1 /* $NetBSD: lubbock_machdep.c,v 1.8 2005/07/04 00:47:49 bsh Exp $ */ 2 3 /* 4 * Copyright (c) 2002, 2003, 2005 Genetec Corporation. All rights reserved. 5 * Written by Hiroyuki Bessho for Genetec Corporation. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. The name of Genetec Corporation may not be used to endorse or 16 * promote products derived from this software without specific prior 17 * written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 * 31 * Machine dependant functions for kernel setup for 32 * Intel DBPXA250 evaluation board (a.k.a. Lubbock). 33 * Based on iq80310_machhdep.c 34 */ 35 /* 36 * Copyright (c) 2001 Wasabi Systems, Inc. 37 * All rights reserved. 38 * 39 * Written by Jason R. Thorpe for Wasabi Systems, Inc. 40 * 41 * Redistribution and use in source and binary forms, with or without 42 * modification, are permitted provided that the following conditions 43 * are met: 44 * 1. Redistributions of source code must retain the above copyright 45 * notice, this list of conditions and the following disclaimer. 46 * 2. Redistributions in binary form must reproduce the above copyright 47 * notice, this list of conditions and the following disclaimer in the 48 * documentation and/or other materials provided with the distribution. 49 * 3. All advertising materials mentioning features or use of this software 50 * must display the following acknowledgement: 51 * This product includes software developed for the NetBSD Project by 52 * Wasabi Systems, Inc. 53 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 54 * or promote products derived from this software without specific prior 55 * written permission. 56 * 57 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 59 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 60 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 61 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 62 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 63 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 64 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 65 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 66 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 67 * POSSIBILITY OF SUCH DAMAGE. 68 */ 69 70 /* 71 * Copyright (c) 1997,1998 Mark Brinicombe. 72 * Copyright (c) 1997,1998 Causality Limited. 73 * All rights reserved. 74 * 75 * Redistribution and use in source and binary forms, with or without 76 * modification, are permitted provided that the following conditions 77 * are met: 78 * 1. Redistributions of source code must retain the above copyright 79 * notice, this list of conditions and the following disclaimer. 80 * 2. Redistributions in binary form must reproduce the above copyright 81 * notice, this list of conditions and the following disclaimer in the 82 * documentation and/or other materials provided with the distribution. 83 * 3. All advertising materials mentioning features or use of this software 84 * must display the following acknowledgement: 85 * This product includes software developed by Mark Brinicombe 86 * for the NetBSD Project. 87 * 4. The name of the company nor the name of the author may be used to 88 * endorse or promote products derived from this software without specific 89 * prior written permission. 90 * 91 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 92 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 93 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 94 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 95 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 96 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 97 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 98 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 99 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 100 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 101 * SUCH DAMAGE. 102 * 103 * Machine dependant functions for kernel setup for Intel IQ80310 evaluation 104 * boards using RedBoot firmware. 105 */ 106 107 /* 108 * DIP switches: 109 * 110 * S19: no-dot: set RB_KDB. enter kgdb session. 111 * S20: no-dot: set RB_SINGLE. don't go multi user mode. 112 */ 113 114 #include <sys/cdefs.h> 115 __KERNEL_RCSID(0, "$NetBSD: lubbock_machdep.c,v 1.8 2005/07/04 00:47:49 bsh Exp $"); 116 117 #include "opt_ddb.h" 118 #include "opt_kgdb.h" 119 #include "opt_ipkdb.h" 120 #include "opt_pmap_debug.h" 121 #include "opt_md.h" 122 #include "opt_com.h" 123 #include "md.h" 124 #include "lcd.h" 125 126 #include <sys/param.h> 127 #include <sys/device.h> 128 #include <sys/systm.h> 129 #include <sys/kernel.h> 130 #include <sys/exec.h> 131 #include <sys/proc.h> 132 #include <sys/msgbuf.h> 133 #include <sys/reboot.h> 134 #include <sys/termios.h> 135 #include <sys/ksyms.h> 136 137 #include <uvm/uvm_extern.h> 138 139 #include <sys/conf.h> 140 #include <dev/cons.h> 141 #include <dev/md.h> 142 #include <dev/ic/smc91cxxreg.h> 143 144 #include <machine/db_machdep.h> 145 #include <ddb/db_sym.h> 146 #include <ddb/db_extern.h> 147 #ifdef KGDB 148 #include <sys/kgdb.h> 149 #endif 150 151 #include <machine/bootconfig.h> 152 #include <machine/bus.h> 153 #include <machine/cpu.h> 154 #include <machine/frame.h> 155 #include <arm/undefined.h> 156 157 #include <arm/arm32/machdep.h> 158 159 #include <arm/xscale/pxa2x0reg.h> 160 #include <arm/xscale/pxa2x0var.h> 161 #include <arm/xscale/pxa2x0_gpio.h> 162 #include <arm/sa11x0/sa1111_reg.h> 163 #include <evbarm/lubbock/lubbock_reg.h> 164 #include <evbarm/lubbock/lubbock_var.h> 165 166 /* Kernel text starts 2MB in from the bottom of the kernel address space. */ 167 #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000) 168 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000) 169 170 /* 171 * The range 0xc1000000 - 0xccffffff is available for kernel VM space 172 * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff 173 */ 174 #define KERNEL_VM_SIZE 0x0C000000 175 176 177 /* 178 * Address to call from cpu_reset() to reset the machine. 179 * This is machine architecture dependant as it varies depending 180 * on where the ROM appears when you turn the MMU off. 181 */ 182 183 u_int cpu_reset_address = 0; 184 185 /* Define various stack sizes in pages */ 186 #define IRQ_STACK_SIZE 1 187 #define ABT_STACK_SIZE 1 188 #ifdef IPKDB 189 #define UND_STACK_SIZE 2 190 #else 191 #define UND_STACK_SIZE 1 192 #endif 193 194 BootConfig bootconfig; /* Boot config storage */ 195 char *boot_args = NULL; 196 char *boot_file = NULL; 197 198 vm_offset_t physical_start; 199 vm_offset_t physical_freestart; 200 vm_offset_t physical_freeend; 201 vm_offset_t physical_end; 202 u_int free_pages; 203 vm_offset_t pagetables_start; 204 int physmem = 0; 205 206 /*int debug_flags;*/ 207 #ifndef PMAP_STATIC_L1S 208 int max_processes = 64; /* Default number */ 209 #endif /* !PMAP_STATIC_L1S */ 210 211 /* Physical and virtual addresses for some global pages */ 212 pv_addr_t systempage; 213 pv_addr_t irqstack; 214 pv_addr_t undstack; 215 pv_addr_t abtstack; 216 pv_addr_t kernelstack; 217 pv_addr_t minidataclean; 218 219 vm_offset_t msgbufphys; 220 221 extern u_int data_abort_handler_address; 222 extern u_int prefetch_abort_handler_address; 223 extern u_int undefined_handler_address; 224 225 #ifdef PMAP_DEBUG 226 extern int pmap_debug_level; 227 #endif 228 229 #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */ 230 #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */ 231 #define KERNEL_PT_KERNEL_NUM 4 232 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM) 233 /* Page tables for mapping kernel VM */ 234 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */ 235 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM) 236 237 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS]; 238 239 struct user *proc0paddr; 240 241 /* Prototypes */ 242 243 #if 0 244 void process_kernel_args(char *); 245 void parse_mi_bootargs(char *args); 246 #endif 247 248 void consinit(void); 249 void kgdb_port_init(void); 250 void change_clock(uint32_t v); 251 252 bs_protos(bs_notimpl); 253 254 #include "com.h" 255 #if NCOM > 0 256 #include <dev/ic/comreg.h> 257 #include <dev/ic/comvar.h> 258 #endif 259 260 #ifndef CONSPEED 261 #define CONSPEED B115200 /* What RedBoot uses */ 262 #endif 263 #ifndef CONMODE 264 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ 265 #endif 266 267 int comcnspeed = CONSPEED; 268 int comcnmode = CONMODE; 269 270 /* 271 * void cpu_reboot(int howto, char *bootstr) 272 * 273 * Reboots the system 274 * 275 * Deal with any syncing, unmounting, dumping and shutdown hooks, 276 * then reset the CPU. 277 */ 278 void 279 cpu_reboot(int howto, char *bootstr) 280 { 281 #ifdef DIAGNOSTIC 282 /* info */ 283 printf("boot: howto=%08x curproc=%p\n", howto, curproc); 284 #endif 285 286 /* 287 * If we are still cold then hit the air brakes 288 * and crash to earth fast 289 */ 290 if (cold) { 291 doshutdownhooks(); 292 printf("The operating system has halted.\n"); 293 printf("Please press any key to reboot.\n\n"); 294 cngetc(); 295 printf("rebooting...\n"); 296 cpu_reset(); 297 /*NOTREACHED*/ 298 } 299 300 /* Disable console buffering */ 301 /* cnpollc(1);*/ 302 303 /* 304 * If RB_NOSYNC was not specified sync the discs. 305 * Note: Unless cold is set to 1 here, syslogd will die during the 306 * unmount. It looks like syslogd is getting woken up only to find 307 * that it cannot page part of the binary in as the filesystem has 308 * been unmounted. 309 */ 310 if (!(howto & RB_NOSYNC)) 311 bootsync(); 312 313 /* Say NO to interrupts */ 314 splhigh(); 315 316 /* Do a dump if requested. */ 317 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) 318 dumpsys(); 319 320 /* Run any shutdown hooks */ 321 doshutdownhooks(); 322 323 /* Make sure IRQ's are disabled */ 324 IRQdisable; 325 326 if (howto & RB_HALT) { 327 printf("The operating system has halted.\n"); 328 printf("Please press any key to reboot.\n\n"); 329 cngetc(); 330 } 331 332 printf("rebooting...\n"); 333 cpu_reset(); 334 /*NOTREACHED*/ 335 } 336 337 static __inline 338 pd_entry_t * 339 read_ttb(void) 340 { 341 long ttb; 342 343 __asm __volatile("mrc p15, 0, %0, c2, c0, 0" : "=r" (ttb)); 344 345 346 return (pd_entry_t *)(ttb & ~((1<<14)-1)); 347 } 348 349 /* 350 * Static device mappings. These peripheral registers are mapped at 351 * fixed virtual addresses very early in initarm() so that we can use 352 * them while booting the kernel, and stay at the same address 353 * throughout whole kernel's life time. 354 * 355 * We use this table twice; once with bootstrap page table, and once 356 * with kernel's page table which we build up in initarm(). 357 * 358 * Since we map these registers into the bootstrap page table using 359 * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map 360 * registers segment-aligned and segment-rounded in order to avoid 361 * using the 2nd page tables. 362 */ 363 364 #define _A(a) ((a) & ~L1_S_OFFSET) 365 #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1)) 366 367 static const struct pmap_devmap lubbock_devmap[] = { 368 { 369 LUBBOCK_OBIO_VBASE, 370 _A(LUBBOCK_OBIO_PBASE), 371 _S(LUBBOCK_OBIO_SIZE), 372 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 373 }, 374 { 375 LUBBOCK_GPIO_VBASE, 376 _A(PXA2X0_GPIO_BASE), 377 _S(PXA250_GPIO_SIZE), 378 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 379 }, 380 { 381 LUBBOCK_CLKMAN_VBASE, 382 _A(PXA2X0_CLKMAN_BASE), 383 _S(PXA2X0_CLKMAN_SIZE), 384 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 385 }, 386 { 387 LUBBOCK_INTCTL_VBASE, 388 _A(PXA2X0_INTCTL_BASE), 389 _S(PXA2X0_INTCTL_SIZE), 390 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 391 }, 392 { 393 LUBBOCK_FFUART_VBASE, 394 _A(PXA2X0_FFUART_BASE), 395 _S(4 * COM_NPORTS), 396 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 397 }, 398 { 399 LUBBOCK_BTUART_VBASE, 400 _A(PXA2X0_BTUART_BASE), 401 _S(4 * COM_NPORTS), 402 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 403 }, 404 405 {0, 0, 0, 0,} 406 }; 407 408 #undef _A 409 #undef _S 410 411 /* 412 * u_int initarm(...) 413 * 414 * Initial entry point on startup. This gets called before main() is 415 * entered. 416 * It should be responsible for setting up everything that must be 417 * in place when main is called. 418 * This includes 419 * Taking a copy of the boot configuration structure. 420 * Initialising the physical console so characters can be printed. 421 * Setting up page tables for the kernel 422 * Relocating the kernel to the bottom of physical memory 423 */ 424 u_int 425 initarm(void *arg) 426 { 427 extern vaddr_t xscale_cache_clean_addr; 428 int loop; 429 int loop1; 430 u_int l1pagetable; 431 pv_addr_t kernel_l1pt; 432 paddr_t memstart; 433 psize_t memsize; 434 int led_data = 0; 435 #ifdef DIAGNOSTIC 436 extern vsize_t xscale_minidata_clean_size; /* used in KASSERT */ 437 #endif 438 #define LEDSTEP_P() ioreg_write(LUBBOCK_OBIO_PBASE+LUBBOCK_HEXLED, led_data++) 439 #define LEDSTEP() hex_led(led_data++) 440 441 /* use physical address until pagetable is set */ 442 LEDSTEP_P(); 443 444 /* map some peripheral registers at static I/O area */ 445 pmap_devmap_bootstrap((vaddr_t)read_ttb(), lubbock_devmap); 446 447 LEDSTEP_P(); 448 449 /* start 32.768KHz OSC */ 450 ioreg_write(LUBBOCK_CLKMAN_VBASE + 0x08, 2); 451 /* Get ready for splfoo() */ 452 pxa2x0_intr_bootstrap(LUBBOCK_INTCTL_VBASE); 453 454 LEDSTEP(); 455 456 /* 457 * Heads up ... Setup the CPU / MMU / TLB functions 458 */ 459 if (set_cpufuncs()) 460 panic("cpu not recognized!"); 461 462 LEDSTEP(); 463 464 465 #if 0 466 /* Calibrate the delay loop. */ 467 #endif 468 469 /* 470 * Okay, RedBoot has provided us with the following memory map: 471 * 472 * Physical Address Range Description 473 * ----------------------- ---------------------------------- 474 * 0x00000000 - 0x01ffffff flash Memory (32MB) 475 * 0x04000000 - 0x05ffffff Application flash Memory (32MB) 476 * 0x08000000 - 0x080000ff I/O baseboard registers 477 * 0x0a000000 - 0x0a0fffff SRAM (1MB) 478 * 0x0c000000 - 0x0c0fffff Ethernet Controller 479 * 0x0e000000 - 0x0e0fffff Ethernet Controller (Attribute) 480 * 0x10000000 - 0x103fffff SA-1111 Companion Chip 481 * 0x14000000 - 0x17ffffff Expansion Card (64MB) 482 * 0x40000000 - 0x480fffff Processor Registers 483 * 0xa0000000 - 0xa3ffffff SDRAM Bank 0 (64MB) 484 * 485 * 486 * Virtual Address Range X C B Description 487 * ----------------------- - - - ---------------------------------- 488 * 0x00000000 - 0x00003fff N Y Y SDRAM 489 * 0x00004000 - 0x000fffff N Y N Boot ROM 490 * 0x00100000 - 0x01ffffff N N N Application Flash 491 * 0x04000000 - 0x05ffffff N N N Exp Application Flash 492 * 0x08000000 - 0x080fffff N N N I/O baseboard registers 493 * 0x0a000000 - 0x0a0fffff N N N SRAM 494 * 0x40000000 - 0x480fffff N N N Processor Registers 495 * 0xa0000000 - 0xa000ffff N Y N RedBoot SDRAM 496 * 0xa0017000 - 0xa3ffffff Y Y Y SDRAM 497 * 0xc0000000 - 0xcfffffff Y Y Y Cache Flush Region 498 * (done by this routine) 499 * 0xfd000000 - 0xfd0000ff N N N I/O baseboard registers 500 * 0xfd100000 - 0xfd3fffff N N N Processor Registers. 501 * 0xfd400000 - 0xfd4fffff N N N FF-UART 502 * 0xfd500000 - 0xfd5fffff N N N BT-UART 503 * 504 * RedBoot's first level page table is at 0xa0004000. There 505 * are also 2 second-level tables at 0xa0008000 and 506 * 0xa0008400. We will continue to use them until we switch to 507 * our pagetable by setttb(). 508 * 509 */ 510 511 /* setup GPIO for BTUART, in case bootloader doesn't take care of it */ 512 pxa2x0_gpio_bootstrap(LUBBOCK_GPIO_VBASE); 513 pxa2x0_gpio_set_function(42, GPIO_ALT_FN_1_IN); 514 pxa2x0_gpio_set_function(43, GPIO_ALT_FN_2_OUT); 515 pxa2x0_gpio_set_function(44, GPIO_ALT_FN_1_IN); 516 pxa2x0_gpio_set_function(45, GPIO_ALT_FN_2_OUT); 517 518 /* turn on clock to UART block. 519 XXX: this should not be done here. */ 520 ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN, CKEN_FFUART|CKEN_BTUART | 521 ioreg_read(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN)); 522 523 LEDSTEP(); 524 525 consinit(); 526 LEDSTEP(); 527 #ifdef KGDB 528 kgdb_port_init(); 529 LEDSTEP(); 530 #endif 531 532 533 /* Talk to the user */ 534 printf("\nNetBSD/evbarm (lubbock) booting ...\n"); 535 536 /* Tweak memory controller */ 537 { 538 /* Modify access timing for CS3 (91c96) */ 539 540 uint32_t tmp = 541 ioreg_read(PXA2X0_MEMCTL_BASE+MEMCTL_MSC1); 542 ioreg_write(PXA2X0_MEMCTL_BASE+MEMCTL_MSC1, 543 (tmp & 0xffff) | (0x3881<<16)); 544 /* RRR=3, RDN=8, RDF=8 545 * XXX: can be faster? 546 */ 547 } 548 549 550 /* Initialize for PCMCIA/CF sockets */ 551 { 552 uint32_t tmp; 553 554 /* Activate two sockets. 555 XXX: This code segment should be moved to 556 pcmcia MD attach routine. 557 XXX: These bits should be toggled based on 558 existene of PCMCIA/CF cards 559 */ 560 ioreg_write(PXA2X0_MEMCTL_BASE+MEMCTL_MECR, 561 MECR_NOS|MECR_CIT); 562 563 tmp = ioreg_read(LUBBOCK_SACC_PBASE+SACCSBI_SKCR); 564 ioreg_write(LUBBOCK_SACC_PBASE+SACCSBI_SKCR, 565 (tmp & ~(1<<4)) | (1<<0)); 566 } 567 568 #if 0 569 /* 570 * Examine the boot args string for options we need to know about 571 * now. 572 */ 573 process_kernel_args((char *)nwbootinfo.bt_args); 574 #endif 575 576 { 577 int processor_card_id; 578 579 processor_card_id = 0x000f & 580 ioreg_read(LUBBOCK_OBIO_VBASE+LUBBOCK_MISCRD); 581 switch(processor_card_id){ 582 case 0: 583 /* Cotulla */ 584 memstart = 0xa0000000; 585 memsize = 0x04000000; /* 64MB */ 586 break; 587 case 1: 588 /* XXX: Sabiani */ 589 memstart = 0xa0000000; 590 memsize = 0x04000000; /* 64MB */ 591 break; 592 default: 593 /* XXX: Unknown */ 594 memstart = 0xa0000000; 595 memsize = 0x04000000; /* 64MB */ 596 } 597 } 598 599 printf("initarm: Configuring system ...\n"); 600 601 /* Fake bootconfig structure for the benefit of pmap.c */ 602 /* XXX must make the memory description h/w independant */ 603 bootconfig.dramblocks = 1; 604 bootconfig.dram[0].address = memstart; 605 bootconfig.dram[0].pages = memsize / PAGE_SIZE; 606 607 /* 608 * Set up the variables that define the availablilty of 609 * physical memory. For now, we're going to set 610 * physical_freestart to 0xa0200000 (where the kernel 611 * was loaded), and allocate the memory we need downwards. 612 * If we get too close to the page tables that RedBoot 613 * set up, we will panic. We will update physical_freestart 614 * and physical_freeend later to reflect what pmap_bootstrap() 615 * wants to see. 616 * 617 * XXX pmap_bootstrap() needs an enema. 618 */ 619 physical_start = bootconfig.dram[0].address; 620 physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE); 621 622 physical_freestart = 0xa0009000UL; 623 physical_freeend = 0xa0200000UL; 624 625 physmem = (physical_end - physical_start) / PAGE_SIZE; 626 627 #ifdef VERBOSE_INIT_ARM 628 /* Tell the user about the memory */ 629 printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem, 630 physical_start, physical_end - 1); 631 #endif 632 633 /* 634 * Okay, the kernel starts 2MB in from the bottom of physical 635 * memory. We are going to allocate our bootstrap pages downwards 636 * from there. 637 * 638 * We need to allocate some fixed page tables to get the kernel 639 * going. We allocate one page directory and a number of page 640 * tables and store the physical addresses in the kernel_pt_table 641 * array. 642 * 643 * The kernel page directory must be on a 16K boundary. The page 644 * tables must be on 4K boundaries. What we do is allocate the 645 * page directory on the first 16K boundary that we encounter, and 646 * the page tables on 4K boundaries otherwise. Since we allocate 647 * at least 3 L2 page tables, we are guaranteed to encounter at 648 * least one 16K aligned region. 649 */ 650 651 #ifdef VERBOSE_INIT_ARM 652 printf("Allocating page tables\n"); 653 #endif 654 655 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; 656 657 #ifdef VERBOSE_INIT_ARM 658 printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n", 659 physical_freestart, free_pages, free_pages); 660 #endif 661 662 /* Define a macro to simplify memory allocation */ 663 #define valloc_pages(var, np) \ 664 alloc_pages((var).pv_pa, (np)); \ 665 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start; 666 667 #define alloc_pages(var, np) \ 668 physical_freeend -= ((np) * PAGE_SIZE); \ 669 if (physical_freeend < physical_freestart) \ 670 panic("initarm: out of memory"); \ 671 (var) = physical_freeend; \ 672 free_pages -= (np); \ 673 memset((char *)(var), 0, ((np) * PAGE_SIZE)); 674 675 loop1 = 0; 676 kernel_l1pt.pv_pa = 0; 677 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { 678 /* Are we 16KB aligned for an L1 ? */ 679 if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0 680 && kernel_l1pt.pv_pa == 0) { 681 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); 682 } else { 683 valloc_pages(kernel_pt_table[loop1], 684 L2_TABLE_SIZE / PAGE_SIZE); 685 ++loop1; 686 } 687 } 688 689 /* This should never be able to happen but better confirm that. */ 690 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0) 691 panic("initarm: Failed to align the kernel page directory"); 692 693 LEDSTEP(); 694 695 /* 696 * Allocate a page for the system page mapped to V0x00000000 697 * This page will just contain the system vectors and can be 698 * shared by all processes. 699 */ 700 alloc_pages(systempage.pv_pa, 1); 701 702 /* Allocate stacks for all modes */ 703 valloc_pages(irqstack, IRQ_STACK_SIZE); 704 valloc_pages(abtstack, ABT_STACK_SIZE); 705 valloc_pages(undstack, UND_STACK_SIZE); 706 valloc_pages(kernelstack, UPAGES); 707 708 /* Allocate enough pages for cleaning the Mini-Data cache. */ 709 KASSERT(xscale_minidata_clean_size <= PAGE_SIZE); 710 valloc_pages(minidataclean, 1); 711 712 #ifdef VERBOSE_INIT_ARM 713 printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, 714 irqstack.pv_va); 715 printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, 716 abtstack.pv_va); 717 printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, 718 undstack.pv_va); 719 printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, 720 kernelstack.pv_va); 721 #endif 722 723 /* 724 * XXX Defer this to later so that we can reclaim the memory 725 * XXX used by the RedBoot page tables. 726 */ 727 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); 728 729 /* 730 * Ok we have allocated physical pages for the primary kernel 731 * page tables 732 */ 733 734 #ifdef VERBOSE_INIT_ARM 735 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa); 736 #endif 737 738 /* 739 * Now we start construction of the L1 page table 740 * We start by mapping the L2 page tables into the L1. 741 * This means that we can replace L1 mappings later on if necessary 742 */ 743 l1pagetable = kernel_l1pt.pv_pa; 744 745 /* Map the L2 pages tables in the L1 page table */ 746 pmap_link_l2pt(l1pagetable, 0x00000000, 747 &kernel_pt_table[KERNEL_PT_SYS]); 748 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) 749 pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000, 750 &kernel_pt_table[KERNEL_PT_KERNEL + loop]); 751 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++) 752 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, 753 &kernel_pt_table[KERNEL_PT_VMDATA + loop]); 754 755 /* update the top of the kernel VM */ 756 pmap_curmaxkvaddr = 757 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); 758 759 #ifdef VERBOSE_INIT_ARM 760 printf("Mapping kernel\n"); 761 #endif 762 763 /* Now we fill in the L2 pagetable for the kernel static code/data */ 764 { 765 extern char etext[], _end[]; 766 size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE; 767 size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE; 768 u_int logical; 769 770 textsize = (textsize + PGOFSET) & ~PGOFSET; 771 totalsize = (totalsize + PGOFSET) & ~PGOFSET; 772 773 logical = 0x00200000; /* offset of kernel in RAM */ 774 775 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, 776 physical_start + logical, textsize, 777 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 778 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, 779 physical_start + logical, totalsize - textsize, 780 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 781 } 782 783 #ifdef VERBOSE_INIT_ARM 784 printf("Constructing L2 page tables\n"); 785 #endif 786 787 /* Map the stack pages */ 788 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, 789 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 790 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, 791 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 792 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, 793 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 794 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, 795 UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); 796 797 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, 798 L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE); 799 800 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { 801 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, 802 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, 803 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); 804 } 805 806 /* Map the Mini-Data cache clean area. */ 807 xscale_setup_minidata(l1pagetable, minidataclean.pv_va, 808 minidataclean.pv_pa); 809 810 /* Map the vector page. */ 811 #if 1 812 /* MULTI-ICE requires that page 0 is NC/NB so that it can download the 813 * cache-clean code there. */ 814 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, 815 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE); 816 #else 817 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, 818 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 819 #endif 820 821 /* 822 * map integrated peripherals at same address in l1pagetable 823 * so that we can continue to use console. 824 */ 825 pmap_devmap_bootstrap(l1pagetable, lubbock_devmap); 826 827 /* 828 * Give the XScale global cache clean code an appropriately 829 * sized chunk of unmapped VA space starting at 0xff000000 830 * (our device mappings end before this address). 831 */ 832 xscale_cache_clean_addr = 0xff000000U; 833 834 /* 835 * Now we have the real page tables in place so we can switch to them. 836 * Once this is done we will be running with the REAL kernel page 837 * tables. 838 */ 839 840 /* 841 * Update the physical_freestart/physical_freeend/free_pages 842 * variables. 843 */ 844 { 845 extern char _end[]; 846 847 physical_freestart = physical_start + 848 (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) - 849 KERNEL_BASE); 850 physical_freeend = physical_end; 851 free_pages = 852 (physical_freeend - physical_freestart) / PAGE_SIZE; 853 } 854 855 /* Switch tables */ 856 #ifdef VERBOSE_INIT_ARM 857 printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n", 858 physical_freestart, free_pages, free_pages); 859 printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa); 860 #endif 861 862 LEDSTEP(); 863 864 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); 865 setttb(kernel_l1pt.pv_pa); 866 cpu_tlb_flushID(); 867 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); 868 LEDSTEP(); 869 870 /* 871 * Moved from cpu_startup() as data_abort_handler() references 872 * this during uvm init 873 */ 874 proc0paddr = (struct user *)kernelstack.pv_va; 875 lwp0.l_addr = proc0paddr; 876 877 #ifdef VERBOSE_INIT_ARM 878 printf("bootstrap done.\n"); 879 #endif 880 881 arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL); 882 883 /* 884 * Pages were allocated during the secondary bootstrap for the 885 * stacks for different CPU modes. 886 * We must now set the r13 registers in the different CPU modes to 887 * point to these stacks. 888 * Since the ARM stacks use STMFD etc. we must set r13 to the top end 889 * of the stack memory. 890 */ 891 printf("init subsystems: stacks "); 892 893 set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); 894 set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); 895 set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); 896 897 /* 898 * Well we should set a data abort handler. 899 * Once things get going this will change as we will need a proper 900 * handler. 901 * Until then we will use a handler that just panics but tells us 902 * why. 903 * Initialisation of the vectors will just panic on a data abort. 904 * This just fills in a slightly better one. 905 */ 906 printf("vectors "); 907 data_abort_handler_address = (u_int)data_abort_handler; 908 prefetch_abort_handler_address = (u_int)prefetch_abort_handler; 909 undefined_handler_address = (u_int)undefinedinstruction_bounce; 910 911 /* Initialise the undefined instruction handlers */ 912 printf("undefined "); 913 undefined_init(); 914 915 /* Load memory into UVM. */ 916 printf("page "); 917 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */ 918 uvm_page_physload(atop(physical_freestart), atop(physical_freeend), 919 atop(physical_freestart), atop(physical_freeend), 920 VM_FREELIST_DEFAULT); 921 922 /* Boot strap pmap telling it where the kernel page table is */ 923 printf("pmap "); 924 LEDSTEP(); 925 pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, KERNEL_VM_BASE, 926 KERNEL_VM_BASE + KERNEL_VM_SIZE); 927 LEDSTEP(); 928 929 #ifdef __HAVE_MEMORY_DISK__ 930 md_root_setconf(memory_disk, sizeof memory_disk); 931 #endif 932 933 { 934 uint16_t sw = ioreg16_read(LUBBOCK_OBIO_VBASE+LUBBOCK_USERSW); 935 936 if (0 == (sw & (1<<13))) /* check S19 */ 937 boothowto |= RB_KDB; 938 if (0 == (sw & (1<<12))) /* S20 */ 939 boothowto |= RB_SINGLE; 940 } 941 942 LEDSTEP(); 943 944 #ifdef IPKDB 945 /* Initialise ipkdb */ 946 ipkdb_init(); 947 if (boothowto & RB_KDB) 948 ipkdb_connect(0); 949 #endif 950 951 #ifdef KGDB 952 if (boothowto & RB_KDB) { 953 kgdb_debug_init = 1; 954 kgdb_connect(1); 955 } 956 #endif 957 958 #ifdef DDB 959 db_machine_init(); 960 961 /* Firmware doesn't load symbols. */ 962 ddb_init(0, NULL, NULL); 963 964 if (boothowto & RB_KDB) 965 Debugger(); 966 #endif 967 968 /* We return the new stack pointer address */ 969 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP); 970 } 971 972 #if 0 973 void 974 process_kernel_args(char *args) 975 { 976 977 boothowto = 0; 978 979 /* Make a local copy of the bootargs */ 980 strncpy(bootargs, args, MAX_BOOT_STRING); 981 982 args = bootargs; 983 boot_file = bootargs; 984 985 /* Skip the kernel image filename */ 986 while (*args != ' ' && *args != 0) 987 ++args; 988 989 if (*args != 0) 990 *args++ = 0; 991 992 while (*args == ' ') 993 ++args; 994 995 boot_args = args; 996 997 printf("bootfile: %s\n", boot_file); 998 printf("bootargs: %s\n", boot_args); 999 1000 parse_mi_bootargs(boot_args); 1001 } 1002 #endif 1003 1004 #ifdef KGDB 1005 #ifndef KGDB_DEVNAME 1006 #define KGDB_DEVNAME "ffuart" 1007 #endif 1008 const char kgdb_devname[] = KGDB_DEVNAME; 1009 1010 #if (NCOM > 0) 1011 #ifndef KGDB_DEVMODE 1012 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ 1013 #endif 1014 int comkgdbmode = KGDB_DEVMODE; 1015 #endif /* NCOM */ 1016 1017 #endif /* KGDB */ 1018 1019 1020 void 1021 consinit(void) 1022 { 1023 static int consinit_called = 0; 1024 uint32_t ckenreg = ioreg_read(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN); 1025 #if 0 1026 char *console = CONSDEVNAME; 1027 #endif 1028 1029 if (consinit_called != 0) 1030 return; 1031 1032 consinit_called = 1; 1033 1034 #if NCOM > 0 1035 1036 #ifdef FFUARTCONSOLE 1037 /* Check switch. */ 1038 if (0 == (ioreg_read(LUBBOCK_OBIO_VBASE+LUBBOCK_USERSW) & (1<<15))) { 1039 /* We don't use FF serial when S17=no-dot position */ 1040 } 1041 #ifdef KGDB 1042 else if (0 == strcmp(kgdb_devname, "ffuart")) { 1043 /* port is reserved for kgdb */ 1044 } 1045 #endif 1046 else if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_FFUART_BASE, 1047 comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) { 1048 #if 0 1049 /* XXX: can't call pxa2x0_clkman_config yet */ 1050 pxa2x0_clkman_config(CKEN_FFUART, 1); 1051 #else 1052 ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN, 1053 ckenreg|CKEN_FFUART); 1054 #endif 1055 1056 return; 1057 } 1058 #endif /* FFUARTCONSOLE */ 1059 1060 #ifdef BTUARTCONSOLE 1061 #ifdef KGDB 1062 if (0 == strcmp(kgdb_devname, "btuart")) { 1063 /* port is reserved for kgdb */ 1064 } else 1065 #endif 1066 if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_BTUART_BASE, 1067 comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) { 1068 ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN, 1069 ckenreg|CKEN_BTUART); 1070 return; 1071 } 1072 #endif /* BTUARTCONSOLE */ 1073 1074 1075 #endif /* NCOM */ 1076 1077 } 1078 1079 #ifdef KGDB 1080 void 1081 kgdb_port_init(void) 1082 { 1083 #if (NCOM > 0) && defined(COM_PXA2X0) 1084 paddr_t paddr = 0; 1085 uint32_t ckenreg = ioreg_read(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN); 1086 1087 if (0 == strcmp(kgdb_devname, "ffuart")) { 1088 paddr = PXA2X0_FFUART_BASE; 1089 ckenreg |= CKEN_FFUART; 1090 } 1091 else if (0 == strcmp(kgdb_devname, "btuart")) { 1092 paddr = PXA2X0_BTUART_BASE; 1093 ckenreg |= CKEN_BTUART; 1094 } 1095 1096 if (paddr && 1097 0 == com_kgdb_attach(&pxa2x0_a4x_bs_tag, paddr, 1098 kgdb_rate, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comkgdbmode)) { 1099 1100 ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN, ckenreg); 1101 } 1102 #endif 1103 } 1104 #endif 1105 1106 #if 0 1107 /* 1108 * display a number in hex LED. 1109 * a digit is blank when the corresponding bit in arg blank is 1 1110 */ 1111 unsigned short led_control_value = 0; 1112 1113 void 1114 hex_led_blank(uint32_t value, int blank) 1115 { 1116 int save = disable_interrupts(I32_bit); 1117 1118 ioreg_write(LUBBOCK_OBIO_VBASE+0x10, value); 1119 led_control_value = (led_control_value & 0xff) 1120 | ((blank & 0xff)<<8); 1121 ioreg_write(LUBBOCK_OBIO_VBASE+0x40, led_control_value); 1122 restore_interrupts(save); 1123 } 1124 #endif 1125