xref: /netbsd-src/sys/arch/evbarm/ifpga/ifpga_intr.c (revision fad4c9f71477ae11cea2ee75ec82151ac770a534)
1 /*	$NetBSD: ifpga_intr.c,v 1.4 2006/05/17 05:15:26 mrg Exp $	*/
2 
3 /*
4  * Copyright (c) 2001, 2002 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed for the NetBSD Project by
20  *	Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 #ifndef EVBARM_SPL_NOINLINE
39 #define	EVBARM_SPL_NOINLINE
40 #endif
41 
42 /*
43  * Interrupt support for the Integrator FPGA.
44  */
45 
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/malloc.h>
49 
50 #include <uvm/uvm_extern.h>
51 
52 #include <machine/bus.h>
53 #include <machine/intr.h>
54 
55 #include <arm/cpufunc.h>
56 
57 #include <evbarm/ifpga/ifpgareg.h>
58 #include <evbarm/ifpga/ifpgavar.h>
59 
60 /* Interrupt handler queues. */
61 struct intrq intrq[NIRQ];
62 
63 /* Interrupts to mask at each level. */
64 int ifpga_imask[NIPL];
65 
66 /* Current interrupt priority level. */
67 volatile int current_spl_level;
68 
69 /* Interrupts pending. */
70 volatile int ifpga_ipending;
71 
72 /* Software copy of the IRQs we have enabled. */
73 volatile uint32_t intr_enabled;
74 
75 /* Mask if interrupts steered to FIQs. */
76 uint32_t intr_steer;
77 
78 /*
79  * Map a software interrupt queue index (to the unused bits in the
80  * ICU registers -- XXX will need to revisit this if those bits are
81  * ever used in future steppings).
82  */
83 static const uint32_t si_to_irqbit[SI_NQUEUES] = {
84 	IFPGA_INTR_bit31,	/* SI_SOFT */
85 	IFPGA_INTR_bit30,	/* SI_SOFTCLOCK */
86 	IFPGA_INTR_bit29,	/* SI_SOFTNET */
87 	IFPGA_INTR_bit28,	/* SI_SOFTSERIAL */
88 };
89 
90 #define	SI_TO_IRQBIT(si)	(si_to_irqbit[(si)])
91 
92 /*
93  * Map a software interrupt queue to an interrupt priority level.
94  */
95 static const int si_to_ipl[SI_NQUEUES] = {
96 	IPL_SOFT,		/* SI_SOFT */
97 	IPL_SOFTCLOCK,		/* SI_SOFTCLOCK */
98 	IPL_SOFTNET,		/* SI_SOFTNET */
99 	IPL_SOFTSERIAL,		/* SI_SOFTSERIAL */
100 };
101 
102 /*
103  * Interrupt bit names.
104  */
105 const char *ifpga_irqnames[] = {
106 	"soft",		/* 0 */
107 	"uart 0",	/* 1 */
108 	"uart 1",	/* 2 */
109 	"kbd",		/* 3 */
110 	"mouse",	/* 4 */
111 	"tmr 0",	/* 5 */
112 	"tmr 1 hard",	/* 6 */
113 	"tmr 2 stat",	/* 7 */
114 	"rtc",		/* 8 */
115 	"exp 0",	/* 9 */
116 	"exp 1",	/* 10 */
117 	"exp 2",	/* 11 */
118 	"exp 3",	/* 12 */
119 	"pci 0",	/* 13 */
120 	"pci 1",	/* 14 */
121 	"pci 2",	/* 15 */
122 	"pci 3",	/* 16 */
123 	"V3 br",	/* 17 */
124 	"deg",		/* 18 */
125 	"enum",		/* 19 */
126 	"pci lb",	/* 20 */
127 	"autoPC",	/* 21 */
128 	"irq 22",	/* 22 */
129 	"irq 23",	/* 23 */
130 	"irq 24",	/* 24 */
131 	"irq 25",	/* 25 */
132 	"irq 26",	/* 26 */
133 	"irq 27",	/* 27 */
134 	"irq 28",	/* 28 */
135 	"irq 29",	/* 29 */
136 	"irq 30",	/* 30 */
137 	"irq 31",	/* 31 */
138 };
139 
140 void	ifpga_intr_dispatch(struct clockframe *frame);
141 
142 extern struct ifpga_softc *ifpga_sc;
143 
144 static inline uint32_t
145 ifpga_iintsrc_read(void)
146 {
147 	return bus_space_read_4(ifpga_sc->sc_iot, ifpga_sc->sc_irq_ioh,
148 	    IFPGA_INTR_STATUS);
149 }
150 
151 static inline void
152 ifpga_enable_irq(int irq)
153 {
154 
155 	intr_enabled |= (1U << irq);
156 	ifpga_set_intrmask();
157 }
158 
159 static inline void
160 ifpga_disable_irq(int irq)
161 {
162 
163 	intr_enabled &= ~(1U << irq);
164 	ifpga_set_intrmask();
165 }
166 
167 /*
168  * NOTE: This routine must be called with interrupts disabled in the CPSR.
169  */
170 static void
171 ifpga_intr_calculate_masks(void)
172 {
173 	struct intrq *iq;
174 	struct intrhand *ih;
175 	int irq, ipl;
176 
177 	/* First, figure out which IPLs each IRQ has. */
178 	for (irq = 0; irq < NIRQ; irq++) {
179 		int levels = 0;
180 		iq = &intrq[irq];
181 		ifpga_disable_irq(irq);
182 		for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
183 		     ih = TAILQ_NEXT(ih, ih_list))
184 			levels |= (1U << ih->ih_ipl);
185 		iq->iq_levels = levels;
186 	}
187 
188 	/* Next, figure out which IRQs are used by each IPL. */
189 	for (ipl = 0; ipl < NIPL; ipl++) {
190 		int irqs = 0;
191 		for (irq = 0; irq < NIRQ; irq++) {
192 			if (intrq[irq].iq_levels & (1U << ipl))
193 				irqs |= (1U << irq);
194 		}
195 		ifpga_imask[ipl] = irqs;
196 	}
197 
198 	ifpga_imask[IPL_NONE] = 0;
199 
200 	/*
201 	 * Initialize the soft interrupt masks to block themselves.
202 	 */
203 	ifpga_imask[IPL_SOFT] = SI_TO_IRQBIT(SI_SOFT);
204 	ifpga_imask[IPL_SOFTCLOCK] = SI_TO_IRQBIT(SI_SOFTCLOCK);
205 	ifpga_imask[IPL_SOFTNET] = SI_TO_IRQBIT(SI_SOFTNET);
206 	ifpga_imask[IPL_SOFTSERIAL] = SI_TO_IRQBIT(SI_SOFTSERIAL);
207 
208 	/*
209 	 * splsoftclock() is the only interface that users of the
210 	 * generic software interrupt facility have to block their
211 	 * soft intrs, so splsoftclock() must also block IPL_SOFT.
212 	 */
213 	ifpga_imask[IPL_SOFTCLOCK] |= ifpga_imask[IPL_SOFT];
214 
215 	/*
216 	 * splsoftnet() must also block splsoftclock(), since we don't
217 	 * want timer-driven network events to occur while we're
218 	 * processing incoming packets.
219 	 */
220 	ifpga_imask[IPL_SOFTNET] |= ifpga_imask[IPL_SOFTCLOCK];
221 
222 	/*
223 	 * Enforce a heirarchy that gives "slow" device (or devices with
224 	 * limited input buffer space/"real-time" requirements) a better
225 	 * chance at not dropping data.
226 	 */
227 	ifpga_imask[IPL_BIO] |= ifpga_imask[IPL_SOFTNET];
228 	ifpga_imask[IPL_NET] |= ifpga_imask[IPL_BIO];
229 	ifpga_imask[IPL_SOFTSERIAL] |= ifpga_imask[IPL_NET];
230 	ifpga_imask[IPL_TTY] |= ifpga_imask[IPL_SOFTSERIAL];
231 
232 	/*
233 	 * splvm() blocks all interrupts that use the kernel memory
234 	 * allocation facilities.
235 	 */
236 	ifpga_imask[IPL_VM] |= ifpga_imask[IPL_TTY];
237 
238 	/*
239 	 * Audio devices are not allowed to perform memory allocation
240 	 * in their interrupt routines, and they have fairly "real-time"
241 	 * requirements, so give them a high interrupt priority.
242 	 */
243 	ifpga_imask[IPL_AUDIO] |= ifpga_imask[IPL_VM];
244 
245 	/*
246 	 * splclock() must block anything that uses the scheduler.
247 	 */
248 	ifpga_imask[IPL_CLOCK] |= ifpga_imask[IPL_AUDIO];
249 
250 	/*
251 	 * splstatclock() must also block the clock.
252 	 */
253 	ifpga_imask[IPL_STATCLOCK] |= ifpga_imask[IPL_CLOCK];
254 
255 	/*
256 	 * splhigh() must block "everything".
257 	 */
258 	ifpga_imask[IPL_HIGH] |= ifpga_imask[IPL_STATCLOCK];
259 
260 	/*
261 	 * XXX We need serial drivers to run at the absolute highest priority
262 	 * in order to avoid overruns, so serial > high.
263 	 */
264 	ifpga_imask[IPL_SERIAL] |= ifpga_imask[IPL_HIGH];
265 
266 	/*
267 	 * Now compute which IRQs must be blocked when servicing any
268 	 * given IRQ.
269 	 */
270 	for (irq = 0; irq < NIRQ; irq++) {
271 		int irqs = (1U << irq);
272 		iq = &intrq[irq];
273 		if (TAILQ_FIRST(&iq->iq_list) != NULL)
274 			ifpga_enable_irq(irq);
275 		for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
276 		     ih = TAILQ_NEXT(ih, ih_list))
277 			irqs |= ifpga_imask[ih->ih_ipl];
278 		iq->iq_mask = irqs;
279 	}
280 }
281 
282 void
283 ifpga_do_pending(void)
284 {
285 	static __cpu_simple_lock_t processing = __SIMPLELOCK_UNLOCKED;
286 	int new, oldirqstate;
287 
288 	if (__cpu_simple_lock_try(&processing) == 0)
289 		return;
290 
291 	new = current_spl_level;
292 
293 	oldirqstate = disable_interrupts(I32_bit);
294 
295 #define	DO_SOFTINT(si)							\
296 	if ((ifpga_ipending & ~new) & SI_TO_IRQBIT(si)) {		\
297 		ifpga_ipending &= ~SI_TO_IRQBIT(si);			\
298 		current_spl_level |= ifpga_imask[si_to_ipl[(si)]];	\
299 		restore_interrupts(oldirqstate);			\
300 		softintr_dispatch(si);					\
301 		oldirqstate = disable_interrupts(I32_bit);		\
302 		current_spl_level = new;				\
303 	}
304 
305 	DO_SOFTINT(SI_SOFTSERIAL);
306 	DO_SOFTINT(SI_SOFTNET);
307 	DO_SOFTINT(SI_SOFTCLOCK);
308 	DO_SOFTINT(SI_SOFT);
309 
310 	__cpu_simple_unlock(&processing);
311 
312 	restore_interrupts(oldirqstate);
313 }
314 
315 void
316 splx(int new)
317 {
318 
319 	ifpga_splx(new);
320 }
321 
322 int
323 _spllower(int ipl)
324 {
325 
326 	return (ifpga_spllower(ipl));
327 }
328 
329 int
330 _splraise(int ipl)
331 {
332 
333 	return (ifpga_splraise(ipl));
334 }
335 
336 void
337 _setsoftintr(int si)
338 {
339 	int oldirqstate;
340 
341 	oldirqstate = disable_interrupts(I32_bit);
342 	ifpga_ipending |= SI_TO_IRQBIT(si);
343 	restore_interrupts(oldirqstate);
344 
345 	/* Process unmasked pending soft interrupts. */
346 	if ((ifpga_ipending & INT_SWMASK) & ~current_spl_level)
347 		ifpga_do_pending();
348 }
349 
350 /*
351  * ifpga_intr_init:
352  *
353  *	Initialize the rest of the interrupt subsystem, making it
354  *	ready to handle interrupts from devices.
355  */
356 void
357 ifpga_intr_init(void)
358 {
359 	struct intrq *iq;
360 	int i;
361 
362 	intr_enabled = 0;
363 
364 	for (i = 0; i < NIRQ; i++) {
365 		iq = &intrq[i];
366 		TAILQ_INIT(&iq->iq_list);
367 
368 		evcnt_attach_dynamic(&iq->iq_ev, EVCNT_TYPE_INTR,
369 		    NULL, "ifpga", ifpga_irqnames[i]);
370 	}
371 }
372 
373 void
374 ifpga_intr_postinit(void)
375 {
376 	ifpga_intr_calculate_masks();
377 
378 	/* Enable IRQs (don't yet use FIQs). */
379 	enable_interrupts(I32_bit);
380 }
381 
382 void *
383 ifpga_intr_establish(int irq, int ipl, int (*func)(void *), void *arg)
384 {
385 	struct intrq *iq;
386 	struct intrhand *ih;
387 	u_int oldirqstate;
388 
389 	if (irq < 0 || irq > NIRQ)
390 		panic("ifpga_intr_establish: IRQ %d out of range", irq);
391 
392 	ih = malloc(sizeof(*ih), M_DEVBUF, M_NOWAIT);
393 	if (ih == NULL)
394 		return (NULL);
395 
396 	ih->ih_func = func;
397 	ih->ih_arg = arg;
398 	ih->ih_ipl = ipl;
399 	ih->ih_irq = irq;
400 
401 	iq = &intrq[irq];
402 
403 	/* All IOP321 interrupts are level-triggered. */
404 	iq->iq_ist = IST_LEVEL;
405 
406 	oldirqstate = disable_interrupts(I32_bit);
407 
408 	TAILQ_INSERT_TAIL(&iq->iq_list, ih, ih_list);
409 
410 	ifpga_intr_calculate_masks();
411 
412 	restore_interrupts(oldirqstate);
413 
414 	return (ih);
415 }
416 
417 void
418 ifpga_intr_disestablish(void *cookie)
419 {
420 	struct intrhand *ih = cookie;
421 	struct intrq *iq = &intrq[ih->ih_irq];
422 	int oldirqstate;
423 
424 	oldirqstate = disable_interrupts(I32_bit);
425 
426 	TAILQ_REMOVE(&iq->iq_list, ih, ih_list);
427 
428 	ifpga_intr_calculate_masks();
429 
430 	restore_interrupts(oldirqstate);
431 }
432 
433 void
434 ifpga_intr_dispatch(struct clockframe *frame)
435 {
436 	struct intrq *iq;
437 	struct intrhand *ih;
438 	int oldirqstate, pcpl, irq, ibit, hwpend;
439 
440 	pcpl = current_spl_level;
441 
442 	hwpend = ifpga_iintsrc_read();
443 
444 	/*
445 	 * Disable all the interrupts that are pending.  We will
446 	 * reenable them once they are processed and not masked.
447 	 */
448 	intr_enabled &= ~hwpend;
449 	ifpga_set_intrmask();
450 
451 	/* Wait for these interrupts to be suppressed.  */
452 	while ((ifpga_iintsrc_read() & hwpend) != 0)
453 	    ;
454 
455 	while (hwpend != 0) {
456 		irq = ffs(hwpend) - 1;
457 		ibit = (1U << irq);
458 
459 		hwpend &= ~ibit;
460 
461 		if (pcpl & ibit) {
462 			/*
463 			 * IRQ is masked; mark it as pending and check
464 			 * the next one.  Note: the IRQ is already disabled.
465 			 */
466 			ifpga_ipending |= ibit;
467 			continue;
468 		}
469 
470 		ifpga_ipending &= ~ibit;
471 
472 		iq = &intrq[irq];
473 		iq->iq_ev.ev_count++;
474 		uvmexp.intrs++;
475 		current_spl_level |= iq->iq_mask;
476 		oldirqstate = enable_interrupts(I32_bit);
477 		for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
478 		     ih = TAILQ_NEXT(ih, ih_list)) {
479 			(void) (*ih->ih_func)(ih->ih_arg ? ih->ih_arg : frame);
480 		}
481 		restore_interrupts(oldirqstate);
482 		current_spl_level = pcpl;
483 
484 		hwpend |= (ifpga_ipending & IFPGA_INTR_HWMASK) & ~pcpl;
485 
486 		/* Re-enable this interrupt now that's it's cleared. */
487 		intr_enabled |= ibit;
488 		ifpga_set_intrmask();
489 	}
490 
491 	/* Check for pendings soft intrs. */
492 	if ((ifpga_ipending & INT_SWMASK) & ~current_spl_level) {
493 		oldirqstate = enable_interrupts(I32_bit);
494 		ifpga_do_pending();
495 		restore_interrupts(oldirqstate);
496 	}
497 }
498