1 /* $NetBSD: iyonix_machdep.c,v 1.4 2020/04/18 11:00:40 skrll Exp $ */ 2 3 /* 4 * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc. 5 * All rights reserved. 6 * 7 * Based on code written by Jason R. Thorpe and Steve C. Woodford for 8 * Wasabi Systems, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed for the NetBSD Project by 21 * Wasabi Systems, Inc. 22 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 23 * or promote products derived from this software without specific prior 24 * written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /* 40 * Copyright (c) 1997,1998 Mark Brinicombe. 41 * Copyright (c) 1997,1998 Causality Limited. 42 * All rights reserved. 43 * 44 * Redistribution and use in source and binary forms, with or without 45 * modification, are permitted provided that the following conditions 46 * are met: 47 * 1. Redistributions of source code must retain the above copyright 48 * notice, this list of conditions and the following disclaimer. 49 * 2. Redistributions in binary form must reproduce the above copyright 50 * notice, this list of conditions and the following disclaimer in the 51 * documentation and/or other materials provided with the distribution. 52 * 3. All advertising materials mentioning features or use of this software 53 * must display the following acknowledgement: 54 * This product includes software developed by Mark Brinicombe 55 * for the NetBSD Project. 56 * 4. The name of the company nor the name of the author may be used to 57 * endorse or promote products derived from this software without specific 58 * prior written permission. 59 * 60 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 61 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 62 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 63 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 64 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 65 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 66 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 67 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 68 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 69 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 70 * SUCH DAMAGE. 71 * 72 * Machine dependent functions for kernel setup for Iyonix. 73 */ 74 75 #include <sys/cdefs.h> 76 __KERNEL_RCSID(0, "$NetBSD: iyonix_machdep.c,v 1.4 2020/04/18 11:00:40 skrll Exp $"); 77 78 #include "opt_ddb.h" 79 #include "opt_kgdb.h" 80 81 #include <sys/param.h> 82 #include <sys/device.h> 83 #include <sys/systm.h> 84 #include <sys/kernel.h> 85 #include <sys/exec.h> 86 #include <sys/proc.h> 87 #include <sys/msgbuf.h> 88 #include <sys/reboot.h> 89 #include <sys/termios.h> 90 #include <sys/ksyms.h> 91 #include <sys/bus.h> 92 #include <sys/cpu.h> 93 94 #include <uvm/uvm_extern.h> 95 96 #include <dev/cons.h> 97 98 #include <dev/pci/ppbreg.h> 99 #include <dev/ic/i8259reg.h> 100 101 #include <net/if.h> 102 #include <net/if_ether.h> 103 104 #include <machine/db_machdep.h> 105 #include <ddb/db_sym.h> 106 #include <ddb/db_extern.h> 107 108 #include <acorn32/include/bootconfig.h> 109 #include <arm/locore.h> 110 #include <arm/undefined.h> 111 112 #include <arm/arm32/machdep.h> 113 114 #include <arm/xscale/i80321reg.h> 115 #include <arm/xscale/i80321var.h> 116 117 #include <evbarm/iyonix/iyonixreg.h> 118 #include <evbarm/iyonix/obiovar.h> 119 120 #include <dev/wscons/wsconsio.h> 121 #include <dev/wscons/wsdisplayvar.h> 122 #include <dev/rasops/rasops.h> 123 #include <dev/wscons/wsdisplay_vconsvar.h> 124 #include <dev/wsfont/wsfont.h> 125 126 #include "ksyms.h" 127 128 #define KERNEL_TEXT_BASE KERNEL_BASE 129 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000) 130 131 struct vcons_screen rascons_console_screen; 132 133 struct wsscreen_descr rascons_stdscreen = { 134 "std", 135 0, 0, /* will be filled in -- XXX shouldn't, it's global */ 136 0, 137 0, 0, 138 WSSCREEN_REVERSE 139 }; 140 141 /* 142 * The range 0xc1000000 - 0xccffffff is available for kernel VM space 143 * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff 144 */ 145 #define KERNEL_VM_SIZE 0x0C000000 146 147 struct bootconfig bootconfig; /* Boot config storage */ 148 149 char *boot_args; 150 151 vaddr_t physical_start; 152 vaddr_t physical_freestart; 153 vaddr_t physical_freeend; 154 vaddr_t physical_end; 155 u_int free_pages; 156 vaddr_t pagetables_start; 157 158 /*int debug_flags;*/ 159 #ifndef PMAP_STATIC_L1S 160 int max_processes = 64; /* Default number */ 161 #endif /* !PMAP_STATIC_L1S */ 162 163 /* Physical and virtual addresses for some global pages */ 164 pv_addr_t minidataclean; 165 166 paddr_t msgbufphys; 167 168 #define KERNEL_PT_SYS 0 /* L2 table for mapping zero page */ 169 170 #define KERNEL_PT_KERNEL 1 /* L2 table for mapping kernel */ 171 #define KERNEL_PT_KERNEL_NUM 4 172 173 /* L2 table for mapping i80321 */ 174 #define KERNEL_PT_IOPXS (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM) 175 176 /* L2 tables for mapping kernel VM */ 177 #define KERNEL_PT_VMDATA (KERNEL_PT_IOPXS + 1) 178 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */ 179 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM) 180 181 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS]; 182 183 char iyonix_macaddr[ETHER_ADDR_LEN]; 184 185 char boot_consdev[16]; 186 187 /* Prototypes */ 188 189 void iyonix_pic_init(void); 190 void iyonix_read_machineid(void); 191 192 void consinit(void); 193 194 static void consinit_com(const char *consdev); 195 static void consinit_genfb(const char *consdev); 196 static void process_kernel_args(void); 197 static void parse_iyonix_bootargs(char *args); 198 199 #include "com.h" 200 #if NCOM > 0 201 #include <dev/ic/comreg.h> 202 #include <dev/ic/comvar.h> 203 #endif 204 205 #include "genfb.h" 206 207 #if (NGENFB == 0) && (NCOM == 0) 208 # error "No valid console device (com or genfb)" 209 #elif defined(COMCONSOLE) || (NGENFB == 0) 210 # define DEFAULT_CONSDEV "com" 211 #else 212 # define DEFAULT_CONSDEV "genfb" 213 #endif 214 215 /* 216 * Define the default console speed for the machine. 217 */ 218 #ifndef CONSPEED 219 #define CONSPEED B9600 220 #endif /* ! CONSPEED */ 221 222 #ifndef CONUNIT 223 #define CONUNIT 0 224 #endif 225 226 #ifndef CONMODE 227 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ 228 #endif 229 230 int comcnspeed = CONSPEED; 231 int comcnmode = CONMODE; 232 int comcnunit = CONUNIT; 233 234 #if KGDB 235 #ifndef KGDB_DEVNAME 236 #error Must define KGDB_DEVNAME 237 #endif 238 const char kgdb_devname[] = KGDB_DEVNAME; 239 240 #ifndef KGDB_DEVADDR 241 #error Must define KGDB_DEVADDR 242 #endif 243 unsigned long kgdb_devaddr = KGDB_DEVADDR; 244 245 #ifndef KGDB_DEVRATE 246 #define KGDB_DEVRATE CONSPEED 247 #endif 248 int kgdb_devrate = KGDB_DEVRATE; 249 250 #ifndef KGDB_DEVMODE 251 #define KGDB_DEVMODE CONMODE 252 #endif 253 int kgdb_devmode = KGDB_DEVMODE; 254 #endif /* KGDB */ 255 256 /* 257 * void cpu_reboot(int howto, char *bootstr) 258 * 259 * Reboots the system 260 * 261 * Deal with any syncing, unmounting, dumping and shutdown hooks, 262 * then reset the CPU. 263 */ 264 void 265 cpu_reboot(int howto, char *bootstr) 266 { 267 268 /* 269 * If we are still cold then hit the air brakes 270 * and crash to earth fast 271 */ 272 if (cold) { 273 doshutdownhooks(); 274 pmf_system_shutdown(boothowto); 275 printf("The operating system has halted.\n"); 276 printf("Please press any key to reboot.\n\n"); 277 cngetc(); 278 printf("rebooting...\n"); 279 goto reset; 280 } 281 282 /* Disable console buffering */ 283 284 /* 285 * If RB_NOSYNC was not specified sync the discs. 286 * Note: Unless cold is set to 1 here, syslogd will die during the 287 * unmount. It looks like syslogd is getting woken up only to find 288 * that it cannot page part of the binary in as the filesystem has 289 * been unmounted. 290 */ 291 if (!(howto & RB_NOSYNC)) 292 bootsync(); 293 294 /* Say NO to interrupts */ 295 splhigh(); 296 297 /* Do a dump if requested. */ 298 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) 299 dumpsys(); 300 301 /* Run any shutdown hooks */ 302 doshutdownhooks(); 303 304 pmf_system_shutdown(boothowto); 305 306 /* Make sure IRQ's are disabled */ 307 IRQdisable; 308 309 if (howto & RB_HALT) { 310 printf("The operating system has halted.\n"); 311 printf("Please press any key to reboot.\n\n"); 312 cngetc(); 313 } 314 315 printf("rebooting...\n\r"); 316 reset: 317 /* 318 * Make really really sure that all interrupts are disabled, 319 * and poke the Internal Bus and Peripheral Bus reset lines. 320 */ 321 (void) disable_interrupts(I32_bit|F32_bit); 322 *(volatile uint32_t *)(IYONIX_80321_VBASE + VERDE_ATU_BASE + 323 ATU_PCSR) = PCSR_RIB | PCSR_RPB; 324 325 /* ...and if that didn't work, just croak. */ 326 printf("RESET FAILED!\n"); 327 for (;;); 328 } 329 330 /* Static device mappings. */ 331 static const struct pmap_devmap iyonix_devmap[] = { 332 /* 333 * Map the on-board devices VA == PA so that we can access them 334 * with the MMU on or off. 335 */ 336 { 337 IYONIX_OBIO_BASE, 338 IYONIX_OBIO_BASE, 339 IYONIX_OBIO_SIZE, 340 VM_PROT_READ|VM_PROT_WRITE, 341 PTE_NOCACHE, 342 }, 343 344 { 345 IYONIX_IOW_VBASE, 346 VERDE_OUT_XLATE_IO_WIN0_BASE, 347 VERDE_OUT_XLATE_IO_WIN_SIZE, 348 VM_PROT_READ|VM_PROT_WRITE, 349 PTE_NOCACHE, 350 }, 351 352 { 353 IYONIX_80321_VBASE, 354 VERDE_PMMR_BASE, 355 VERDE_PMMR_SIZE, 356 VM_PROT_READ|VM_PROT_WRITE, 357 PTE_NOCACHE, 358 }, 359 360 { 361 IYONIX_FLASH_BASE, 362 IYONIX_FLASH_BASE, 363 IYONIX_FLASH_SIZE, 364 VM_PROT_READ|VM_PROT_WRITE, 365 PTE_NOCACHE, 366 }, 367 368 { 369 0, 370 0, 371 0, 372 0, 373 0, 374 } 375 }; 376 377 /* Read out the Machine ID from the flash, and stash it away for later use. */ 378 379 void 380 iyonix_read_machineid(void) 381 { 382 volatile uint32_t *flashbase = (uint32_t *)IYONIX_FLASH_BASE; 383 volatile uint16_t *flashword = (uint16_t *)IYONIX_FLASH_BASE; 384 union { 385 uint32_t w[2]; 386 uint8_t b[8]; 387 } machid; 388 389 /* Enter SecSi Sector Region */ 390 flashword[0x555] = 0xAA; 391 flashword[0x2AA] = 0x55; 392 flashword[0x555] = 0x88; 393 394 machid.w[0] = flashbase[0]; 395 machid.w[1] = flashbase[1]; 396 397 iyonix_macaddr[0] = machid.b[6]; 398 iyonix_macaddr[1] = machid.b[5]; 399 iyonix_macaddr[2] = machid.b[4]; 400 iyonix_macaddr[3] = machid.b[3]; 401 iyonix_macaddr[4] = machid.b[2]; 402 iyonix_macaddr[5] = machid.b[1]; 403 404 /* Exit SecSi Sector Region */ 405 flashword[0x555] = 0xAA; 406 flashword[0x2AA] = 0x55; 407 flashword[0x555] = 0x90; 408 flashword[0x555] = 0x00; 409 } 410 411 #define IYONIX_PIC_WRITE(a,v) (*((char *)IYONIX_OBIO_BASE + (a)) = (v)) 412 413 void 414 iyonix_pic_init(void) 415 { 416 IYONIX_PIC_WRITE(IYONIX_MASTER_PIC + PIC_ICW1, ICW1_IC4|ICW1_SELECT); 417 IYONIX_PIC_WRITE(IYONIX_MASTER_PIC + PIC_ICW2, ICW2_IRL(0)); 418 IYONIX_PIC_WRITE(IYONIX_MASTER_PIC + PIC_ICW3, ICW3_CASCADE(2)); 419 IYONIX_PIC_WRITE(IYONIX_MASTER_PIC + PIC_ICW4, ICW4_8086); 420 IYONIX_PIC_WRITE(IYONIX_MASTER_PIC + PIC_OCW1, 0x0); /* Unmask */ 421 422 IYONIX_PIC_WRITE(IYONIX_SLAVE_PIC + PIC_ICW1, ICW1_IC4|ICW1_SELECT); 423 IYONIX_PIC_WRITE(IYONIX_SLAVE_PIC + PIC_ICW2, ICW2_IRL(0)); 424 IYONIX_PIC_WRITE(IYONIX_SLAVE_PIC + PIC_ICW3, ICW3_CASCADE(1)); 425 IYONIX_PIC_WRITE(IYONIX_SLAVE_PIC + PIC_ICW4, ICW4_8086); 426 IYONIX_PIC_WRITE(IYONIX_SLAVE_PIC + PIC_OCW1, 0x0); /* Unmask */ 427 428 } 429 430 /* 431 * vaddr_t initarm(...) 432 * 433 * Initial entry point on startup. This gets called before main() is 434 * entered. 435 * It should be responsible for setting up everything that must be 436 * in place when main is called. 437 * This includes 438 * Taking a copy of the boot configuration structure. 439 * Initialising the physical console so characters can be printed. 440 * Setting up page tables for the kernel 441 * Initialising interrupt controllers to a sane default state 442 */ 443 vaddr_t 444 initarm(void *arg) 445 { 446 struct bootconfig *passed_bootconfig = arg; 447 extern vaddr_t xscale_cache_clean_addr; 448 #ifdef DIAGNOSTIC 449 extern vsize_t xscale_minidata_clean_size; 450 #endif 451 extern char _end[]; 452 int loop; 453 int loop1; 454 u_int l1pagetable; 455 paddr_t memstart = 0; 456 psize_t memsize = 0; 457 458 /* Calibrate the delay loop. */ 459 i80321_calibrate_delay(); 460 461 /* Ensure bootconfig has valid magic */ 462 if (passed_bootconfig->magic != BOOTCONFIG_MAGIC) 463 printf("Bad bootconfig magic: %x\n", bootconfig.magic); 464 465 bootconfig = *passed_bootconfig; 466 467 /* Fake bootconfig structure for anything that still needs it */ 468 /* XXX must make the memory description h/w independent */ 469 bootconfig.dram[0].address = memstart; 470 bootconfig.dram[0].pages = memsize / PAGE_SIZE; 471 bootconfig.dramblocks = 1; 472 473 /* process arguments - can update boothowto */ 474 process_kernel_args(); 475 476 /* 477 * Since we map the on-board devices VA==PA, and the kernel 478 * is running VA==PA, it's possible for us to initialize 479 * the console now. 480 */ 481 consinit(); 482 483 #ifdef VERBOSE_INIT_ARM 484 /* Talk to the user */ 485 printf("\nNetBSD/iyonix booting ...\n"); 486 #endif 487 488 /* 489 * Heads up ... Setup the CPU / MMU / TLB functions 490 */ 491 if (set_cpufuncs()) 492 panic("cpu not recognized!"); 493 494 /* 495 * We are currently running with the MMU enabled and the 496 * entire address space mapped VA==PA. 497 */ 498 499 /* 500 * Fetch the SDRAM start/size from the i80321 SDRAM configuration 501 * registers. 502 */ 503 i80321_sdram_bounds(&obio_bs_tag, VERDE_PMMR_BASE + VERDE_MCU_BASE, 504 &memstart, &memsize); 505 506 #ifdef VERBOSE_INIT_ARM 507 printf("initarm: Configuring system ...\n"); 508 #endif 509 510 /* 511 * Set up the variables that define the availability of 512 * physical memory. 513 */ 514 physical_start = memstart; 515 physical_end = physical_start + memsize; 516 517 physical_freestart = physical_start + 518 (((uintptr_t) _end - KERNEL_TEXT_BASE + PGOFSET) & ~PGOFSET); 519 physical_freeend = physical_end; 520 521 physmem = (physical_end - physical_start) / PAGE_SIZE; 522 523 #ifdef VERBOSE_INIT_ARM 524 /* Tell the user about the memory */ 525 printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem, 526 physical_start, physical_end - 1); 527 #endif 528 529 /* 530 * The kernel is loaded at the base of physical memory. We allocate 531 * pages upwards from the top of the kernel. 532 * 533 * We need to allocate some fixed page tables to get the kernel 534 * going. We allocate one page directory and a number of page 535 * tables and store the physical addresses in the kernel_pt_table 536 * array. 537 * 538 * The kernel page directory must be on a 16K boundary. The page 539 * tables must be on 4K boundaries. What we do is allocate the 540 * page directory on the first 16K boundary that we encounter, and 541 * the page tables on 4K boundaries otherwise. Since we allocate 542 * at least 3 L2 page tables, we are guaranteed to encounter at 543 * least one 16K aligned region. 544 */ 545 546 #ifdef VERBOSE_INIT_ARM 547 printf("Allocating page tables\n"); 548 #endif 549 550 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; 551 552 #ifdef VERBOSE_INIT_ARM 553 printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n", 554 physical_freestart, free_pages, free_pages); 555 #endif 556 557 /* Define a macro to simplify memory allocation */ 558 #define valloc_pages(var, np) \ 559 alloc_pages((var).pv_pa, (np)); \ 560 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start; 561 562 #define alloc_pages(var, np) \ 563 (var) = physical_freestart; \ 564 physical_freestart += ((np) * PAGE_SIZE); \ 565 if (physical_freeend < physical_freestart) \ 566 panic("initarm: out of memory"); \ 567 free_pages -= (np); \ 568 memset((char *)(var), 0, ((np) * PAGE_SIZE)); 569 570 loop1 = 0; 571 kernel_l1pt.pv_pa = kernel_l1pt.pv_va = 0; 572 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { 573 /* Are we 16KB aligned for an L1 ? */ 574 if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0 575 && kernel_l1pt.pv_pa == 0) { 576 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); 577 } else { 578 valloc_pages(kernel_pt_table[loop1], 579 L2_TABLE_SIZE / PAGE_SIZE); 580 ++loop1; 581 } 582 } 583 584 /* This should never be able to happen but better confirm that. */ 585 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0) 586 panic("initarm: Failed to align the kernel page directory"); 587 588 /* 589 * Allocate a page for the system page mapped to V0x00000000 590 * This page will just contain the system vectors and can be 591 * shared by all processes. 592 */ 593 alloc_pages(systempage.pv_pa, 1); 594 595 /* Allocate stacks for all modes */ 596 valloc_pages(irqstack, IRQ_STACK_SIZE); 597 valloc_pages(abtstack, ABT_STACK_SIZE); 598 valloc_pages(undstack, UND_STACK_SIZE); 599 valloc_pages(kernelstack, UPAGES); 600 601 /* Allocate enough pages for cleaning the Mini-Data cache. */ 602 KASSERT(xscale_minidata_clean_size <= PAGE_SIZE); 603 valloc_pages(minidataclean, 1); 604 605 #ifdef VERBOSE_INIT_ARM 606 printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, 607 irqstack.pv_va); 608 printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, 609 abtstack.pv_va); 610 printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, 611 undstack.pv_va); 612 printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, 613 kernelstack.pv_va); 614 #endif 615 616 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); 617 618 /* 619 * Ok we have allocated physical pages for the primary kernel 620 * page tables 621 */ 622 623 #ifdef VERBOSE_INIT_ARM 624 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa); 625 #endif 626 627 /* 628 * Now we start construction of the L1 page table 629 * We start by mapping the L2 page tables into the L1. 630 * This means that we can replace L1 mappings later on if necessary 631 */ 632 l1pagetable = kernel_l1pt.pv_pa; 633 634 /* Map the L2 pages tables in the L1 page table */ 635 pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1), 636 &kernel_pt_table[KERNEL_PT_SYS]); 637 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) 638 pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000, 639 &kernel_pt_table[KERNEL_PT_KERNEL + loop]); 640 pmap_link_l2pt(l1pagetable, IYONIX_IOPXS_VBASE, 641 &kernel_pt_table[KERNEL_PT_IOPXS]); 642 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++) 643 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, 644 &kernel_pt_table[KERNEL_PT_VMDATA + loop]); 645 646 /* update the top of the kernel VM */ 647 pmap_curmaxkvaddr = 648 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); 649 650 #ifdef VERBOSE_INIT_ARM 651 printf("Mapping kernel\n"); 652 #endif 653 654 /* Now we fill in the L2 pagetable for the kernel static code/data */ 655 { 656 extern char etext[], _end[]; 657 size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE; 658 size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE; 659 u_int logical; 660 661 textsize = (textsize + PGOFSET) & ~PGOFSET; 662 totalsize = (totalsize + PGOFSET) & ~PGOFSET; 663 664 logical = 0; /* offset of kernel in RAM */ 665 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, 666 physical_start + logical, textsize, 667 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 668 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, 669 physical_start + logical, totalsize - textsize, 670 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 671 } 672 673 #ifdef VERBOSE_INIT_ARM 674 printf("Constructing L2 page tables\n"); 675 #endif 676 677 /* Map the stack pages */ 678 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, 679 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 680 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, 681 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 682 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, 683 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 684 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, 685 UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 686 687 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, 688 L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); 689 690 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { 691 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, 692 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, 693 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); 694 } 695 696 /* Map the Mini-Data cache clean area. */ 697 xscale_setup_minidata(l1pagetable, minidataclean.pv_va, 698 minidataclean.pv_pa); 699 700 /* Map the vector page. */ 701 pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa, 702 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 703 704 /* Map the statically mapped devices. */ 705 pmap_devmap_bootstrap(l1pagetable, iyonix_devmap); 706 707 /* 708 * Give the XScale global cache clean code an appropriately 709 * sized chunk of unmapped VA space starting at 0xff000000 710 * (our device mappings end before this address). 711 */ 712 xscale_cache_clean_addr = 0xff000000U; 713 714 /* 715 * Now we have the real page tables in place so we can switch to them. 716 * Once this is done we will be running with the REAL kernel page 717 * tables. 718 */ 719 720 /* Switch tables */ 721 #ifdef VERBOSE_INIT_ARM 722 printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n", 723 physical_freestart, free_pages, free_pages); 724 printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa); 725 #endif 726 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); 727 cpu_setttb(kernel_l1pt.pv_pa, true); 728 cpu_tlb_flushID(); 729 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); 730 731 iyonix_read_machineid(); 732 733 /* 734 * Moved from cpu_startup() as data_abort_handler() references 735 * this during uvm init 736 */ 737 uvm_lwp_setuarea(&lwp0, kernelstack.pv_va); 738 739 #ifdef VERBOSE_INIT_ARM 740 printf("done!\n"); 741 #endif 742 743 #ifdef VERBOSE_INIT_ARM 744 printf("bootstrap done.\n"); 745 #endif 746 747 arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL); 748 749 /* 750 * Pages were allocated during the secondary bootstrap for the 751 * stacks for different CPU modes. 752 * We must now set the r13 registers in the different CPU modes to 753 * point to these stacks. 754 * Since the ARM stacks use STMFD etc. we must set r13 to the top end 755 * of the stack memory. 756 */ 757 #ifdef VERBOSE_INIT_ARM 758 printf("init subsystems: stacks "); 759 #endif 760 761 set_stackptr(PSR_IRQ32_MODE, 762 irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); 763 set_stackptr(PSR_ABT32_MODE, 764 abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); 765 set_stackptr(PSR_UND32_MODE, 766 undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); 767 768 /* 769 * Well we should set a data abort handler. 770 * Once things get going this will change as we will need a proper 771 * handler. 772 * Until then we will use a handler that just panics but tells us 773 * why. 774 * Initialisation of the vectors will just panic on a data abort. 775 * This just fills in a slightly better one. 776 */ 777 #ifdef VERBOSE_INIT_ARM 778 printf("vectors "); 779 #endif 780 data_abort_handler_address = (u_int)data_abort_handler; 781 prefetch_abort_handler_address = (u_int)prefetch_abort_handler; 782 undefined_handler_address = (u_int)undefinedinstruction_bounce; 783 784 /* Initialise the undefined instruction handlers */ 785 #ifdef VERBOSE_INIT_ARM 786 printf("undefined "); 787 #endif 788 undefined_init(); 789 790 /* Load memory into UVM. */ 791 #ifdef VERBOSE_INIT_ARM 792 printf("page "); 793 #endif 794 uvm_md_init(); 795 uvm_page_physload(atop(physical_freestart), atop(physical_freeend), 796 atop(physical_freestart), atop(physical_freeend), 797 VM_FREELIST_DEFAULT); 798 799 /* Boot strap pmap telling it where managed kernel virtual memory is */ 800 #ifdef VERBOSE_INIT_ARM 801 printf("pmap "); 802 #endif 803 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); 804 805 /* Setup the IRQ system */ 806 #ifdef VERBOSE_INIT_ARM 807 printf("irq "); 808 #endif 809 i80321_intr_init(); 810 811 #ifdef VERBOSE_INIT_ARM 812 printf("done.\n"); 813 #endif 814 815 #ifdef DDB 816 db_machine_init(); 817 if (boothowto & RB_KDB) 818 Debugger(); 819 #endif 820 821 iyonix_pic_init(); 822 823 printf("args: %s\n", bootconfig.args); 824 printf("howto: %x\n", boothowto); 825 826 /* We return the new stack pointer address */ 827 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP); 828 } 829 830 void 831 consinit(void) 832 { 833 static int consinit_called; 834 835 if (consinit_called != 0) 836 return; 837 838 consinit_called = 1; 839 840 /* We let consinit_<foo> worry about device numbers */ 841 if (strncmp(boot_consdev, "genfb", 5) && 842 strncmp(boot_consdev, "com", 3)) 843 strcpy(boot_consdev, DEFAULT_CONSDEV); 844 845 if (!strncmp(boot_consdev, "com", 3)) 846 consinit_com(boot_consdev); 847 else 848 consinit_genfb(boot_consdev); 849 } 850 851 static void 852 consinit_com(const char *consdev) 853 { 854 static const bus_addr_t comcnaddrs[] = { 855 IYONIX_UART1, /* com0 */ 856 }; 857 /* 858 * Console devices are mapped VA==PA. Our devmap reflects 859 * this, so register it now so drivers can map the console 860 * device. 861 */ 862 pmap_devmap_register(iyonix_devmap); 863 864 /* When we support more than the first serial port as console, 865 * we should check consdev for a number. 866 */ 867 #if NCOM > 0 868 if (comcnattach(&obio_bs_tag, comcnaddrs[comcnunit], comcnspeed, 869 COM_FREQ, COM_TYPE_NORMAL, comcnmode)) 870 { 871 panic("can't init serial console @%lx", comcnaddrs[comcnunit]); 872 } 873 #else 874 panic("serial console @%lx not configured", comcnaddrs[comcnunit]); 875 #endif 876 877 #if KGDB 878 #if NCOM > 0 879 if (strcmp(kgdb_devname, "com") == 0) { 880 com_kgdb_attach(&obio_bs_tag, kgdb_devaddr, kgdb_devrate, 881 COM_FREQ, COM_TYPE_NORMAL, kgdb_devmode); 882 } 883 #endif /* NCOM > 0 */ 884 #endif /* KGDB */ 885 } 886 887 static void 888 consinit_genfb(const char *consdev) 889 { 890 /* NOTYET */ 891 } 892 893 static void 894 process_kernel_args(void) 895 { 896 char *args; 897 898 /* Ok now we will check the arguments for interesting parameters. */ 899 args = bootconfig.args; 900 901 #ifdef BOOTHOWTO 902 boothowto = BOOTHOWTO; 903 #else 904 boothowto = 0; 905 #endif 906 907 /* Only arguments itself are passed from the bootloader */ 908 while (*args == ' ') 909 ++args; 910 911 boot_args = args; 912 parse_mi_bootargs(boot_args); 913 parse_iyonix_bootargs(boot_args); 914 } 915 916 static void 917 parse_iyonix_bootargs(char *args) 918 { 919 char *ptr; 920 921 if (get_bootconf_option(args, "consdev", BOOTOPT_TYPE_STRING, &ptr)) 922 { 923 /* ptr may have trailing clutter */ 924 strlcpy(boot_consdev, ptr, sizeof(boot_consdev)); 925 if ( (ptr = strchr(boot_consdev, ' ')) ) 926 *ptr = 0; 927 } 928 } 929