1 /* $NetBSD: lubbock_machdep.c,v 1.26 2010/11/28 08:23:24 hannken Exp $ */ 2 3 /* 4 * Copyright (c) 2002, 2003, 2005 Genetec Corporation. All rights reserved. 5 * Written by Hiroyuki Bessho for Genetec Corporation. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. The name of Genetec Corporation may not be used to endorse or 16 * promote products derived from this software without specific prior 17 * written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 * 31 * Machine dependant functions for kernel setup for 32 * Intel DBPXA250 evaluation board (a.k.a. Lubbock). 33 * Based on iq80310_machhdep.c 34 */ 35 /* 36 * Copyright (c) 2001 Wasabi Systems, Inc. 37 * All rights reserved. 38 * 39 * Written by Jason R. Thorpe for Wasabi Systems, Inc. 40 * 41 * Redistribution and use in source and binary forms, with or without 42 * modification, are permitted provided that the following conditions 43 * are met: 44 * 1. Redistributions of source code must retain the above copyright 45 * notice, this list of conditions and the following disclaimer. 46 * 2. Redistributions in binary form must reproduce the above copyright 47 * notice, this list of conditions and the following disclaimer in the 48 * documentation and/or other materials provided with the distribution. 49 * 3. All advertising materials mentioning features or use of this software 50 * must display the following acknowledgement: 51 * This product includes software developed for the NetBSD Project by 52 * Wasabi Systems, Inc. 53 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 54 * or promote products derived from this software without specific prior 55 * written permission. 56 * 57 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 59 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 60 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 61 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 62 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 63 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 64 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 65 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 66 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 67 * POSSIBILITY OF SUCH DAMAGE. 68 */ 69 70 /* 71 * Copyright (c) 1997,1998 Mark Brinicombe. 72 * Copyright (c) 1997,1998 Causality Limited. 73 * All rights reserved. 74 * 75 * Redistribution and use in source and binary forms, with or without 76 * modification, are permitted provided that the following conditions 77 * are met: 78 * 1. Redistributions of source code must retain the above copyright 79 * notice, this list of conditions and the following disclaimer. 80 * 2. Redistributions in binary form must reproduce the above copyright 81 * notice, this list of conditions and the following disclaimer in the 82 * documentation and/or other materials provided with the distribution. 83 * 3. All advertising materials mentioning features or use of this software 84 * must display the following acknowledgement: 85 * This product includes software developed by Mark Brinicombe 86 * for the NetBSD Project. 87 * 4. The name of the company nor the name of the author may be used to 88 * endorse or promote products derived from this software without specific 89 * prior written permission. 90 * 91 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 92 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 93 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 94 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 95 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 96 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 97 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 98 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 99 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 100 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 101 * SUCH DAMAGE. 102 * 103 * Machine dependant functions for kernel setup for Intel IQ80310 evaluation 104 * boards using RedBoot firmware. 105 */ 106 107 /* 108 * DIP switches: 109 * 110 * S19: no-dot: set RB_KDB. enter kgdb session. 111 * S20: no-dot: set RB_SINGLE. don't go multi user mode. 112 */ 113 114 #include <sys/cdefs.h> 115 __KERNEL_RCSID(0, "$NetBSD: lubbock_machdep.c,v 1.26 2010/11/28 08:23:24 hannken Exp $"); 116 117 #include "opt_ddb.h" 118 #include "opt_kgdb.h" 119 #include "opt_pmap_debug.h" 120 #include "opt_md.h" 121 #include "opt_com.h" 122 #include "lcd.h" 123 124 #include <sys/param.h> 125 #include <sys/device.h> 126 #include <sys/systm.h> 127 #include <sys/kernel.h> 128 #include <sys/exec.h> 129 #include <sys/proc.h> 130 #include <sys/msgbuf.h> 131 #include <sys/reboot.h> 132 #include <sys/termios.h> 133 #include <sys/ksyms.h> 134 135 #include <uvm/uvm_extern.h> 136 137 #include <sys/conf.h> 138 #include <dev/cons.h> 139 #include <dev/md.h> 140 #include <dev/ic/smc91cxxreg.h> 141 142 #include <machine/db_machdep.h> 143 #include <ddb/db_sym.h> 144 #include <ddb/db_extern.h> 145 #ifdef KGDB 146 #include <sys/kgdb.h> 147 #endif 148 149 #include <machine/bootconfig.h> 150 #include <machine/bus.h> 151 #include <machine/cpu.h> 152 #include <machine/frame.h> 153 #include <arm/undefined.h> 154 155 #include <arm/arm32/machdep.h> 156 157 #include <arm/xscale/pxa2x0reg.h> 158 #include <arm/xscale/pxa2x0var.h> 159 #include <arm/xscale/pxa2x0_gpio.h> 160 #include <arm/sa11x0/sa1111_reg.h> 161 #include <evbarm/lubbock/lubbock_reg.h> 162 #include <evbarm/lubbock/lubbock_var.h> 163 164 /* Kernel text starts 2MB in from the bottom of the kernel address space. */ 165 #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000) 166 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000) 167 168 /* 169 * The range 0xc1000000 - 0xccffffff is available for kernel VM space 170 * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff 171 */ 172 #define KERNEL_VM_SIZE 0x0C000000 173 174 175 /* 176 * Address to call from cpu_reset() to reset the machine. 177 * This is machine architecture dependant as it varies depending 178 * on where the ROM appears when you turn the MMU off. 179 */ 180 181 u_int cpu_reset_address = 0; 182 183 /* Define various stack sizes in pages */ 184 #define IRQ_STACK_SIZE 1 185 #define ABT_STACK_SIZE 1 186 #define UND_STACK_SIZE 1 187 188 BootConfig bootconfig; /* Boot config storage */ 189 char *boot_args = NULL; 190 char *boot_file = NULL; 191 192 vm_offset_t physical_start; 193 vm_offset_t physical_freestart; 194 vm_offset_t physical_freeend; 195 vm_offset_t physical_end; 196 u_int free_pages; 197 198 /*int debug_flags;*/ 199 #ifndef PMAP_STATIC_L1S 200 int max_processes = 64; /* Default number */ 201 #endif /* !PMAP_STATIC_L1S */ 202 203 /* Physical and virtual addresses for some global pages */ 204 pv_addr_t systempage; 205 pv_addr_t irqstack; 206 pv_addr_t undstack; 207 pv_addr_t abtstack; 208 pv_addr_t kernelstack; 209 pv_addr_t minidataclean; 210 211 vm_offset_t msgbufphys; 212 213 extern u_int data_abort_handler_address; 214 extern u_int prefetch_abort_handler_address; 215 extern u_int undefined_handler_address; 216 217 #ifdef PMAP_DEBUG 218 extern int pmap_debug_level; 219 #endif 220 221 #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */ 222 #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */ 223 #define KERNEL_PT_KERNEL_NUM 4 224 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM) 225 /* Page tables for mapping kernel VM */ 226 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */ 227 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM) 228 229 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS]; 230 231 /* Prototypes */ 232 233 #if 0 234 void process_kernel_args(char *); 235 #endif 236 237 void consinit(void); 238 void kgdb_port_init(void); 239 void change_clock(uint32_t v); 240 241 bs_protos(bs_notimpl); 242 243 #include "com.h" 244 #if NCOM > 0 245 #include <dev/ic/comreg.h> 246 #include <dev/ic/comvar.h> 247 #endif 248 249 #ifndef CONSPEED 250 #define CONSPEED B115200 /* What RedBoot uses */ 251 #endif 252 #ifndef CONMODE 253 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ 254 #endif 255 256 int comcnspeed = CONSPEED; 257 int comcnmode = CONMODE; 258 259 static struct pxa2x0_gpioconf boarddep_gpioconf[] = { 260 { 44, GPIO_ALT_FN_1_IN }, /* BTCST */ 261 { 45, GPIO_ALT_FN_2_OUT }, /* BTRST */ 262 263 { 29, GPIO_ALT_FN_1_IN }, /* SDATA_IN0 */ 264 265 { -1 } 266 }; 267 static struct pxa2x0_gpioconf *lubbock_gpioconf[] = { 268 pxa25x_com_btuart_gpioconf, 269 pxa25x_com_ffuart_gpioconf, 270 #if 0 271 pxa25x_com_stuart_gpioconf, 272 #endif 273 pxa25x_pcic_gpioconf, 274 pxa25x_pxaacu_gpioconf, 275 boarddep_gpioconf, 276 NULL 277 }; 278 279 /* 280 * void cpu_reboot(int howto, char *bootstr) 281 * 282 * Reboots the system 283 * 284 * Deal with any syncing, unmounting, dumping and shutdown hooks, 285 * then reset the CPU. 286 */ 287 void 288 cpu_reboot(int howto, char *bootstr) 289 { 290 #ifdef DIAGNOSTIC 291 /* info */ 292 printf("boot: howto=%08x curproc=%p\n", howto, curproc); 293 #endif 294 295 /* 296 * If we are still cold then hit the air brakes 297 * and crash to earth fast 298 */ 299 if (cold) { 300 doshutdownhooks(); 301 pmf_system_shutdown(boothowto); 302 printf("The operating system has halted.\n"); 303 printf("Please press any key to reboot.\n\n"); 304 cngetc(); 305 printf("rebooting...\n"); 306 cpu_reset(); 307 /*NOTREACHED*/ 308 } 309 310 /* Disable console buffering */ 311 /* cnpollc(1);*/ 312 313 /* 314 * If RB_NOSYNC was not specified sync the discs. 315 * Note: Unless cold is set to 1 here, syslogd will die during the 316 * unmount. It looks like syslogd is getting woken up only to find 317 * that it cannot page part of the binary in as the filesystem has 318 * been unmounted. 319 */ 320 if (!(howto & RB_NOSYNC)) 321 bootsync(); 322 323 /* Say NO to interrupts */ 324 splhigh(); 325 326 /* Do a dump if requested. */ 327 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) 328 dumpsys(); 329 330 /* Run any shutdown hooks */ 331 doshutdownhooks(); 332 333 pmf_system_shutdown(boothowto); 334 335 /* Make sure IRQ's are disabled */ 336 IRQdisable; 337 338 if (howto & RB_HALT) { 339 printf("The operating system has halted.\n"); 340 printf("Please press any key to reboot.\n\n"); 341 cngetc(); 342 } 343 344 printf("rebooting...\n"); 345 cpu_reset(); 346 /*NOTREACHED*/ 347 } 348 349 static inline 350 pd_entry_t * 351 read_ttb(void) 352 { 353 long ttb; 354 355 __asm volatile("mrc p15, 0, %0, c2, c0, 0" : "=r" (ttb)); 356 357 358 return (pd_entry_t *)(ttb & ~((1<<14)-1)); 359 } 360 361 /* 362 * Static device mappings. These peripheral registers are mapped at 363 * fixed virtual addresses very early in initarm() so that we can use 364 * them while booting the kernel, and stay at the same address 365 * throughout whole kernel's life time. 366 * 367 * We use this table twice; once with bootstrap page table, and once 368 * with kernel's page table which we build up in initarm(). 369 * 370 * Since we map these registers into the bootstrap page table using 371 * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map 372 * registers segment-aligned and segment-rounded in order to avoid 373 * using the 2nd page tables. 374 */ 375 376 #define _A(a) ((a) & ~L1_S_OFFSET) 377 #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1)) 378 379 static const struct pmap_devmap lubbock_devmap[] = { 380 { 381 LUBBOCK_OBIO_VBASE, 382 _A(LUBBOCK_OBIO_PBASE), 383 _S(LUBBOCK_OBIO_SIZE), 384 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 385 }, 386 { 387 LUBBOCK_GPIO_VBASE, 388 _A(PXA2X0_GPIO_BASE), 389 _S(PXA250_GPIO_SIZE), 390 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 391 }, 392 { 393 LUBBOCK_CLKMAN_VBASE, 394 _A(PXA2X0_CLKMAN_BASE), 395 _S(PXA2X0_CLKMAN_SIZE), 396 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 397 }, 398 { 399 LUBBOCK_INTCTL_VBASE, 400 _A(PXA2X0_INTCTL_BASE), 401 _S(PXA2X0_INTCTL_SIZE), 402 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 403 }, 404 { 405 LUBBOCK_FFUART_VBASE, 406 _A(PXA2X0_FFUART_BASE), 407 _S(4 * COM_NPORTS), 408 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 409 }, 410 { 411 LUBBOCK_BTUART_VBASE, 412 _A(PXA2X0_BTUART_BASE), 413 _S(4 * COM_NPORTS), 414 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 415 }, 416 417 {0, 0, 0, 0,} 418 }; 419 420 #undef _A 421 #undef _S 422 423 /* 424 * u_int initarm(...) 425 * 426 * Initial entry point on startup. This gets called before main() is 427 * entered. 428 * It should be responsible for setting up everything that must be 429 * in place when main is called. 430 * This includes 431 * Taking a copy of the boot configuration structure. 432 * Initialising the physical console so characters can be printed. 433 * Setting up page tables for the kernel 434 * Relocating the kernel to the bottom of physical memory 435 */ 436 u_int 437 initarm(void *arg) 438 { 439 extern vaddr_t xscale_cache_clean_addr; 440 int loop; 441 int loop1; 442 u_int l1pagetable; 443 paddr_t memstart; 444 psize_t memsize; 445 int led_data = 0; 446 #ifdef DIAGNOSTIC 447 extern vsize_t xscale_minidata_clean_size; /* used in KASSERT */ 448 #endif 449 #define LEDSTEP_P() ioreg_write(LUBBOCK_OBIO_PBASE+LUBBOCK_HEXLED, led_data++) 450 #define LEDSTEP() hex_led(led_data++) 451 452 /* use physical address until pagetable is set */ 453 LEDSTEP_P(); 454 455 /* map some peripheral registers at static I/O area */ 456 pmap_devmap_bootstrap((vaddr_t)read_ttb(), lubbock_devmap); 457 458 LEDSTEP_P(); 459 460 /* start 32.768 kHz OSC */ 461 ioreg_write(LUBBOCK_CLKMAN_VBASE + 0x08, 2); 462 /* Get ready for splfoo() */ 463 pxa2x0_intr_bootstrap(LUBBOCK_INTCTL_VBASE); 464 465 LEDSTEP(); 466 467 /* 468 * Heads up ... Setup the CPU / MMU / TLB functions 469 */ 470 if (set_cpufuncs()) 471 panic("cpu not recognized!"); 472 473 LEDSTEP(); 474 475 476 #if 0 477 /* Calibrate the delay loop. */ 478 #endif 479 480 /* 481 * Okay, RedBoot has provided us with the following memory map: 482 * 483 * Physical Address Range Description 484 * ----------------------- ---------------------------------- 485 * 0x00000000 - 0x01ffffff flash Memory (32MB) 486 * 0x04000000 - 0x05ffffff Application flash Memory (32MB) 487 * 0x08000000 - 0x080000ff I/O baseboard registers 488 * 0x0a000000 - 0x0a0fffff SRAM (1MB) 489 * 0x0c000000 - 0x0c0fffff Ethernet Controller 490 * 0x0e000000 - 0x0e0fffff Ethernet Controller (Attribute) 491 * 0x10000000 - 0x103fffff SA-1111 Companion Chip 492 * 0x14000000 - 0x17ffffff Expansion Card (64MB) 493 * 0x40000000 - 0x480fffff Processor Registers 494 * 0xa0000000 - 0xa3ffffff SDRAM Bank 0 (64MB) 495 * 496 * 497 * Virtual Address Range X C B Description 498 * ----------------------- - - - ---------------------------------- 499 * 0x00000000 - 0x00003fff N Y Y SDRAM 500 * 0x00004000 - 0x000fffff N Y N Boot ROM 501 * 0x00100000 - 0x01ffffff N N N Application Flash 502 * 0x04000000 - 0x05ffffff N N N Exp Application Flash 503 * 0x08000000 - 0x080fffff N N N I/O baseboard registers 504 * 0x0a000000 - 0x0a0fffff N N N SRAM 505 * 0x40000000 - 0x480fffff N N N Processor Registers 506 * 0xa0000000 - 0xa000ffff N Y N RedBoot SDRAM 507 * 0xa0017000 - 0xa3ffffff Y Y Y SDRAM 508 * 0xc0000000 - 0xcfffffff Y Y Y Cache Flush Region 509 * (done by this routine) 510 * 0xfd000000 - 0xfd0000ff N N N I/O baseboard registers 511 * 0xfd100000 - 0xfd3fffff N N N Processor Registers. 512 * 0xfd400000 - 0xfd4fffff N N N FF-UART 513 * 0xfd500000 - 0xfd5fffff N N N BT-UART 514 * 515 * RedBoot's first level page table is at 0xa0004000. There 516 * are also 2 second-level tables at 0xa0008000 and 517 * 0xa0008400. We will continue to use them until we switch to 518 * our pagetable by cpu_setttb(). 519 * 520 */ 521 522 /* setup GPIO for BTUART, in case bootloader doesn't take care of it */ 523 pxa2x0_gpio_bootstrap(LUBBOCK_GPIO_VBASE); 524 pxa2x0_gpio_config(lubbock_gpioconf); 525 526 /* turn on clock to UART block. 527 XXX: this should not be done here. */ 528 ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN, CKEN_FFUART|CKEN_BTUART | 529 ioreg_read(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN)); 530 531 LEDSTEP(); 532 533 consinit(); 534 LEDSTEP(); 535 #ifdef KGDB 536 kgdb_port_init(); 537 LEDSTEP(); 538 #endif 539 540 541 /* Talk to the user */ 542 printf("\nNetBSD/evbarm (lubbock) booting ...\n"); 543 544 /* Tweak memory controller */ 545 { 546 /* Modify access timing for CS3 (91c96) */ 547 548 uint32_t tmp = 549 ioreg_read(PXA2X0_MEMCTL_BASE+MEMCTL_MSC1); 550 ioreg_write(PXA2X0_MEMCTL_BASE+MEMCTL_MSC1, 551 (tmp & 0xffff) | (0x3881<<16)); 552 /* RRR=3, RDN=8, RDF=8 553 * XXX: can be faster? 554 */ 555 } 556 557 558 /* Initialize for PCMCIA/CF sockets */ 559 { 560 uint32_t tmp; 561 562 /* Activate two sockets. 563 XXX: This code segment should be moved to 564 pcmcia MD attach routine. 565 XXX: These bits should be toggled based on 566 existene of PCMCIA/CF cards 567 */ 568 ioreg_write(PXA2X0_MEMCTL_BASE+MEMCTL_MECR, 569 MECR_NOS|MECR_CIT); 570 571 tmp = ioreg_read(LUBBOCK_SACC_PBASE+SACCSBI_SKCR); 572 ioreg_write(LUBBOCK_SACC_PBASE+SACCSBI_SKCR, 573 (tmp & ~(1<<4)) | (1<<0)); 574 } 575 576 #if 0 577 /* 578 * Examine the boot args string for options we need to know about 579 * now. 580 */ 581 process_kernel_args((char *)nwbootinfo.bt_args); 582 #endif 583 584 { 585 int processor_card_id; 586 587 processor_card_id = 0x000f & 588 ioreg_read(LUBBOCK_OBIO_VBASE+LUBBOCK_MISCRD); 589 switch(processor_card_id){ 590 case 0: 591 /* Cotulla */ 592 memstart = 0xa0000000; 593 memsize = 0x04000000; /* 64MB */ 594 break; 595 case 1: 596 /* XXX: Sabiani */ 597 memstart = 0xa0000000; 598 memsize = 0x04000000; /* 64MB */ 599 break; 600 default: 601 /* XXX: Unknown */ 602 memstart = 0xa0000000; 603 memsize = 0x04000000; /* 64MB */ 604 } 605 } 606 607 printf("initarm: Configuring system ...\n"); 608 609 /* Fake bootconfig structure for the benefit of pmap.c */ 610 /* XXX must make the memory description h/w independent */ 611 bootconfig.dramblocks = 1; 612 bootconfig.dram[0].address = memstart; 613 bootconfig.dram[0].pages = memsize / PAGE_SIZE; 614 615 /* 616 * Set up the variables that define the availablilty of 617 * physical memory. For now, we're going to set 618 * physical_freestart to 0xa0200000 (where the kernel 619 * was loaded), and allocate the memory we need downwards. 620 * If we get too close to the page tables that RedBoot 621 * set up, we will panic. We will update physical_freestart 622 * and physical_freeend later to reflect what pmap_bootstrap() 623 * wants to see. 624 * 625 * XXX pmap_bootstrap() needs an enema. 626 */ 627 physical_start = bootconfig.dram[0].address; 628 physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE); 629 630 physical_freestart = 0xa0009000UL; 631 physical_freeend = 0xa0200000UL; 632 633 physmem = (physical_end - physical_start) / PAGE_SIZE; 634 635 #ifdef VERBOSE_INIT_ARM 636 /* Tell the user about the memory */ 637 printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem, 638 physical_start, physical_end - 1); 639 #endif 640 641 /* 642 * Okay, the kernel starts 2MB in from the bottom of physical 643 * memory. We are going to allocate our bootstrap pages downwards 644 * from there. 645 * 646 * We need to allocate some fixed page tables to get the kernel 647 * going. We allocate one page directory and a number of page 648 * tables and store the physical addresses in the kernel_pt_table 649 * array. 650 * 651 * The kernel page directory must be on a 16K boundary. The page 652 * tables must be on 4K boundaries. What we do is allocate the 653 * page directory on the first 16K boundary that we encounter, and 654 * the page tables on 4K boundaries otherwise. Since we allocate 655 * at least 3 L2 page tables, we are guaranteed to encounter at 656 * least one 16K aligned region. 657 */ 658 659 #ifdef VERBOSE_INIT_ARM 660 printf("Allocating page tables\n"); 661 #endif 662 663 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; 664 665 #ifdef VERBOSE_INIT_ARM 666 printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n", 667 physical_freestart, free_pages, free_pages); 668 #endif 669 670 /* Define a macro to simplify memory allocation */ 671 #define valloc_pages(var, np) \ 672 alloc_pages((var).pv_pa, (np)); \ 673 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start; 674 675 #define alloc_pages(var, np) \ 676 physical_freeend -= ((np) * PAGE_SIZE); \ 677 if (physical_freeend < physical_freestart) \ 678 panic("initarm: out of memory"); \ 679 (var) = physical_freeend; \ 680 free_pages -= (np); \ 681 memset((char *)(var), 0, ((np) * PAGE_SIZE)); 682 683 loop1 = 0; 684 kernel_l1pt.pv_pa = 0; 685 kernel_l1pt.pv_va = 0; 686 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { 687 /* Are we 16KB aligned for an L1 ? */ 688 if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0 689 && kernel_l1pt.pv_pa == 0) { 690 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); 691 } else { 692 valloc_pages(kernel_pt_table[loop1], 693 L2_TABLE_SIZE / PAGE_SIZE); 694 ++loop1; 695 } 696 } 697 698 /* This should never be able to happen but better confirm that. */ 699 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0) 700 panic("initarm: Failed to align the kernel page directory"); 701 702 LEDSTEP(); 703 704 /* 705 * Allocate a page for the system page mapped to V0x00000000 706 * This page will just contain the system vectors and can be 707 * shared by all processes. 708 */ 709 alloc_pages(systempage.pv_pa, 1); 710 711 /* Allocate stacks for all modes */ 712 valloc_pages(irqstack, IRQ_STACK_SIZE); 713 valloc_pages(abtstack, ABT_STACK_SIZE); 714 valloc_pages(undstack, UND_STACK_SIZE); 715 valloc_pages(kernelstack, UPAGES); 716 717 /* Allocate enough pages for cleaning the Mini-Data cache. */ 718 KASSERT(xscale_minidata_clean_size <= PAGE_SIZE); 719 valloc_pages(minidataclean, 1); 720 721 #ifdef VERBOSE_INIT_ARM 722 printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, 723 irqstack.pv_va); 724 printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, 725 abtstack.pv_va); 726 printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, 727 undstack.pv_va); 728 printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, 729 kernelstack.pv_va); 730 #endif 731 732 /* 733 * XXX Defer this to later so that we can reclaim the memory 734 * XXX used by the RedBoot page tables. 735 */ 736 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); 737 738 /* 739 * Ok we have allocated physical pages for the primary kernel 740 * page tables 741 */ 742 743 #ifdef VERBOSE_INIT_ARM 744 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa); 745 #endif 746 747 /* 748 * Now we start construction of the L1 page table 749 * We start by mapping the L2 page tables into the L1. 750 * This means that we can replace L1 mappings later on if necessary 751 */ 752 l1pagetable = kernel_l1pt.pv_pa; 753 754 /* Map the L2 pages tables in the L1 page table */ 755 pmap_link_l2pt(l1pagetable, 0x00000000, 756 &kernel_pt_table[KERNEL_PT_SYS]); 757 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) 758 pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000, 759 &kernel_pt_table[KERNEL_PT_KERNEL + loop]); 760 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++) 761 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, 762 &kernel_pt_table[KERNEL_PT_VMDATA + loop]); 763 764 /* update the top of the kernel VM */ 765 pmap_curmaxkvaddr = 766 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); 767 768 #ifdef VERBOSE_INIT_ARM 769 printf("Mapping kernel\n"); 770 #endif 771 772 /* Now we fill in the L2 pagetable for the kernel static code/data */ 773 { 774 extern char etext[], _end[]; 775 size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE; 776 size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE; 777 u_int logical; 778 779 textsize = (textsize + PGOFSET) & ~PGOFSET; 780 totalsize = (totalsize + PGOFSET) & ~PGOFSET; 781 782 logical = 0x00200000; /* offset of kernel in RAM */ 783 784 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, 785 physical_start + logical, textsize, 786 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 787 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, 788 physical_start + logical, totalsize - textsize, 789 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 790 } 791 792 #ifdef VERBOSE_INIT_ARM 793 printf("Constructing L2 page tables\n"); 794 #endif 795 796 /* Map the stack pages */ 797 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, 798 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 799 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, 800 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 801 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, 802 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 803 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, 804 UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); 805 806 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, 807 L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE); 808 809 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { 810 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, 811 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, 812 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); 813 } 814 815 /* Map the Mini-Data cache clean area. */ 816 xscale_setup_minidata(l1pagetable, minidataclean.pv_va, 817 minidataclean.pv_pa); 818 819 /* Map the vector page. */ 820 #if 1 821 /* MULTI-ICE requires that page 0 is NC/NB so that it can download the 822 * cache-clean code there. */ 823 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, 824 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE); 825 #else 826 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, 827 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 828 #endif 829 830 /* 831 * map integrated peripherals at same address in l1pagetable 832 * so that we can continue to use console. 833 */ 834 pmap_devmap_bootstrap(l1pagetable, lubbock_devmap); 835 836 /* 837 * Give the XScale global cache clean code an appropriately 838 * sized chunk of unmapped VA space starting at 0xff000000 839 * (our device mappings end before this address). 840 */ 841 xscale_cache_clean_addr = 0xff000000U; 842 843 /* 844 * Now we have the real page tables in place so we can switch to them. 845 * Once this is done we will be running with the REAL kernel page 846 * tables. 847 */ 848 849 /* 850 * Update the physical_freestart/physical_freeend/free_pages 851 * variables. 852 */ 853 { 854 extern char _end[]; 855 856 physical_freestart = physical_start + 857 (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) - 858 KERNEL_BASE); 859 physical_freeend = physical_end; 860 free_pages = 861 (physical_freeend - physical_freestart) / PAGE_SIZE; 862 } 863 864 /* Switch tables */ 865 #ifdef VERBOSE_INIT_ARM 866 printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n", 867 physical_freestart, free_pages, free_pages); 868 printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa); 869 #endif 870 871 LEDSTEP(); 872 873 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); 874 cpu_setttb(kernel_l1pt.pv_pa); 875 cpu_tlb_flushID(); 876 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); 877 LEDSTEP(); 878 879 /* 880 * Moved from cpu_startup() as data_abort_handler() references 881 * this during uvm init 882 */ 883 uvm_lwp_setuarea(&lwp0, kernelstack.pv_va); 884 885 #ifdef VERBOSE_INIT_ARM 886 printf("bootstrap done.\n"); 887 #endif 888 889 arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL); 890 891 /* 892 * Pages were allocated during the secondary bootstrap for the 893 * stacks for different CPU modes. 894 * We must now set the r13 registers in the different CPU modes to 895 * point to these stacks. 896 * Since the ARM stacks use STMFD etc. we must set r13 to the top end 897 * of the stack memory. 898 */ 899 printf("init subsystems: stacks "); 900 901 set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); 902 set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); 903 set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); 904 905 /* 906 * Well we should set a data abort handler. 907 * Once things get going this will change as we will need a proper 908 * handler. 909 * Until then we will use a handler that just panics but tells us 910 * why. 911 * Initialisation of the vectors will just panic on a data abort. 912 * This just fills in a slightly better one. 913 */ 914 printf("vectors "); 915 data_abort_handler_address = (u_int)data_abort_handler; 916 prefetch_abort_handler_address = (u_int)prefetch_abort_handler; 917 undefined_handler_address = (u_int)undefinedinstruction_bounce; 918 919 /* Initialise the undefined instruction handlers */ 920 printf("undefined "); 921 undefined_init(); 922 923 /* Load memory into UVM. */ 924 printf("page "); 925 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */ 926 uvm_page_physload(atop(physical_freestart), atop(physical_freeend), 927 atop(physical_freestart), atop(physical_freeend), 928 VM_FREELIST_DEFAULT); 929 930 /* Boot strap pmap telling it where the kernel page table is */ 931 printf("pmap "); 932 LEDSTEP(); 933 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); 934 LEDSTEP(); 935 936 #ifdef __HAVE_MEMORY_DISK__ 937 md_root_setconf(memory_disk, sizeof memory_disk); 938 #endif 939 940 { 941 uint16_t sw = ioreg16_read(LUBBOCK_OBIO_VBASE+LUBBOCK_USERSW); 942 943 if (0 == (sw & (1<<13))) /* check S19 */ 944 boothowto |= RB_KDB; 945 if (0 == (sw & (1<<12))) /* S20 */ 946 boothowto |= RB_SINGLE; 947 } 948 949 LEDSTEP(); 950 951 #ifdef KGDB 952 if (boothowto & RB_KDB) { 953 kgdb_debug_init = 1; 954 kgdb_connect(1); 955 } 956 #endif 957 958 #ifdef DDB 959 db_machine_init(); 960 961 /* Firmware doesn't load symbols. */ 962 ddb_init(0, NULL, NULL); 963 964 if (boothowto & RB_KDB) 965 Debugger(); 966 #endif 967 968 /* We return the new stack pointer address */ 969 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP); 970 } 971 972 #if 0 973 void 974 process_kernel_args(char *args) 975 { 976 977 boothowto = 0; 978 979 /* Make a local copy of the bootargs */ 980 strncpy(bootargs, args, MAX_BOOT_STRING); 981 982 args = bootargs; 983 boot_file = bootargs; 984 985 /* Skip the kernel image filename */ 986 while (*args != ' ' && *args != 0) 987 ++args; 988 989 if (*args != 0) 990 *args++ = 0; 991 992 while (*args == ' ') 993 ++args; 994 995 boot_args = args; 996 997 printf("bootfile: %s\n", boot_file); 998 printf("bootargs: %s\n", boot_args); 999 1000 parse_mi_bootargs(boot_args); 1001 } 1002 #endif 1003 1004 #ifdef KGDB 1005 #ifndef KGDB_DEVNAME 1006 #define KGDB_DEVNAME "ffuart" 1007 #endif 1008 const char kgdb_devname[] = KGDB_DEVNAME; 1009 1010 #if (NCOM > 0) 1011 #ifndef KGDB_DEVMODE 1012 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ 1013 #endif 1014 int comkgdbmode = KGDB_DEVMODE; 1015 #endif /* NCOM */ 1016 1017 #endif /* KGDB */ 1018 1019 1020 void 1021 consinit(void) 1022 { 1023 static int consinit_called = 0; 1024 uint32_t ckenreg = ioreg_read(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN); 1025 #if 0 1026 char *console = CONSDEVNAME; 1027 #endif 1028 1029 if (consinit_called != 0) 1030 return; 1031 1032 consinit_called = 1; 1033 1034 #if NCOM > 0 1035 1036 #ifdef FFUARTCONSOLE 1037 /* Check switch. */ 1038 if (0 == (ioreg_read(LUBBOCK_OBIO_VBASE+LUBBOCK_USERSW) & (1<<15))) { 1039 /* We don't use FF serial when S17=no-dot position */ 1040 } 1041 #ifdef KGDB 1042 else if (0 == strcmp(kgdb_devname, "ffuart")) { 1043 /* port is reserved for kgdb */ 1044 } 1045 #endif 1046 else if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_FFUART_BASE, 1047 comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) { 1048 #if 0 1049 /* XXX: can't call pxa2x0_clkman_config yet */ 1050 pxa2x0_clkman_config(CKEN_FFUART, 1); 1051 #else 1052 ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN, 1053 ckenreg|CKEN_FFUART); 1054 #endif 1055 1056 return; 1057 } 1058 #endif /* FFUARTCONSOLE */ 1059 1060 #ifdef BTUARTCONSOLE 1061 #ifdef KGDB 1062 if (0 == strcmp(kgdb_devname, "btuart")) { 1063 /* port is reserved for kgdb */ 1064 } else 1065 #endif 1066 if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_BTUART_BASE, 1067 comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) { 1068 ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN, 1069 ckenreg|CKEN_BTUART); 1070 return; 1071 } 1072 #endif /* BTUARTCONSOLE */ 1073 1074 1075 #endif /* NCOM */ 1076 1077 } 1078 1079 #ifdef KGDB 1080 void 1081 kgdb_port_init(void) 1082 { 1083 #if (NCOM > 0) && defined(COM_PXA2X0) 1084 paddr_t paddr = 0; 1085 uint32_t ckenreg = ioreg_read(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN); 1086 1087 if (0 == strcmp(kgdb_devname, "ffuart")) { 1088 paddr = PXA2X0_FFUART_BASE; 1089 ckenreg |= CKEN_FFUART; 1090 } 1091 else if (0 == strcmp(kgdb_devname, "btuart")) { 1092 paddr = PXA2X0_BTUART_BASE; 1093 ckenreg |= CKEN_BTUART; 1094 } 1095 1096 if (paddr && 1097 0 == com_kgdb_attach(&pxa2x0_a4x_bs_tag, paddr, 1098 kgdb_rate, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comkgdbmode)) { 1099 1100 ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN, ckenreg); 1101 } 1102 #endif 1103 } 1104 #endif 1105 1106 #if 0 1107 /* 1108 * display a number in hex LED. 1109 * a digit is blank when the corresponding bit in arg blank is 1 1110 */ 1111 unsigned short led_control_value = 0; 1112 1113 void 1114 hex_led_blank(uint32_t value, int blank) 1115 { 1116 int save = disable_interrupts(I32_bit); 1117 1118 ioreg_write(LUBBOCK_OBIO_VBASE+0x10, value); 1119 led_control_value = (led_control_value & 0xff) 1120 | ((blank & 0xff)<<8); 1121 ioreg_write(LUBBOCK_OBIO_VBASE+0x40, led_control_value); 1122 restore_interrupts(save); 1123 } 1124 #endif 1125