb_debug_init = 1; 914 kgdb_connect(1); 915 } 916 #endif 917 918 mini2440_ksyms(bi_symtab); 919 920 #ifdef DDB 921 /*db_machine_init();*/ 922 if (boothowto & RB_KDB) 923 Debugger(); 924 #endif 925 926 evbarm_device_register = mini2440_device_register; 927 928 /* We return the new stack pointer address */ 929 return (kernelstack.pv_va + USPACE_SVC_STACK_TOP); 930 } 931 932 void 933 consinit(void) 934 { 935 static int consinit_done = 0; 936 #if defined(SSCOM0CONSOLE) || defined(SSCOM1CONSOLE) 937 bus_space_tag_t iot = &s3c2xx0_bs_tag; 938 #endif 939 int pclk; 940 941 if (consinit_done != 0) 942 return; 943 944 consinit_done = 1; 945 946 s3c24x0_clock_freq2(CLKMAN_VBASE, NULL, NULL, &pclk); 947 948 #if NSSCOM > 0 949 #ifdef SSCOM0CONSOLE 950 if (0 == s3c2440_sscom_cnattach(iot, 0, comcnspeed, 951 pclk, comcnmode)) 952 return; 953 #endif 954 #ifdef SSCOM1CONSOLE 955 if (0 == s3c2440_sscom_cnattach(iot, 1, comcnspeed, 956 pclk, comcnmode)) 957 return; 958 #endif 959 #endif /* NSSCOM */ 960 #if NCOM>0 && defined(CONCOMADDR) 961 if (comcnattach(&isa_io_bs_tag, CONCOMADDR, comcnspeed, 962 COM_FREQ, COM_TYPE_NORMAL, comcnmode)) 963 panic("can't init serial console @%x", CONCOMADDR); 964 return; 965 #endif 966 967 consinit_done = 0; 968 } 969 970 971 #ifdef KGDB 972 973 #if (NSSCOM > 0) 974 975 #ifdef KGDB_DEVNAME 976 const char kgdb_devname[] = KGDB_DEVNAME; 977 #else 978 const char kgdb_devname[] = ""; 979 #endif 980 981 #ifndef KGDB_DEVMODE 982 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE|CSTOPB|PARENB))|CS8) /* 8N1 */ 983 #endif 984 int kgdb_sscom_mode = KGDB_DEVMODE; 985 986 #endif /* NSSCOM */ 987 988 void 989 kgdb_port_init(void) 990 { 991 #if (NSSCOM > 0) 992 int unit = -1; 993 int pclk; 994 995 if (strcmp(kgdb_devname, "sscom0") == 0) 996 unit = 0; 997 else if (strcmp(kgdb_devname, "sscom1") == 0) 998 unit = 1; 999 1000 if (unit >= 0) { 1001 s3c24x0_clock_freq2(CLKMAN_VBASE, NULL, NULL, &pclk); 1002 1003 s3c2440_sscom_kgdb_attach(&s3c2xx0_bs_tag, 1004 unit, kgdb_rate, pclk, kgdb_sscom_mode); 1005 } 1006 #endif 1007 } 1008 #endif 1009 1010 1011 static struct arm32_dma_range mini2440_dma_ranges[1]; 1012 1013 bus_dma_tag_t 1014 s3c2xx0_bus_dma_init(struct arm32_bus_dma_tag *dma_tag_template) 1015 { 1016 extern paddr_t physical_start, physical_end; 1017 struct arm32_bus_dma_tag *dmat; 1018 1019 mini2440_dma_ranges[0].dr_sysbase = physical_start; 1020 mini2440_dma_ranges[0].dr_busbase = physical_start; 1021 mini2440_dma_ranges[0].dr_len = physical_end - physical_start; 1022 1023 #if 1 1024 dmat = dma_tag_template; 1025 #else 1026 dmat = malloc(sizeof *dmat, M_DEVBUF, M_NOWAIT); 1027 if (dmat == NULL) 1028 return NULL; 1029 *dmat = *dma_tag_template; 1030 #endif 1031 1032 dmat->_ranges = mini2440_dma_ranges; 1033 dmat->_nranges = 1; 1034 1035 return dmat; 1036 } 1037 1038 void 1039 mini2440_ksyms(struct btinfo_symtab *bi_symtab) 1040 { 1041 #if NKSYMS || defined(DDB) || defined(LKM) 1042 extern int end; 1043 1044 #ifdef DDB 1045 db_machine_init(); 1046 #endif 1047 if (bi_symtab == NULL) { 1048 return; 1049 } 1050 #ifdef VERBOSE_INIT_ARM 1051 printf("Got symbol table. nsym=%d, ssym=%p, esym=%p\n", 1052 bi_symtab->nsym, 1053 bi_symtab->ssym, 1054 bi_symtab->esym); 1055 #endif 1056 1057 ksyms_addsyms_elf(bi_symtab->nsym, 1058 (int*)bi_symtab->ssym, 1059 (int*)bi_symtab->esym); 1060 #endif 1061 } 1062 1063 void * 1064 lookup_bootinfo(int type) 1065 { 1066 struct btinfo_common *bt; 1067 struct btinfo_common *help = (struct btinfo_common *)bootinfo; 1068 1069 if (help->next == 0) 1070 return (NULL); /* bootinfo[] was not made */ 1071 do { 1072 bt = help; 1073 if (bt->type == type) 1074 return (help); 1075 help = (struct btinfo_common *)((char*)help + bt->next); 1076 } while (bt->next && 1077 (size_t)help < (size_t)bootinfo + BOOTINFO_MAXSIZE); 1078 1079 return (NULL); 1080 } 1081 1082 1083 extern char *booted_kernel; 1084 1085 static void 1086 mini2440_device_register(device_t dev, void *aux) { 1087 if (device_class(dev) == DV_IFNET) { 1088 #ifndef MEMORY_DISK_IS_ROOT 1089 if (bi_rdev != NULL && device_is_a(dev, bi_rdev->devname) ) { 1090 booted_device = dev; 1091 rootfstype = MOUNT_NFS; 1092 if( bi_path != NULL ) { 1093 booted_kernel = bi_path->bootpath; 1094 } 1095 } 1096 #endif 1097 if (bi_net != NULL && device_is_a(dev, bi_net->devname)) { 1098 prop_data_t pd; 1099 pd = prop_data_create_data_nocopy(bi_net->mac_address, ETHER_ADDR_LEN); 1100 KASSERT(pd != NULL); 1101 if (prop_dictionary_set(device_properties(dev), "mac-address", pd) == false) { 1102 printf("WARNING: Unable to set mac-address property for %s\n", device_xname(dev)); 1103 } 1104 prop_object_release(pd); 1105 bi_net = NULL; 1106 } 1107 } 1108 #ifndef MEMORY_DISK_IS_ROOT 1109 if (bi_rdev != NULL && device_class(dev) == DV_DISK 1110 && device_is_a(dev, bi_rdev->devname) 1111 && device_unit(dev) == bi_rdev->cookie) { 1112 booted_device = dev; 1113 booted_partition = bi_rdev->partition; 1114 rootfstype = ROOT_FSTYPE_ANY; 1115 if( bi_path != NULL ) { 1116 booted_kernel = bi_path->bootpath; 1117 } 1118 } 1119 #endif 1120 } 1121