xref: /netbsd-src/sys/arch/evbarm/lubbock/lubbock_machdep.c (revision fd5cb0acea84d278e04e640d37ca2398f894991f)
1 /*	$NetBSD: lubbock_machdep.c,v 1.4 2004/12/12 21:03:06 abs Exp $ */
2 
3 /*
4  * Copyright (c) 2002, 2003  Genetec Corporation.  All rights reserved.
5  * Written by Hiroyuki Bessho for Genetec Corporation.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of Genetec Corporation may not be used to endorse or
16  *    promote products derived from this software without specific prior
17  *    written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL GENETEC CORPORATION
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  *
31  * Machine dependant functions for kernel setup for
32  * Intel DBPXA250 evaluation board (a.k.a. Lubbock).
33  * Based on iq80310_machhdep.c
34  */
35 /*
36  * Copyright (c) 2001 Wasabi Systems, Inc.
37  * All rights reserved.
38  *
39  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. All advertising materials mentioning features or use of this software
50  *    must display the following acknowledgement:
51  *	This product includes software developed for the NetBSD Project by
52  *	Wasabi Systems, Inc.
53  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
54  *    or promote products derived from this software without specific prior
55  *    written permission.
56  *
57  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
59  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
60  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
61  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
67  * POSSIBILITY OF SUCH DAMAGE.
68  */
69 
70 /*
71  * Copyright (c) 1997,1998 Mark Brinicombe.
72  * Copyright (c) 1997,1998 Causality Limited.
73  * All rights reserved.
74  *
75  * Redistribution and use in source and binary forms, with or without
76  * modification, are permitted provided that the following conditions
77  * are met:
78  * 1. Redistributions of source code must retain the above copyright
79  *    notice, this list of conditions and the following disclaimer.
80  * 2. Redistributions in binary form must reproduce the above copyright
81  *    notice, this list of conditions and the following disclaimer in the
82  *    documentation and/or other materials provided with the distribution.
83  * 3. All advertising materials mentioning features or use of this software
84  *    must display the following acknowledgement:
85  *	This product includes software developed by Mark Brinicombe
86  *	for the NetBSD Project.
87  * 4. The name of the company nor the name of the author may be used to
88  *    endorse or promote products derived from this software without specific
89  *    prior written permission.
90  *
91  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
92  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
93  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
94  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
95  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
96  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
97  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
98  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
99  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
100  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
101  * SUCH DAMAGE.
102  *
103  * Machine dependant functions for kernel setup for Intel IQ80310 evaluation
104  * boards using RedBoot firmware.
105  */
106 
107 /*
108  * DIP switches:
109  *
110  * S19: no-dot: set RB_KDB.  enter kgdb session.
111  * S20: no-dot: set RB_SINGLE. don't go multi user mode.
112  */
113 
114 #include <sys/cdefs.h>
115 __KERNEL_RCSID(0, "$NetBSD: lubbock_machdep.c,v 1.4 2004/12/12 21:03:06 abs Exp $");
116 
117 #include "opt_ddb.h"
118 #include "opt_kgdb.h"
119 #include "opt_ipkdb.h"
120 #include "opt_pmap_debug.h"
121 #include "opt_md.h"
122 #include "opt_com.h"
123 #include "md.h"
124 #include "lcd.h"
125 
126 #include <sys/param.h>
127 #include <sys/device.h>
128 #include <sys/systm.h>
129 #include <sys/kernel.h>
130 #include <sys/exec.h>
131 #include <sys/proc.h>
132 #include <sys/msgbuf.h>
133 #include <sys/reboot.h>
134 #include <sys/termios.h>
135 #include <sys/ksyms.h>
136 
137 #include <uvm/uvm_extern.h>
138 
139 #include <sys/conf.h>
140 #include <dev/cons.h>
141 #include <dev/md.h>
142 #include <dev/ic/smc91cxxreg.h>
143 
144 #include <machine/db_machdep.h>
145 #include <ddb/db_sym.h>
146 #include <ddb/db_extern.h>
147 #ifdef KGDB
148 #include <sys/kgdb.h>
149 #endif
150 
151 #include <machine/bootconfig.h>
152 #include <machine/bus.h>
153 #include <machine/cpu.h>
154 #include <machine/frame.h>
155 #include <arm/undefined.h>
156 
157 #include <arm/arm32/machdep.h>
158 
159 #include <arm/xscale/pxa2x0reg.h>
160 #include <arm/xscale/pxa2x0var.h>
161 #include <arm/xscale/pxa2x0_gpio.h>
162 #include <arm/sa11x0/sa1111_reg.h>
163 #include <evbarm/lubbock/lubbock_reg.h>
164 #include <evbarm/lubbock/lubbock_var.h>
165 
166 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
167 #define	KERNEL_TEXT_BASE	(KERNEL_BASE + 0x00200000)
168 #define	KERNEL_VM_BASE		(KERNEL_BASE + 0x01000000)
169 
170 /*
171  * The range 0xc1000000 - 0xccffffff is available for kernel VM space
172  * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
173  */
174 #define KERNEL_VM_SIZE		0x0C000000
175 
176 
177 /*
178  * Address to call from cpu_reset() to reset the machine.
179  * This is machine architecture dependant as it varies depending
180  * on where the ROM appears when you turn the MMU off.
181  */
182 
183 u_int cpu_reset_address = 0;
184 
185 /* Define various stack sizes in pages */
186 #define IRQ_STACK_SIZE	1
187 #define ABT_STACK_SIZE	1
188 #ifdef IPKDB
189 #define UND_STACK_SIZE	2
190 #else
191 #define UND_STACK_SIZE	1
192 #endif
193 
194 BootConfig bootconfig;		/* Boot config storage */
195 char *boot_args = NULL;
196 char *boot_file = NULL;
197 
198 vm_offset_t physical_start;
199 vm_offset_t physical_freestart;
200 vm_offset_t physical_freeend;
201 vm_offset_t physical_end;
202 u_int free_pages;
203 vm_offset_t pagetables_start;
204 int physmem = 0;
205 
206 /*int debug_flags;*/
207 #ifndef PMAP_STATIC_L1S
208 int max_processes = 64;			/* Default number */
209 #endif	/* !PMAP_STATIC_L1S */
210 
211 /* Physical and virtual addresses for some global pages */
212 pv_addr_t systempage;
213 pv_addr_t irqstack;
214 pv_addr_t undstack;
215 pv_addr_t abtstack;
216 pv_addr_t kernelstack;
217 pv_addr_t minidataclean;
218 
219 vm_offset_t msgbufphys;
220 
221 extern u_int data_abort_handler_address;
222 extern u_int prefetch_abort_handler_address;
223 extern u_int undefined_handler_address;
224 
225 #ifdef PMAP_DEBUG
226 extern int pmap_debug_level;
227 #endif
228 
229 #define KERNEL_PT_SYS		0	/* Page table for mapping proc0 zero page */
230 #define KERNEL_PT_KERNEL	1	/* Page table for mapping kernel */
231 #define	KERNEL_PT_KERNEL_NUM	4
232 #define KERNEL_PT_VMDATA	(KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
233 				        /* Page tables for mapping kernel VM */
234 #define	KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
235 #define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
236 
237 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
238 
239 struct user *proc0paddr;
240 
241 /* Prototypes */
242 
243 #if 0
244 void	process_kernel_args(char *);
245 void	parse_mi_bootargs(char *args);
246 #endif
247 
248 void	consinit(void);
249 void	kgdb_port_init(void);
250 void	change_clock(uint32_t v);
251 
252 bs_protos(bs_notimpl);
253 
254 #include "com.h"
255 #if NCOM > 0
256 #include <dev/ic/comreg.h>
257 #include <dev/ic/comvar.h>
258 #endif
259 
260 #ifndef CONSPEED
261 #define CONSPEED B115200	/* What RedBoot uses */
262 #endif
263 #ifndef CONMODE
264 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
265 #endif
266 
267 int comcnspeed = CONSPEED;
268 int comcnmode = CONMODE;
269 
270 /*
271  * void cpu_reboot(int howto, char *bootstr)
272  *
273  * Reboots the system
274  *
275  * Deal with any syncing, unmounting, dumping and shutdown hooks,
276  * then reset the CPU.
277  */
278 void
279 cpu_reboot(int howto, char *bootstr)
280 {
281 #ifdef DIAGNOSTIC
282 	/* info */
283 	printf("boot: howto=%08x curproc=%p\n", howto, curproc);
284 #endif
285 
286 	/*
287 	 * If we are still cold then hit the air brakes
288 	 * and crash to earth fast
289 	 */
290 	if (cold) {
291 		doshutdownhooks();
292 		printf("The operating system has halted.\n");
293 		printf("Please press any key to reboot.\n\n");
294 		cngetc();
295 		printf("rebooting...\n");
296 		cpu_reset();
297 		/*NOTREACHED*/
298 	}
299 
300 	/* Disable console buffering */
301 /*	cnpollc(1);*/
302 
303 	/*
304 	 * If RB_NOSYNC was not specified sync the discs.
305 	 * Note: Unless cold is set to 1 here, syslogd will die during the
306 	 * unmount.  It looks like syslogd is getting woken up only to find
307 	 * that it cannot page part of the binary in as the filesystem has
308 	 * been unmounted.
309 	 */
310 	if (!(howto & RB_NOSYNC))
311 		bootsync();
312 
313 	/* Say NO to interrupts */
314 	splhigh();
315 
316 	/* Do a dump if requested. */
317 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
318 		dumpsys();
319 
320 	/* Run any shutdown hooks */
321 	doshutdownhooks();
322 
323 	/* Make sure IRQ's are disabled */
324 	IRQdisable;
325 
326 	if (howto & RB_HALT) {
327 		printf("The operating system has halted.\n");
328 		printf("Please press any key to reboot.\n\n");
329 		cngetc();
330 	}
331 
332 	printf("rebooting...\n");
333 	cpu_reset();
334 	/*NOTREACHED*/
335 }
336 
337 static __inline
338 pd_entry_t *
339 read_ttb(void)
340 {
341   long ttb;
342 
343   __asm __volatile("mrc	p15, 0, %0, c2, c0, 0" : "=r" (ttb));
344 
345 
346   return (pd_entry_t *)(ttb & ~((1<<14)-1));
347 }
348 
349 /*
350  * Mapping table for core kernel memory. These areas are mapped in
351  * init time at fixed virtual address with section mappings.
352  */
353 struct l1_sec_map {
354 	vaddr_t	va;
355 	vaddr_t	pa;
356 	vsize_t	size;
357 	int flags;
358 } l1_sec_table[] = {
359     {
360 	    LUBBOCK_OBIO_VBASE,
361 	    LUBBOCK_OBIO_PBASE,
362 	    LUBBOCK_OBIO_SIZE,
363 	    PTE_NOCACHE,
364     },
365     {
366 	    LUBBOCK_GPIO_VBASE,
367 	    PXA2X0_GPIO_BASE,
368 	    PXA2X0_GPIO_SIZE,
369 	    PTE_NOCACHE,
370     },
371     {
372 	    LUBBOCK_CLKMAN_VBASE,
373 	    PXA2X0_CLKMAN_BASE,
374 	    PXA2X0_CLKMAN_SIZE,
375 	    PTE_NOCACHE,
376     },
377     {
378 	    LUBBOCK_INTCTL_VBASE,
379 	    PXA2X0_INTCTL_BASE,
380 	    PXA2X0_INTCTL_SIZE,
381 	    PTE_NOCACHE,
382     },
383     {0, 0, 0, 0,}
384 };
385 
386 static void
387 map_io_area(paddr_t pagedir)
388 {
389 	int loop;
390 
391 	/*
392 	 * Map devices we can map w/ section mappings.
393 	 */
394 	loop = 0;
395 	while (l1_sec_table[loop].size) {
396 		vm_size_t sz;
397 
398 #ifdef VERBOSE_INIT_ARM
399 		printf("%08lx -> %08lx @ %08lx\n", l1_sec_table[loop].pa,
400 		    l1_sec_table[loop].pa + l1_sec_table[loop].size - 1,
401 		    l1_sec_table[loop].va);
402 #endif
403 		for (sz = 0; sz < l1_sec_table[loop].size; sz += L1_S_SIZE)
404 			pmap_map_section(pagedir, l1_sec_table[loop].va + sz,
405 			    l1_sec_table[loop].pa + sz,
406 			    VM_PROT_READ|VM_PROT_WRITE,
407 			    l1_sec_table[loop].flags);
408 		++loop;
409 	}
410 }
411 
412 /*
413  * simple memory mapping function used in early bootstrap stage
414  * before pmap is initialized.
415  * size and cacheability are ignored and map one section with nocache.
416  */
417 static vaddr_t section_free = LUBBOCK_VBASE_FREE;
418 
419 static int
420 bootstrap_bs_map(void *t, bus_addr_t bpa, bus_size_t size,
421     int cacheable, bus_space_handle_t *bshp)
422 {
423 	u_long startpa;
424 	vaddr_t va;
425 	pd_entry_t *pagedir = read_ttb();
426 	/* This assumes PA==VA for page directory */
427 
428 	va = section_free;
429 	section_free += L1_S_SIZE;
430 
431 	startpa = trunc_page(bpa);
432 	pmap_map_section((vaddr_t)pagedir, va, startpa,
433 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
434 	cpu_tlb_flushD();
435 
436 	*bshp = (bus_space_handle_t)(va + (bpa - startpa));
437 
438 	return(0);
439 }
440 
441 static void
442 copy_io_area_map(pd_entry_t *new_pd)
443 {
444 	pd_entry_t *cur_pd = read_ttb();
445 	vaddr_t va;
446 
447 	for (va = LUBBOCK_IO_AREA_VBASE;
448 	     (cur_pd[va>>L1_S_SHIFT] & L1_TYPE_MASK) == L1_TYPE_S;
449 	     va += L1_S_SIZE) {
450 
451 		new_pd[va>>L1_S_SHIFT] = cur_pd[va>>L1_S_SHIFT];
452 	}
453 }
454 
455 
456 
457 /*
458  * u_int initarm(...)
459  *
460  * Initial entry point on startup. This gets called before main() is
461  * entered.
462  * It should be responsible for setting up everything that must be
463  * in place when main is called.
464  * This includes
465  *   Taking a copy of the boot configuration structure.
466  *   Initialising the physical console so characters can be printed.
467  *   Setting up page tables for the kernel
468  *   Relocating the kernel to the bottom of physical memory
469  */
470 u_int
471 initarm(void *arg)
472 {
473 	extern vaddr_t xscale_cache_clean_addr;
474 	int loop;
475 	int loop1;
476 	u_int l1pagetable;
477 	pv_addr_t kernel_l1pt;
478 	paddr_t memstart;
479 	psize_t memsize;
480 	int led_data = 0;
481 #ifdef DIAGNOSTIC
482 	extern vsize_t xscale_minidata_clean_size; /* used in KASSERT */
483 #endif
484 	struct bus_space tmp_bs_tag;
485 	int	(*map_func_save)(void *, bus_addr_t, bus_size_t, int,
486 	    bus_space_handle_t *);
487 #define LEDSTEP_P() 	ioreg_write(LUBBOCK_OBIO_PBASE+LUBBOCK_HEXLED, led_data++)
488 #define LEDSTEP() hex_led(led_data++)
489 
490 	/* use physical address until pagetable is set */
491 	LEDSTEP_P();
492 
493 	/* start 32.768KHz OSC */
494 	ioreg_write(PXA2X0_CLKMAN_BASE + 0x08, 2);
495 
496 	/*
497 	 * Heads up ... Setup the CPU / MMU / TLB functions
498 	 */
499 	if (set_cpufuncs())
500 		panic("cpu not recognized!");
501 	LEDSTEP_P();
502 
503 	/* Get ready for splfoo() */
504 	pxa2x0_intr_bootstrap(PXA2X0_INTCTL_BASE);
505 
506 #if 0
507 	/* Calibrate the delay loop. */
508 #endif
509 
510 	/*
511 	 * Okay, RedBoot has provided us with the following memory map:
512 	 *
513 	 * Physical Address Range     Description
514 	 * -----------------------    ----------------------------------
515 	 * 0x00000000 - 0x01ffffff    flash Memory   (32MB)
516 	 * 0x04000000 - 0x05ffffff    Application flash Memory  (32MB)
517 	 * 0x08000000 - 0x080000ff    I/O baseboard registers
518 	 * 0x0a000000 - 0x0a0fffff    SRAM (1MB)
519 	 * 0x0c000000 - 0x0c0fffff    Ethernet Controller
520 	 * 0x0e000000 - 0x0e0fffff    Ethernet Controller (Attribute)
521 	 * 0x10000000 - 0x103fffff    SA-1111 Companion Chip
522 	 * 0x14000000 - 0x17ffffff    Expansion Card (64MB)
523 	 * 0x40000000 - 0x480fffff    Processor Registers
524 	 * 0xa0000000 - 0xa3ffffff    SDRAM Bank 0 (64MB)
525 	 *
526 	 *
527 	 * Virtual Address Range    X C B  Description
528 	 * -----------------------  - - -  ----------------------------------
529 	 * 0x00000000 - 0x00003fff  N Y Y  SDRAM
530 	 * 0x00004000 - 0x000fffff  N Y N  Boot ROM
531 	 * 0x00100000 - 0x01ffffff  N N N  Application Flash
532 	 * 0x04000000 - 0x05ffffff  N N N  Exp Application Flash
533 	 * 0x08000000 - 0x080fffff  N N N  I/O baseboard registers
534 	 * 0x0a000000 - 0x0a0fffff  N N N  SRAM
535 	 * 0x40000000 - 0x480fffff  N N N  Processor Registers
536 	 * 0xa0000000 - 0xa000ffff  N Y N  RedBoot SDRAM
537 	 * 0xa0017000 - 0xa3ffffff  Y Y Y  SDRAM
538 	 * 0xc0000000 - 0xcfffffff  Y Y Y  Cache Flush Region
539 	 * (done by this routine)
540 	 * 0xfd000000 - 0xfd0000ff  N N N  I/O baseboard registers
541 	 * 0xfd100000 - 0xfd2fffff  N N N  Processor Registers.
542 	 *
543 	 * The first level page table is at 0xa0004000.  There are also
544 	 * 2 second-level tables at 0xa0008000 and 0xa0008400.
545 	 *
546 	 */
547 
548 	{
549 		/*
550 		 * Tweak RedBoot's pagetable so that we can access to
551 		 * some registers at same VA before and after installing
552 		 * our page table.
553 		 */
554 		paddr_t ttb = (paddr_t)read_ttb();
555 
556 		map_io_area(ttb);
557 		cpu_tlb_flushD();
558 	}
559 
560 	/* setup GPIO for BTUART, in case bootloader doesn't take care of it */
561 	pxa2x0_gpio_bootstrap(LUBBOCK_GPIO_VBASE);
562 	pxa2x0_gpio_set_function(42, GPIO_ALT_FN_1_IN);
563 	pxa2x0_gpio_set_function(43, GPIO_ALT_FN_2_OUT);
564 	pxa2x0_gpio_set_function(44, GPIO_ALT_FN_1_IN);
565 	pxa2x0_gpio_set_function(45, GPIO_ALT_FN_2_OUT);
566 
567 	/* turn on clock to UART block.
568 	   XXX: this should not be done here. */
569 	ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN, CKEN_FFUART|CKEN_BTUART |
570 	    ioreg_read(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN));
571 
572 	LEDSTEP();
573 
574 	tmp_bs_tag = pxa2x0_bs_tag;
575 	tmp_bs_tag.bs_map = bootstrap_bs_map;
576 	map_func_save = pxa2x0_a4x_bs_tag.bs_map;
577 	pxa2x0_a4x_bs_tag.bs_map = bootstrap_bs_map;
578 
579 	LEDSTEP();
580 
581 
582 	consinit();
583 	LEDSTEP();
584 #ifdef KGDB
585 	kgdb_port_init();
586 	LEDSTEP();
587 #endif
588 
589 
590 	/* Talk to the user */
591 	printf("\nNetBSD/evbarm (lubbock) booting ...\n");
592 
593 	/* Tweak memory controller */
594 	{
595 		/* Modify access timing for CS3 (91c96) */
596 
597 		uint32_t tmp =
598 			ioreg_read(PXA2X0_MEMCTL_BASE+MEMCTL_MSC1);
599 		ioreg_write(PXA2X0_MEMCTL_BASE+MEMCTL_MSC1,
600 			     (tmp & 0xffff) | (0x3881<<16));
601 		/* RRR=3, RDN=8, RDF=8
602 		 * XXX: can be faster?
603 		 */
604 	}
605 
606 
607 	/* Initialize for PCMCIA/CF sockets */
608 	{
609 		uint32_t tmp;
610 
611 		/* Activate two sockets.
612 		   XXX: This code segment should be moved to
613 		        pcmcia MD attach routine.
614 		   XXX: These bits should be toggled based on
615 		        existene of PCMCIA/CF cards
616 		*/
617 		ioreg_write(PXA2X0_MEMCTL_BASE+MEMCTL_MECR,
618 			     MECR_NOS|MECR_CIT);
619 
620 		tmp = ioreg_read(LUBBOCK_SACC_PBASE+SACCSBI_SKCR);
621 		ioreg_write(LUBBOCK_SACC_PBASE+SACCSBI_SKCR,
622 			     (tmp & ~(1<<4)) | (1<<0));
623 	}
624 
625 #if 0
626 	/*
627 	 * Examine the boot args string for options we need to know about
628 	 * now.
629 	 */
630 	process_kernel_args((char *)nwbootinfo.bt_args);
631 #endif
632 
633 	{
634 		int processor_card_id;
635 
636 		processor_card_id = 0x000f &
637 			ioreg_read(LUBBOCK_OBIO_VBASE+LUBBOCK_MISCRD);
638 		switch(processor_card_id){
639 		case 0:
640 			/* Cotulla */
641 			memstart = 0xa0000000;
642 			memsize =  0x04000000; /* 64MB */
643 			break;
644 		case 1:
645 			/* XXX: Sabiani */
646 			memstart = 0xa0000000;
647 			memsize = 0x04000000; /* 64MB */
648 			break;
649 		default:
650 			/* XXX: Unknown  */
651 			memstart = 0xa0000000;
652 			memsize = 0x04000000; /* 64MB */
653 		}
654 	}
655 
656 	printf("initarm: Configuring system ...\n");
657 
658 	/* Fake bootconfig structure for the benefit of pmap.c */
659 	/* XXX must make the memory description h/w independant */
660 	bootconfig.dramblocks = 1;
661 	bootconfig.dram[0].address = memstart;
662 	bootconfig.dram[0].pages = memsize / PAGE_SIZE;
663 
664 	/*
665 	 * Set up the variables that define the availablilty of
666 	 * physical memory.  For now, we're going to set
667 	 * physical_freestart to 0xa0200000 (where the kernel
668 	 * was loaded), and allocate the memory we need downwards.
669 	 * If we get too close to the page tables that RedBoot
670 	 * set up, we will panic.  We will update physical_freestart
671 	 * and physical_freeend later to reflect what pmap_bootstrap()
672 	 * wants to see.
673 	 *
674 	 * XXX pmap_bootstrap() needs an enema.
675 	 */
676 	physical_start = bootconfig.dram[0].address;
677 	physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
678 
679 	physical_freestart = 0xa0009000UL;
680 	physical_freeend = 0xa0200000UL;
681 
682 	physmem = (physical_end - physical_start) / PAGE_SIZE;
683 
684 #ifdef VERBOSE_INIT_ARM
685 	/* Tell the user about the memory */
686 	printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
687 	    physical_start, physical_end - 1);
688 #endif
689 
690 	/*
691 	 * Okay, the kernel starts 2MB in from the bottom of physical
692 	 * memory.  We are going to allocate our bootstrap pages downwards
693 	 * from there.
694 	 *
695 	 * We need to allocate some fixed page tables to get the kernel
696 	 * going.  We allocate one page directory and a number of page
697 	 * tables and store the physical addresses in the kernel_pt_table
698 	 * array.
699 	 *
700 	 * The kernel page directory must be on a 16K boundary.  The page
701 	 * tables must be on 4K boundaries.  What we do is allocate the
702 	 * page directory on the first 16K boundary that we encounter, and
703 	 * the page tables on 4K boundaries otherwise.  Since we allocate
704 	 * at least 3 L2 page tables, we are guaranteed to encounter at
705 	 * least one 16K aligned region.
706 	 */
707 
708 #ifdef VERBOSE_INIT_ARM
709 	printf("Allocating page tables\n");
710 #endif
711 
712 	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
713 
714 #ifdef VERBOSE_INIT_ARM
715 	printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
716 	       physical_freestart, free_pages, free_pages);
717 #endif
718 
719 	/* Define a macro to simplify memory allocation */
720 #define	valloc_pages(var, np)				\
721 	alloc_pages((var).pv_pa, (np));			\
722 	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
723 
724 #define alloc_pages(var, np)				\
725 	physical_freeend -= ((np) * PAGE_SIZE);		\
726 	if (physical_freeend < physical_freestart)	\
727 		panic("initarm: out of memory");	\
728 	(var) = physical_freeend;			\
729 	free_pages -= (np);				\
730 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
731 
732 	loop1 = 0;
733 	kernel_l1pt.pv_pa = 0;
734 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
735 		/* Are we 16KB aligned for an L1 ? */
736 		if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
737 		    && kernel_l1pt.pv_pa == 0) {
738 			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
739 		} else {
740 			valloc_pages(kernel_pt_table[loop1],
741 			    L2_TABLE_SIZE / PAGE_SIZE);
742 			++loop1;
743 		}
744 	}
745 
746 	/* This should never be able to happen but better confirm that. */
747 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
748 		panic("initarm: Failed to align the kernel page directory");
749 
750 	LEDSTEP();
751 
752 	/*
753 	 * Allocate a page for the system page mapped to V0x00000000
754 	 * This page will just contain the system vectors and can be
755 	 * shared by all processes.
756 	 */
757 	alloc_pages(systempage.pv_pa, 1);
758 
759 	/* Allocate stacks for all modes */
760 	valloc_pages(irqstack, IRQ_STACK_SIZE);
761 	valloc_pages(abtstack, ABT_STACK_SIZE);
762 	valloc_pages(undstack, UND_STACK_SIZE);
763 	valloc_pages(kernelstack, UPAGES);
764 
765 	/* Allocate enough pages for cleaning the Mini-Data cache. */
766 	KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
767 	valloc_pages(minidataclean, 1);
768 
769 #ifdef VERBOSE_INIT_ARM
770 	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
771 	    irqstack.pv_va);
772 	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
773 	    abtstack.pv_va);
774 	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
775 	    undstack.pv_va);
776 	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
777 	    kernelstack.pv_va);
778 #endif
779 
780 	/*
781 	 * XXX Defer this to later so that we can reclaim the memory
782 	 * XXX used by the RedBoot page tables.
783 	 */
784 	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
785 
786 	/*
787 	 * Ok we have allocated physical pages for the primary kernel
788 	 * page tables
789 	 */
790 
791 #ifdef VERBOSE_INIT_ARM
792 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
793 #endif
794 
795 	/*
796 	 * Now we start construction of the L1 page table
797 	 * We start by mapping the L2 page tables into the L1.
798 	 * This means that we can replace L1 mappings later on if necessary
799 	 */
800 	l1pagetable = kernel_l1pt.pv_pa;
801 
802 	/* Map the L2 pages tables in the L1 page table */
803 	pmap_link_l2pt(l1pagetable, 0x00000000,
804 	    &kernel_pt_table[KERNEL_PT_SYS]);
805 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
806 		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
807 		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
808 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
809 		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
810 		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
811 
812 	/* update the top of the kernel VM */
813 	pmap_curmaxkvaddr =
814 	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
815 
816 #ifdef VERBOSE_INIT_ARM
817 	printf("Mapping kernel\n");
818 #endif
819 
820 	/* Now we fill in the L2 pagetable for the kernel static code/data */
821 	{
822 		extern char etext[], _end[];
823 		size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
824 		size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
825 		u_int logical;
826 
827 		textsize = (textsize + PGOFSET) & ~PGOFSET;
828 		totalsize = (totalsize + PGOFSET) & ~PGOFSET;
829 
830 		logical = 0x00200000;	/* offset of kernel in RAM */
831 
832 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
833 		    physical_start + logical, textsize,
834 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
835 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
836 		    physical_start + logical, totalsize - textsize,
837 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
838 	}
839 
840 #ifdef VERBOSE_INIT_ARM
841 	printf("Constructing L2 page tables\n");
842 #endif
843 
844 	/* Map the stack pages */
845 	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
846 	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
847 	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
848 	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
849 	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
850 	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
851 	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
852 	    UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
853 
854 	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
855 	    L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
856 
857 	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
858 		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
859 		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
860 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
861 	}
862 
863 	/* Map the Mini-Data cache clean area. */
864 	xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
865 	    minidataclean.pv_pa);
866 
867 	/* Map the vector page. */
868 #if 1
869 	/* MULTI-ICE requires that page 0 is NC/NB so that it can download the
870 	 * cache-clean code there.  */
871 	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
872 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
873 #else
874 	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
875 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
876 #endif
877 
878 	/*
879 	 * map integrated peripherals at same address in l1pagetable
880 	 * so that we can continue to use console.
881 	 */
882 	copy_io_area_map((pd_entry_t *)l1pagetable);
883 
884 	/*
885 	 * Give the XScale global cache clean code an appropriately
886 	 * sized chunk of unmapped VA space starting at 0xff000000
887 	 * (our device mappings end before this address).
888 	 */
889 	xscale_cache_clean_addr = 0xff000000U;
890 
891 	/*
892 	 * Now we have the real page tables in place so we can switch to them.
893 	 * Once this is done we will be running with the REAL kernel page
894 	 * tables.
895 	 */
896 
897 	/*
898 	 * Update the physical_freestart/physical_freeend/free_pages
899 	 * variables.
900 	 */
901 	{
902 		extern char _end[];
903 
904 		physical_freestart = physical_start +
905 		    (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
906 		     KERNEL_BASE);
907 		physical_freeend = physical_end;
908 		free_pages =
909 		    (physical_freeend - physical_freestart) / PAGE_SIZE;
910 	}
911 
912 	/* Switch tables */
913 #ifdef VERBOSE_INIT_ARM
914 	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
915 	       physical_freestart, free_pages, free_pages);
916 	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
917 #endif
918 
919 	LEDSTEP();
920 
921 	/* set new intc register address so that splfoo() doesn't
922 	   touch illegal address.  */
923 	pxa2x0_intr_bootstrap(LUBBOCK_INTCTL_VBASE);
924 
925 	LEDSTEP();
926 
927 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
928 	setttb(kernel_l1pt.pv_pa);
929 	cpu_tlb_flushID();
930 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
931 	LEDSTEP();
932 
933 	/*
934 	 * Moved from cpu_startup() as data_abort_handler() references
935 	 * this during uvm init
936 	 */
937 	proc0paddr = (struct user *)kernelstack.pv_va;
938 	lwp0.l_addr = proc0paddr;
939 
940 #ifdef VERBOSE_INIT_ARM
941 	printf("bootstrap done.\n");
942 #endif
943 
944 	arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
945 
946 	/*
947 	 * Pages were allocated during the secondary bootstrap for the
948 	 * stacks for different CPU modes.
949 	 * We must now set the r13 registers in the different CPU modes to
950 	 * point to these stacks.
951 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
952 	 * of the stack memory.
953 	 */
954 	printf("init subsystems: stacks ");
955 
956 	set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
957 	set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
958 	set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
959 
960 	/*
961 	 * Well we should set a data abort handler.
962 	 * Once things get going this will change as we will need a proper
963 	 * handler.
964 	 * Until then we will use a handler that just panics but tells us
965 	 * why.
966 	 * Initialisation of the vectors will just panic on a data abort.
967 	 * This just fills in a slightly better one.
968 	 */
969 	printf("vectors ");
970 	data_abort_handler_address = (u_int)data_abort_handler;
971 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
972 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
973 
974 	/* Initialise the undefined instruction handlers */
975 	printf("undefined ");
976 	undefined_init();
977 
978 	/* Load memory into UVM. */
979 	printf("page ");
980 	uvm_setpagesize();        /* initialize PAGE_SIZE-dependent variables */
981 	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
982 	    atop(physical_freestart), atop(physical_freeend),
983 	    VM_FREELIST_DEFAULT);
984 
985 	/* Boot strap pmap telling it where the kernel page table is */
986 	printf("pmap ");
987 	LEDSTEP();
988 	pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, KERNEL_VM_BASE,
989 	    KERNEL_VM_BASE + KERNEL_VM_SIZE);
990 	LEDSTEP();
991 
992 #ifdef __HAVE_MEMORY_DISK__
993 	md_root_setconf(memory_disk, sizeof memory_disk);
994 #endif
995 
996 	{
997 		uint16_t sw = ioreg16_read(LUBBOCK_OBIO_VBASE+LUBBOCK_USERSW);
998 
999 		if (0 == (sw & (1<<13))) /* check S19 */
1000 			boothowto |= RB_KDB;
1001 		if (0 == (sw & (1<<12))) /* S20 */
1002 			boothowto |= RB_SINGLE;
1003 	}
1004 
1005 	LEDSTEP();
1006 
1007 #ifdef IPKDB
1008 	/* Initialise ipkdb */
1009 	ipkdb_init();
1010 	if (boothowto & RB_KDB)
1011 		ipkdb_connect(0);
1012 #endif
1013 
1014 #ifdef KGDB
1015 	if (boothowto & RB_KDB) {
1016 		kgdb_debug_init = 1;
1017 		kgdb_connect(1);
1018 	}
1019 #endif
1020 
1021 #ifdef DDB
1022 	db_machine_init();
1023 
1024 	/* Firmware doesn't load symbols. */
1025 	ddb_init(0, NULL, NULL);
1026 
1027 	if (boothowto & RB_KDB)
1028 		Debugger();
1029 #endif
1030 
1031 	pxa2x0_a4x_bs_tag.bs_map = map_func_save ;
1032 
1033 	/* We return the new stack pointer address */
1034 	return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
1035 }
1036 
1037 #if 0
1038 void
1039 process_kernel_args(char *args)
1040 {
1041 
1042 	boothowto = 0;
1043 
1044 	/* Make a local copy of the bootargs */
1045 	strncpy(bootargs, args, MAX_BOOT_STRING);
1046 
1047 	args = bootargs;
1048 	boot_file = bootargs;
1049 
1050 	/* Skip the kernel image filename */
1051 	while (*args != ' ' && *args != 0)
1052 		++args;
1053 
1054 	if (*args != 0)
1055 		*args++ = 0;
1056 
1057 	while (*args == ' ')
1058 		++args;
1059 
1060 	boot_args = args;
1061 
1062 	printf("bootfile: %s\n", boot_file);
1063 	printf("bootargs: %s\n", boot_args);
1064 
1065 	parse_mi_bootargs(boot_args);
1066 }
1067 #endif
1068 
1069 #ifdef KGDB
1070 #ifndef KGDB_DEVNAME
1071 #define KGDB_DEVNAME "ffuart"
1072 #endif
1073 const char kgdb_devname[] = KGDB_DEVNAME;
1074 
1075 #if (NCOM > 0)
1076 #ifndef KGDB_DEVMODE
1077 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
1078 #endif
1079 int comkgdbmode = KGDB_DEVMODE;
1080 #endif /* NCOM */
1081 
1082 #endif /* KGDB */
1083 
1084 
1085 void
1086 consinit(void)
1087 {
1088 	static int consinit_called = 0;
1089 	uint32_t ckenreg = ioreg_read(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN);
1090 #if 0
1091 	char *console = CONSDEVNAME;
1092 #endif
1093 
1094 	if (consinit_called != 0)
1095 		return;
1096 
1097 	consinit_called = 1;
1098 
1099 #if NCOM > 0
1100 
1101 #ifdef FFUARTCONSOLE
1102 	/* Check switch. */
1103 	if (0 == (ioreg_read(LUBBOCK_OBIO_VBASE+LUBBOCK_USERSW) & (1<<15))) {
1104 		/* We don't use FF serial when S17=no-dot position */
1105 	}
1106 #ifdef KGDB
1107 	else if (0 == strcmp(kgdb_devname, "ffuart")) {
1108 		/* port is reserved for kgdb */
1109 	}
1110 #endif
1111 	else if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_FFUART_BASE,
1112 		     comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
1113 #if 0
1114 		/* XXX: can't call pxa2x0_clkman_config yet */
1115 		pxa2x0_clkman_config(CKEN_FFUART, 1);
1116 #else
1117 		ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN,
1118 		    ckenreg|CKEN_FFUART);
1119 #endif
1120 
1121 		return;
1122 	}
1123 #endif /* FFUARTCONSOLE */
1124 
1125 #ifdef BTUARTCONSOLE
1126 #ifdef KGDB
1127 	if (0 == strcmp(kgdb_devname, "btuart")) {
1128 		/* port is reserved for kgdb */
1129 	} else
1130 #endif
1131 	if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_BTUART_BASE,
1132 		comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
1133 		ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN,
1134 		    ckenreg|CKEN_BTUART);
1135 		return;
1136 	}
1137 #endif /* BTUARTCONSOLE */
1138 
1139 
1140 #endif /* NCOM */
1141 
1142 }
1143 
1144 #ifdef KGDB
1145 void
1146 kgdb_port_init(void)
1147 {
1148 #if (NCOM > 0) && defined(COM_PXA2X0)
1149 	paddr_t paddr = 0;
1150 	enum pxa2x0_uart_id uart_id;
1151 	uint32_t ckenreg = ioreg_read(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN);
1152 
1153 	if (0 == strcmp(kgdb_devname, "ffuart")) {
1154 		paddr = PXA2X0_FFUART_BASE;
1155 		clenreg |= CKEN_FFUART;
1156 	}
1157 	else if (0 == strcmp(kgdb_devname, "btuart")) {
1158 		paddr = PXA2X0_BTUART_BASE;
1159 		clenreg |= CKEN_BTUART;
1160 	}
1161 
1162 	if (paddr &&
1163 	    0 == com_kgdb_attach_pxa2x0(&pxa2x0_a4x_bs_tag, paddr,
1164 		kgdb_rate, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comkgdbmode)) {
1165 
1166 		ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN, ckenreg);
1167 	}
1168 #endif
1169 }
1170 #endif
1171 
1172 #if 0
1173 /*
1174  * display a number in hex LED.
1175  * a digit is blank when the corresponding bit in arg blank is 1
1176  */
1177 unsigned short led_control_value = 0;
1178 
1179 void
1180 hex_led_blank(uint32_t value, int blank)
1181 {
1182 	int save = disable_interrupts(I32_bit);
1183 
1184 	ioreg_write(LUBBOCK_OBIO_VBASE+0x10, value);
1185 	led_control_value = (led_control_value & 0xff)
1186 		| ((blank & 0xff)<<8);
1187 	ioreg_write(LUBBOCK_OBIO_VBASE+0x40, led_control_value);
1188 	restore_interrupts(save);
1189 }
1190 #endif
1191