xref: /netbsd-src/sys/arch/evbarm/hdl_g/hdlg_machdep.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: hdlg_machdep.c,v 1.23 2016/12/22 14:47:55 cherry Exp $	*/
2 
3 /*
4  * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Jason R. Thorpe and Steve C. Woodford for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed for the NetBSD Project by
20  *	Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * Copyright (c) 1997,1998 Mark Brinicombe.
40  * Copyright (c) 1997,1998 Causality Limited.
41  * All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by Mark Brinicombe
54  *	for the NetBSD Project.
55  * 4. The name of the company nor the name of the author may be used to
56  *    endorse or promote products derived from this software without specific
57  *    prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
60  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
61  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
63  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
65  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  * Machine dependent functions for kernel setup for GigaLANDISK
72  * using RedBoot firmware.
73  */
74 
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: hdlg_machdep.c,v 1.23 2016/12/22 14:47:55 cherry Exp $");
77 
78 #include "opt_ddb.h"
79 #include "opt_kgdb.h"
80 #include "opt_pmap_debug.h"
81 
82 #include <sys/param.h>
83 #include <sys/device.h>
84 #include <sys/systm.h>
85 #include <sys/kernel.h>
86 #include <sys/exec.h>
87 #include <sys/proc.h>
88 #include <sys/msgbuf.h>
89 #include <sys/reboot.h>
90 #include <sys/termios.h>
91 #include <sys/ksyms.h>
92 #include <sys/bus.h>
93 #include <sys/cpu.h>
94 
95 #include <uvm/uvm_extern.h>
96 
97 #include <dev/cons.h>
98 
99 #include <machine/db_machdep.h>
100 #include <ddb/db_sym.h>
101 #include <ddb/db_extern.h>
102 
103 #include <machine/bootconfig.h>
104 #include <arm/locore.h>
105 #include <arm/undefined.h>
106 
107 #include <arm/arm32/machdep.h>
108 
109 #include <arm/xscale/i80321reg.h>
110 #include <arm/xscale/i80321var.h>
111 
112 #include <dev/pci/ppbreg.h>
113 
114 #include <evbarm/hdl_g/hdlgreg.h>
115 #include <evbarm/hdl_g/hdlgvar.h>
116 #include <evbarm/hdl_g/obiovar.h>
117 
118 #include "ksyms.h"
119 
120 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
121 #define	KERNEL_TEXT_BASE	(KERNEL_BASE + 0x00200000)
122 #define	KERNEL_VM_BASE		(KERNEL_BASE + 0x01000000)
123 
124 /*
125  * The range 0xc1000000 - 0xccffffff is available for kernel VM space
126  * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
127  */
128 #define KERNEL_VM_SIZE		0x0C000000
129 
130 BootConfig bootconfig;		/* Boot config storage */
131 char *boot_args = NULL;
132 char *boot_file = NULL;
133 
134 vaddr_t physical_start;
135 vaddr_t physical_freestart;
136 vaddr_t physical_freeend;
137 vaddr_t physical_end;
138 u_int free_pages;
139 
140 /*int debug_flags;*/
141 #ifndef PMAP_STATIC_L1S
142 int max_processes = 64;			/* Default number */
143 #endif	/* !PMAP_STATIC_L1S */
144 
145 pv_addr_t minidataclean;
146 
147 paddr_t msgbufphys;
148 
149 #ifdef PMAP_DEBUG
150 extern int pmap_debug_level;
151 #endif
152 
153 #define KERNEL_PT_SYS		0	/* L2 table for mapping zero page */
154 
155 #define KERNEL_PT_KERNEL	1	/* L2 table for mapping kernel */
156 #define	KERNEL_PT_KERNEL_NUM	4
157 
158 					/* L2 table for mapping i80321 */
159 #define	KERNEL_PT_IOPXS		(KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
160 
161 					/* L2 tables for mapping kernel VM */
162 #define KERNEL_PT_VMDATA	(KERNEL_PT_IOPXS + 1)
163 #define	KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
164 #define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
165 
166 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
167 
168 /* Prototypes */
169 void consinit(void);
170 
171 /* Static device mappings. */
172 static const struct pmap_devmap hdlg_devmap[] = {
173     /*
174      * Map the on-board devices VA == PA so that we can access them
175      * with the MMU on or off.
176      */
177     {
178 	HDLG_OBIO_BASE,
179 	HDLG_OBIO_BASE,
180 	HDLG_OBIO_SIZE,
181 	VM_PROT_READ|VM_PROT_WRITE,
182 	PTE_NOCACHE,
183     },
184 
185     {
186 	HDLG_IOW_VBASE,
187 	VERDE_OUT_XLATE_IO_WIN0_BASE,
188 	VERDE_OUT_XLATE_IO_WIN_SIZE,
189 	VM_PROT_READ|VM_PROT_WRITE,
190 	PTE_NOCACHE,
191    },
192 
193    {
194 	HDLG_80321_VBASE,
195 	VERDE_PMMR_BASE,
196 	VERDE_PMMR_SIZE,
197 	VM_PROT_READ|VM_PROT_WRITE,
198 	PTE_NOCACHE,
199    },
200 
201    {
202 	0,
203 	0,
204 	0,
205 	0,
206 	0,
207     }
208 };
209 
210 static void
211 hardclock_hook(void)
212 {
213 
214 	/* Nothing to do */
215 }
216 
217 /*
218  * u_int initarm(...)
219  *
220  * Initial entry point on startup. This gets called before main() is
221  * entered.
222  * It should be responsible for setting up everything that must be
223  * in place when main is called.
224  * This includes
225  *   Taking a copy of the boot configuration structure.
226  *   Initialising the physical console so characters can be printed.
227  *   Setting up page tables for the kernel
228  *   Relocating the kernel to the bottom of physical memory
229  */
230 u_int
231 initarm(void *arg)
232 {
233 	extern vaddr_t xscale_cache_clean_addr;
234 #ifdef DIAGNOSTIC
235 	extern vsize_t xscale_minidata_clean_size;
236 #endif
237 	int loop;
238 	int loop1;
239 	u_int l1pagetable;
240 	paddr_t memstart;
241 	psize_t memsize;
242 
243 	/* Calibrate the delay loop. */
244 	i80321_calibrate_delay();
245 	i80321_hardclock_hook = hardclock_hook;
246 
247 	/*
248 	 * Since we map the on-board devices VA==PA, and the kernel
249 	 * is running VA==PA, it's possible for us to initialize
250 	 * the console now.
251 	 */
252 	consinit();
253 
254 #ifdef VERBOSE_INIT_ARM
255 	/* Talk to the user */
256 	printf("\nNetBSD/evbarm (HDL-G) booting ...\n");
257 #endif
258 
259 	/*
260 	 * Heads up ... Setup the CPU / MMU / TLB functions
261 	 */
262 	if (set_cpufuncs())
263 		panic("CPU not recognized!");
264 
265 	/*
266 	 * We are currently running with the MMU enabled and the
267 	 * entire address space mapped VA==PA, except for the
268 	 * first 64M of RAM is also double-mapped at 0xc0000000.
269 	 * There is an L1 page table at 0xa0004000.
270 	 */
271 
272 	/*
273 	 * Fetch the SDRAM start/size from the i80321 SDRAM configuration
274 	 * registers.
275 	 */
276 	i80321_sdram_bounds(&obio_bs_tag, VERDE_PMMR_BASE + VERDE_MCU_BASE,
277 	    &memstart, &memsize);
278 
279 #ifdef VERBOSE_INIT_ARM
280 	printf("initarm: Configuring system ...\n");
281 #endif
282 
283 	/* Fake bootconfig structure for the benefit of pmap.c */
284 	/* XXX must make the memory description h/w independent */
285 	bootconfig.dramblocks = 1;
286 	bootconfig.dram[0].address = memstart;
287 	bootconfig.dram[0].pages = memsize / PAGE_SIZE;
288 
289 	/*
290 	 * Set up the variables that define the availablilty of
291 	 * physical memory.  For now, we're going to set
292 	 * physical_freestart to 0xa0200000 (where the kernel
293 	 * was loaded), and allocate the memory we need downwards.
294 	 * If we get too close to the L1 table that we set up, we
295 	 * will panic.  We will update physical_freestart and
296 	 * physical_freeend later to reflect what pmap_bootstrap()
297 	 * wants to see.
298 	 *
299 	 * XXX pmap_bootstrap() needs an enema.
300 	 */
301 	physical_start = bootconfig.dram[0].address;
302 	physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
303 
304 	physical_freestart = 0xa0009000UL;
305 	physical_freeend = 0xa0200000UL;
306 
307 	physmem = (physical_end - physical_start) / PAGE_SIZE;
308 
309 #ifdef VERBOSE_INIT_ARM
310 	/* Tell the user about the memory */
311 	printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
312 	    physical_start, physical_end - 1);
313 #endif
314 
315 	/*
316 	 * Okay, the kernel starts 2MB in from the bottom of physical
317 	 * memory.  We are going to allocate our bootstrap pages downwards
318 	 * from there.
319 	 *
320 	 * We need to allocate some fixed page tables to get the kernel
321 	 * going.  We allocate one page directory and a number of page
322 	 * tables and store the physical addresses in the kernel_pt_table
323 	 * array.
324 	 *
325 	 * The kernel page directory must be on a 16K boundary.  The page
326 	 * tables must be on 4K boundaries.  What we do is allocate the
327 	 * page directory on the first 16K boundary that we encounter, and
328 	 * the page tables on 4K boundaries otherwise.  Since we allocate
329 	 * at least 3 L2 page tables, we are guaranteed to encounter at
330 	 * least one 16K aligned region.
331 	 */
332 
333 #ifdef VERBOSE_INIT_ARM
334 	printf("Allocating page tables\n");
335 #endif
336 
337 	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
338 
339 #ifdef VERBOSE_INIT_ARM
340 	printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
341 	       physical_freestart, free_pages, free_pages);
342 #endif
343 
344 	/* Define a macro to simplify memory allocation */
345 #define	valloc_pages(var, np)				\
346 	alloc_pages((var).pv_pa, (np));			\
347 	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
348 
349 #define alloc_pages(var, np)				\
350 	physical_freeend -= ((np) * PAGE_SIZE);		\
351 	if (physical_freeend < physical_freestart)	\
352 		panic("initarm: out of memory");	\
353 	(var) = physical_freeend;			\
354 	free_pages -= (np);				\
355 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
356 
357 	loop1 = 0;
358 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
359 		/* Are we 16KB aligned for an L1 ? */
360 		if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
361 		    && kernel_l1pt.pv_pa == 0) {
362 			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
363 		} else {
364 			valloc_pages(kernel_pt_table[loop1],
365 			    L2_TABLE_SIZE / PAGE_SIZE);
366 			++loop1;
367 		}
368 	}
369 
370 	/* This should never be able to happen but better confirm that. */
371 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
372 		panic("initarm: Failed to align the kernel page directory");
373 
374 	/*
375 	 * Allocate a page for the system page mapped to V0x00000000
376 	 * This page will just contain the system vectors and can be
377 	 * shared by all processes.
378 	 */
379 	alloc_pages(systempage.pv_pa, 1);
380 
381 	/* Allocate stacks for all modes */
382 	valloc_pages(irqstack, IRQ_STACK_SIZE);
383 	valloc_pages(abtstack, ABT_STACK_SIZE);
384 	valloc_pages(undstack, UND_STACK_SIZE);
385 	valloc_pages(kernelstack, UPAGES);
386 
387 	/* Allocate enough pages for cleaning the Mini-Data cache. */
388 	KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
389 	valloc_pages(minidataclean, 1);
390 
391 #ifdef VERBOSE_INIT_ARM
392 	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
393 	    irqstack.pv_va);
394 	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
395 	    abtstack.pv_va);
396 	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
397 	    undstack.pv_va);
398 	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
399 	    kernelstack.pv_va);
400 #endif
401 
402 	/*
403 	 * XXX Defer this to later so that we can reclaim the memory
404 	 * XXX used by the RedBoot page tables.
405 	 */
406 	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
407 
408 	/*
409 	 * Ok we have allocated physical pages for the primary kernel
410 	 * page tables
411 	 */
412 
413 #ifdef VERBOSE_INIT_ARM
414 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
415 #endif
416 
417 	/*
418 	 * Now we start construction of the L1 page table
419 	 * We start by mapping the L2 page tables into the L1.
420 	 * This means that we can replace L1 mappings later on if necessary
421 	 */
422 	l1pagetable = kernel_l1pt.pv_pa;
423 
424 	/* Map the L2 pages tables in the L1 page table */
425 	pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
426 	    &kernel_pt_table[KERNEL_PT_SYS]);
427 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
428 		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
429 		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
430 	pmap_link_l2pt(l1pagetable, HDLG_IOPXS_VBASE,
431 	    &kernel_pt_table[KERNEL_PT_IOPXS]);
432 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
433 		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
434 		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
435 
436 	/* update the top of the kernel VM */
437 	pmap_curmaxkvaddr =
438 	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
439 
440 #ifdef VERBOSE_INIT_ARM
441 	printf("Mapping kernel\n");
442 #endif
443 
444 	/* Now we fill in the L2 pagetable for the kernel static code/data */
445 	{
446 		extern char etext[], _end[];
447 		size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
448 		size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
449 		u_int logical;
450 
451 		textsize = (textsize + PGOFSET) & ~PGOFSET;
452 		totalsize = (totalsize + PGOFSET) & ~PGOFSET;
453 
454 		logical = 0x00200000;	/* offset of kernel in RAM */
455 
456 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
457 		    physical_start + logical, textsize,
458 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
459 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
460 		    physical_start + logical, totalsize - textsize,
461 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
462 	}
463 
464 #ifdef VERBOSE_INIT_ARM
465 	printf("Constructing L2 page tables\n");
466 #endif
467 
468 	/* Map the stack pages */
469 	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
470 	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
471 	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
472 	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
473 	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
474 	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
475 	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
476 	    UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
477 
478 	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
479 	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
480 
481 	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
482 		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
483 		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
484 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
485 	}
486 
487 	/* Map the Mini-Data cache clean area. */
488 	xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
489 	    minidataclean.pv_pa);
490 
491 	/* Map the vector page. */
492 	pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
493 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
494 
495 	/* Map the statically mapped devices. */
496 	pmap_devmap_bootstrap(l1pagetable, hdlg_devmap);
497 
498 	/*
499 	 * Give the XScale global cache clean code an appropriately
500 	 * sized chunk of unmapped VA space starting at 0xff000000
501 	 * (our device mappings end before this address).
502 	 */
503 	xscale_cache_clean_addr = 0xff000000U;
504 
505 	/*
506 	 * Now we have the real page tables in place so we can switch to them.
507 	 * Once this is done we will be running with the REAL kernel page
508 	 * tables.
509 	 */
510 
511 	/*
512 	 * Update the physical_freestart/physical_freeend/free_pages
513 	 * variables.
514 	 */
515 	{
516 		extern char _end[];
517 
518 		physical_freestart = physical_start +
519 		    (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
520 		     KERNEL_BASE);
521 		physical_freeend = physical_end;
522 		free_pages =
523 		    (physical_freeend - physical_freestart) / PAGE_SIZE;
524 	}
525 
526 	/* Switch tables */
527 #ifdef VERBOSE_INIT_ARM
528 	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
529 	       physical_freestart, free_pages, free_pages);
530 	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
531 #endif
532 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
533 	cpu_setttb(kernel_l1pt.pv_pa, true);
534 	cpu_tlb_flushID();
535 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
536 
537 	/*
538 	 * Moved from cpu_startup() as data_abort_handler() references
539 	 * this during uvm init
540 	 */
541 	uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
542 
543 #ifdef VERBOSE_INIT_ARM
544 	printf("done!\n");
545 #endif
546 
547 #ifdef VERBOSE_INIT_ARM
548 	printf("bootstrap done.\n");
549 #endif
550 
551 	arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
552 
553 	/*
554 	 * Pages were allocated during the secondary bootstrap for the
555 	 * stacks for different CPU modes.
556 	 * We must now set the r13 registers in the different CPU modes to
557 	 * point to these stacks.
558 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
559 	 * of the stack memory.
560 	 */
561 #ifdef VERBOSE_INIT_ARM
562 	printf("init subsystems: stacks ");
563 #endif
564 
565 	set_stackptr(PSR_IRQ32_MODE,
566 	    irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
567 	set_stackptr(PSR_ABT32_MODE,
568 	    abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
569 	set_stackptr(PSR_UND32_MODE,
570 	    undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
571 
572 	/*
573 	 * Well we should set a data abort handler.
574 	 * Once things get going this will change as we will need a proper
575 	 * handler.
576 	 * Until then we will use a handler that just panics but tells us
577 	 * why.
578 	 * Initialisation of the vectors will just panic on a data abort.
579 	 * This just fills in a slightly better one.
580 	 */
581 #ifdef VERBOSE_INIT_ARM
582 	printf("vectors ");
583 #endif
584 	data_abort_handler_address = (u_int)data_abort_handler;
585 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
586 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
587 
588 	/* Initialise the undefined instruction handlers */
589 #ifdef VERBOSE_INIT_ARM
590 	printf("undefined ");
591 #endif
592 	undefined_init();
593 
594 	/* Load memory into UVM. */
595 #ifdef VERBOSE_INIT_ARM
596 	printf("page ");
597 #endif
598 	uvm_md_init();
599 	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
600 	    atop(physical_freestart), atop(physical_freeend),
601 	    VM_FREELIST_DEFAULT);
602 
603 	/* Boot strap pmap telling it where the kernel page table is */
604 #ifdef VERBOSE_INIT_ARM
605 	printf("pmap ");
606 #endif
607 	pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
608 
609 	/* Setup the IRQ system */
610 #ifdef VERBOSE_INIT_ARM
611 	printf("irq ");
612 #endif
613 	i80321_intr_init();
614 
615 #ifdef VERBOSE_INIT_ARM
616 	printf("done.\n");
617 #endif
618 
619 #ifdef BOOTHOWTO
620 	boothowto = BOOTHOWTO;
621 #endif
622 
623 #ifdef DDB
624 	db_machine_init();
625 	if (boothowto & RB_KDB)
626 		Debugger();
627 #endif
628 
629 	/* We return the new stack pointer address */
630 	return (kernelstack.pv_va + USPACE_SVC_STACK_TOP);
631 }
632 
633 /*
634  * void cpu_reboot(int howto, char *bootstr)
635  *
636  * Reboots the system
637  *
638  * Deal with any syncing, unmounting, dumping and shutdown hooks,
639  * then reset the CPU.
640  */
641 void
642 cpu_reboot(int howto, char *bootstr)
643 {
644 
645 	/*
646 	 * If we are still cold then hit the air brakes
647 	 * and crash to earth fast
648 	 */
649 	if (cold) {
650 		*(volatile uint8_t *)HDLG_LEDCTRL |= LEDCTRL_STAT_RED;
651 		howto |= RB_HALT;
652 		goto haltsys;
653 	}
654 
655 	/* Disable console buffering */
656 
657 	/*
658 	 * If RB_NOSYNC was not specified sync the discs.
659 	 * Note: Unless cold is set to 1 here, syslogd will die during the
660 	 * unmount.  It looks like syslogd is getting woken up only to find
661 	 * that it cannot page part of the binary in as the filesystem has
662 	 * been unmounted.
663 	 */
664 	if ((howto & RB_NOSYNC) == 0) {
665 		bootsync();
666 		/*resettodr();*/
667 	}
668 
669 	/* wait 1s */
670 	delay(1 * 1000 * 1000);
671 
672 	/* Say NO to interrupts */
673 	splhigh();
674 
675 	/* Do a dump if requested. */
676 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) {
677 		dumpsys();
678 	}
679 
680 haltsys:
681 	/* Run any shutdown hooks */
682 	doshutdownhooks();
683 
684 	pmf_system_shutdown(boothowto);
685 
686 	/* Make sure IRQ's are disabled */
687 	IRQdisable;
688 
689 	if (howto & RB_HALT) {
690 		*(volatile uint8_t *)HDLG_PWRMNG = PWRMNG_POWOFF;
691 		delay(3 * 1000 * 1000);	/* wait 3s */
692 
693 		printf("SHUTDOWN FAILED!\n");
694 		printf("The operating system has halted.\n");
695 		printf("Please press any key to reboot.\n\n");
696 		cngetc();
697 	}
698 
699 	printf("rebooting...\n\r");
700 
701 	(void)disable_interrupts(I32_bit|F32_bit);
702 	cpu_idcache_wbinv_all();
703 	cpu_drain_writebuf();
704 
705 	*(volatile uint8_t *)HDLG_PWRMNG = PWRMNG_RESET;
706 	delay(1 * 1000 * 1000);	/* wait 1s */
707 
708 	/* ...and if that didn't work, just croak. */
709 	printf("RESET FAILED!\n");
710 	for (;;) {
711 		continue;
712 	}
713 }
714 
715 /*
716  * console
717  */
718 #include "com.h"
719 #if NCOM > 0
720 #include <dev/ic/comreg.h>
721 #include <dev/ic/comvar.h>
722 #endif
723 
724 /*
725  * Define the default console speed for the board.  This is generally
726  * what the firmware provided with the board defaults to.
727  */
728 #ifndef CONSPEED
729 #define CONSPEED B115200
730 #endif /* ! CONSPEED */
731 
732 #ifndef CONUNIT
733 #define	CONUNIT	0
734 #endif
735 
736 #ifndef CONMODE
737 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
738 #endif
739 
740 int comcnspeed = CONSPEED;
741 int comcnmode = CONMODE;
742 int comcnunit = CONUNIT;
743 
744 #if KGDB
745 #ifndef KGDB_DEVNAME
746 #error Must define KGDB_DEVNAME
747 #endif
748 const char kgdb_devname[] = KGDB_DEVNAME;
749 
750 #ifndef KGDB_DEVADDR
751 #error Must define KGDB_DEVADDR
752 #endif
753 unsigned long kgdb_devaddr = KGDB_DEVADDR;
754 
755 #ifndef KGDB_DEVRATE
756 #define KGDB_DEVRATE	CONSPEED
757 #endif
758 int kgdb_devrate = KGDB_DEVRATE;
759 
760 #ifndef KGDB_DEVMODE
761 #define KGDB_DEVMODE	CONMODE
762 #endif
763 int kgdb_devmode = KGDB_DEVMODE;
764 #endif /* KGDB */
765 
766 void
767 consinit(void)
768 {
769 	static const bus_addr_t comcnaddrs[] = {
770 		HDLG_UART1,		/* com0 */
771 	};
772 	static int consinit_called;
773 
774 	if (consinit_called)
775 		return;
776 	consinit_called = 1;
777 
778 	/*
779 	 * Console devices are mapped VA==PA.  Our devmap reflects
780 	 * this, so register it now so drivers can map the console
781 	 * device.
782 	 */
783 	pmap_devmap_register(hdlg_devmap);
784 
785 #if NCOM > 0
786 	if (comcnattach(&obio_bs_tag, comcnaddrs[comcnunit], comcnspeed,
787 	    COM_FREQ, COM_TYPE_NORMAL, comcnmode))
788 		panic("can't init serial console @%lx", comcnaddrs[comcnunit]);
789 #else
790 	panic("serial console @%lx not configured", comcnaddrs[comcnunit]);
791 #endif
792 #if KGDB
793 #if NCOM > 0
794 	if (strcmp(kgdb_devname, "com") == 0) {
795 		com_kgdb_attach(&obio_bs_tag, kgdb_devaddr, kgdb_devrate,
796 				COM_FREQ, COM_TYPE_NORMAL, kgdb_devmode);
797 	}
798 #endif	/* NCOM > 0 */
799 #endif	/* KGDB */
800 }
801