xref: /netbsd-src/sys/arch/evbarm/hdl_g/hdlg_machdep.c (revision b1c86f5f087524e68db12794ee9c3e3da1ab17a0)
1 /*	$NetBSD: hdlg_machdep.c,v 1.14 2009/12/26 16:01:24 uebayasi Exp $	*/
2 
3 /*
4  * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Jason R. Thorpe and Steve C. Woodford for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed for the NetBSD Project by
20  *	Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * Copyright (c) 1997,1998 Mark Brinicombe.
40  * Copyright (c) 1997,1998 Causality Limited.
41  * All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by Mark Brinicombe
54  *	for the NetBSD Project.
55  * 4. The name of the company nor the name of the author may be used to
56  *    endorse or promote products derived from this software without specific
57  *    prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
60  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
61  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
63  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
65  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  * Machine dependant functions for kernel setup for GigaLANDISK
72  * using RedBoot firmware.
73  */
74 
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: hdlg_machdep.c,v 1.14 2009/12/26 16:01:24 uebayasi Exp $");
77 
78 #include "opt_ddb.h"
79 #include "opt_kgdb.h"
80 #include "opt_pmap_debug.h"
81 
82 #include <sys/param.h>
83 #include <sys/device.h>
84 #include <sys/systm.h>
85 #include <sys/kernel.h>
86 #include <sys/exec.h>
87 #include <sys/proc.h>
88 #include <sys/msgbuf.h>
89 #include <sys/reboot.h>
90 #include <sys/termios.h>
91 #include <sys/ksyms.h>
92 
93 #include <uvm/uvm_extern.h>
94 
95 #include <dev/cons.h>
96 
97 #include <machine/db_machdep.h>
98 #include <ddb/db_sym.h>
99 #include <ddb/db_extern.h>
100 
101 #include <machine/bootconfig.h>
102 #include <machine/bus.h>
103 #include <machine/cpu.h>
104 #include <machine/frame.h>
105 #include <arm/undefined.h>
106 
107 #include <arm/arm32/machdep.h>
108 
109 #include <arm/xscale/i80321reg.h>
110 #include <arm/xscale/i80321var.h>
111 
112 #include <dev/pci/ppbreg.h>
113 
114 #include <evbarm/hdl_g/hdlgreg.h>
115 #include <evbarm/hdl_g/hdlgvar.h>
116 #include <evbarm/hdl_g/obiovar.h>
117 
118 #include "ksyms.h"
119 
120 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
121 #define	KERNEL_TEXT_BASE	(KERNEL_BASE + 0x00200000)
122 #define	KERNEL_VM_BASE		(KERNEL_BASE + 0x01000000)
123 
124 /*
125  * The range 0xc1000000 - 0xccffffff is available for kernel VM space
126  * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
127  */
128 #define KERNEL_VM_SIZE		0x0C000000
129 
130 /*
131  * Address to call from cpu_reset() to reset the machine.
132  * This is machine architecture dependant as it varies depending
133  * on where the ROM appears when you turn the MMU off.
134  *
135  * XXX Not actually used on hdlg -- clean up the generic
136  * ARM code.
137  */
138 u_int cpu_reset_address = 0x00000000;
139 
140 /* Define various stack sizes in pages */
141 #define IRQ_STACK_SIZE	1
142 #define ABT_STACK_SIZE	1
143 #define UND_STACK_SIZE	1
144 
145 BootConfig bootconfig;		/* Boot config storage */
146 char *boot_args = NULL;
147 char *boot_file = NULL;
148 
149 vm_offset_t physical_start;
150 vm_offset_t physical_freestart;
151 vm_offset_t physical_freeend;
152 vm_offset_t physical_end;
153 u_int free_pages;
154 
155 /*int debug_flags;*/
156 #ifndef PMAP_STATIC_L1S
157 int max_processes = 64;			/* Default number */
158 #endif	/* !PMAP_STATIC_L1S */
159 
160 /* Physical and virtual addresses for some global pages */
161 pv_addr_t irqstack;
162 pv_addr_t undstack;
163 pv_addr_t abtstack;
164 pv_addr_t kernelstack;
165 pv_addr_t minidataclean;
166 
167 vm_offset_t msgbufphys;
168 
169 extern u_int data_abort_handler_address;
170 extern u_int prefetch_abort_handler_address;
171 extern u_int undefined_handler_address;
172 
173 #ifdef PMAP_DEBUG
174 extern int pmap_debug_level;
175 #endif
176 
177 #define KERNEL_PT_SYS		0	/* L2 table for mapping zero page */
178 
179 #define KERNEL_PT_KERNEL	1	/* L2 table for mapping kernel */
180 #define	KERNEL_PT_KERNEL_NUM	4
181 
182 					/* L2 table for mapping i80321 */
183 #define	KERNEL_PT_IOPXS		(KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
184 
185 					/* L2 tables for mapping kernel VM */
186 #define KERNEL_PT_VMDATA	(KERNEL_PT_IOPXS + 1)
187 #define	KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
188 #define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
189 
190 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
191 
192 /* Prototypes */
193 void consinit(void);
194 
195 /* Static device mappings. */
196 static const struct pmap_devmap hdlg_devmap[] = {
197     /*
198      * Map the on-board devices VA == PA so that we can access them
199      * with the MMU on or off.
200      */
201     {
202 	HDLG_OBIO_BASE,
203 	HDLG_OBIO_BASE,
204 	HDLG_OBIO_SIZE,
205 	VM_PROT_READ|VM_PROT_WRITE,
206 	PTE_NOCACHE,
207     },
208 
209     {
210 	HDLG_IOW_VBASE,
211 	VERDE_OUT_XLATE_IO_WIN0_BASE,
212 	VERDE_OUT_XLATE_IO_WIN_SIZE,
213 	VM_PROT_READ|VM_PROT_WRITE,
214 	PTE_NOCACHE,
215    },
216 
217    {
218 	HDLG_80321_VBASE,
219 	VERDE_PMMR_BASE,
220 	VERDE_PMMR_SIZE,
221 	VM_PROT_READ|VM_PROT_WRITE,
222 	PTE_NOCACHE,
223    },
224 
225    {
226 	0,
227 	0,
228 	0,
229 	0,
230 	0,
231     }
232 };
233 
234 static void
235 hardclock_hook(void)
236 {
237 
238 	/* Nothing to do */
239 }
240 
241 /*
242  * u_int initarm(...)
243  *
244  * Initial entry point on startup. This gets called before main() is
245  * entered.
246  * It should be responsible for setting up everything that must be
247  * in place when main is called.
248  * This includes
249  *   Taking a copy of the boot configuration structure.
250  *   Initialising the physical console so characters can be printed.
251  *   Setting up page tables for the kernel
252  *   Relocating the kernel to the bottom of physical memory
253  */
254 u_int
255 initarm(void *arg)
256 {
257 	extern vaddr_t xscale_cache_clean_addr;
258 #ifdef DIAGNOSTIC
259 	extern vsize_t xscale_minidata_clean_size;
260 #endif
261 	int loop;
262 	int loop1;
263 	u_int l1pagetable;
264 	paddr_t memstart;
265 	psize_t memsize;
266 
267 	/* Calibrate the delay loop. */
268 	i80321_calibrate_delay();
269 	i80321_hardclock_hook = hardclock_hook;
270 
271 	/*
272 	 * Since we map the on-board devices VA==PA, and the kernel
273 	 * is running VA==PA, it's possible for us to initialize
274 	 * the console now.
275 	 */
276 	consinit();
277 
278 #ifdef VERBOSE_INIT_ARM
279 	/* Talk to the user */
280 	printf("\nNetBSD/evbarm (HDL-G) booting ...\n");
281 #endif
282 
283 	/*
284 	 * Heads up ... Setup the CPU / MMU / TLB functions
285 	 */
286 	if (set_cpufuncs())
287 		panic("CPU not recognized!");
288 
289 	/*
290 	 * We are currently running with the MMU enabled and the
291 	 * entire address space mapped VA==PA, except for the
292 	 * first 64M of RAM is also double-mapped at 0xc0000000.
293 	 * There is an L1 page table at 0xa0004000.
294 	 */
295 
296 	/*
297 	 * Fetch the SDRAM start/size from the i80321 SDRAM configuration
298 	 * registers.
299 	 */
300 	i80321_sdram_bounds(&obio_bs_tag, VERDE_PMMR_BASE + VERDE_MCU_BASE,
301 	    &memstart, &memsize);
302 
303 #ifdef VERBOSE_INIT_ARM
304 	printf("initarm: Configuring system ...\n");
305 #endif
306 
307 	/* Fake bootconfig structure for the benefit of pmap.c */
308 	/* XXX must make the memory description h/w independent */
309 	bootconfig.dramblocks = 1;
310 	bootconfig.dram[0].address = memstart;
311 	bootconfig.dram[0].pages = memsize / PAGE_SIZE;
312 
313 	/*
314 	 * Set up the variables that define the availablilty of
315 	 * physical memory.  For now, we're going to set
316 	 * physical_freestart to 0xa0200000 (where the kernel
317 	 * was loaded), and allocate the memory we need downwards.
318 	 * If we get too close to the L1 table that we set up, we
319 	 * will panic.  We will update physical_freestart and
320 	 * physical_freeend later to reflect what pmap_bootstrap()
321 	 * wants to see.
322 	 *
323 	 * XXX pmap_bootstrap() needs an enema.
324 	 */
325 	physical_start = bootconfig.dram[0].address;
326 	physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
327 
328 	physical_freestart = 0xa0009000UL;
329 	physical_freeend = 0xa0200000UL;
330 
331 	physmem = (physical_end - physical_start) / PAGE_SIZE;
332 
333 #ifdef VERBOSE_INIT_ARM
334 	/* Tell the user about the memory */
335 	printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
336 	    physical_start, physical_end - 1);
337 #endif
338 
339 	/*
340 	 * Okay, the kernel starts 2MB in from the bottom of physical
341 	 * memory.  We are going to allocate our bootstrap pages downwards
342 	 * from there.
343 	 *
344 	 * We need to allocate some fixed page tables to get the kernel
345 	 * going.  We allocate one page directory and a number of page
346 	 * tables and store the physical addresses in the kernel_pt_table
347 	 * array.
348 	 *
349 	 * The kernel page directory must be on a 16K boundary.  The page
350 	 * tables must be on 4K boundaries.  What we do is allocate the
351 	 * page directory on the first 16K boundary that we encounter, and
352 	 * the page tables on 4K boundaries otherwise.  Since we allocate
353 	 * at least 3 L2 page tables, we are guaranteed to encounter at
354 	 * least one 16K aligned region.
355 	 */
356 
357 #ifdef VERBOSE_INIT_ARM
358 	printf("Allocating page tables\n");
359 #endif
360 
361 	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
362 
363 #ifdef VERBOSE_INIT_ARM
364 	printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
365 	       physical_freestart, free_pages, free_pages);
366 #endif
367 
368 	/* Define a macro to simplify memory allocation */
369 #define	valloc_pages(var, np)				\
370 	alloc_pages((var).pv_pa, (np));			\
371 	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
372 
373 #define alloc_pages(var, np)				\
374 	physical_freeend -= ((np) * PAGE_SIZE);		\
375 	if (physical_freeend < physical_freestart)	\
376 		panic("initarm: out of memory");	\
377 	(var) = physical_freeend;			\
378 	free_pages -= (np);				\
379 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
380 
381 	loop1 = 0;
382 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
383 		/* Are we 16KB aligned for an L1 ? */
384 		if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
385 		    && kernel_l1pt.pv_pa == 0) {
386 			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
387 		} else {
388 			valloc_pages(kernel_pt_table[loop1],
389 			    L2_TABLE_SIZE / PAGE_SIZE);
390 			++loop1;
391 		}
392 	}
393 
394 	/* This should never be able to happen but better confirm that. */
395 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
396 		panic("initarm: Failed to align the kernel page directory");
397 
398 	/*
399 	 * Allocate a page for the system page mapped to V0x00000000
400 	 * This page will just contain the system vectors and can be
401 	 * shared by all processes.
402 	 */
403 	alloc_pages(systempage.pv_pa, 1);
404 
405 	/* Allocate stacks for all modes */
406 	valloc_pages(irqstack, IRQ_STACK_SIZE);
407 	valloc_pages(abtstack, ABT_STACK_SIZE);
408 	valloc_pages(undstack, UND_STACK_SIZE);
409 	valloc_pages(kernelstack, UPAGES);
410 
411 	/* Allocate enough pages for cleaning the Mini-Data cache. */
412 	KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
413 	valloc_pages(minidataclean, 1);
414 
415 #ifdef VERBOSE_INIT_ARM
416 	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
417 	    irqstack.pv_va);
418 	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
419 	    abtstack.pv_va);
420 	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
421 	    undstack.pv_va);
422 	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
423 	    kernelstack.pv_va);
424 #endif
425 
426 	/*
427 	 * XXX Defer this to later so that we can reclaim the memory
428 	 * XXX used by the RedBoot page tables.
429 	 */
430 	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
431 
432 	/*
433 	 * Ok we have allocated physical pages for the primary kernel
434 	 * page tables
435 	 */
436 
437 #ifdef VERBOSE_INIT_ARM
438 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
439 #endif
440 
441 	/*
442 	 * Now we start construction of the L1 page table
443 	 * We start by mapping the L2 page tables into the L1.
444 	 * This means that we can replace L1 mappings later on if necessary
445 	 */
446 	l1pagetable = kernel_l1pt.pv_pa;
447 
448 	/* Map the L2 pages tables in the L1 page table */
449 	pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
450 	    &kernel_pt_table[KERNEL_PT_SYS]);
451 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
452 		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
453 		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
454 	pmap_link_l2pt(l1pagetable, HDLG_IOPXS_VBASE,
455 	    &kernel_pt_table[KERNEL_PT_IOPXS]);
456 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
457 		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
458 		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
459 
460 	/* update the top of the kernel VM */
461 	pmap_curmaxkvaddr =
462 	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
463 
464 #ifdef VERBOSE_INIT_ARM
465 	printf("Mapping kernel\n");
466 #endif
467 
468 	/* Now we fill in the L2 pagetable for the kernel static code/data */
469 	{
470 		extern char etext[], _end[];
471 		size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
472 		size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
473 		u_int logical;
474 
475 		textsize = (textsize + PGOFSET) & ~PGOFSET;
476 		totalsize = (totalsize + PGOFSET) & ~PGOFSET;
477 
478 		logical = 0x00200000;	/* offset of kernel in RAM */
479 
480 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
481 		    physical_start + logical, textsize,
482 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
483 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
484 		    physical_start + logical, totalsize - textsize,
485 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
486 	}
487 
488 #ifdef VERBOSE_INIT_ARM
489 	printf("Constructing L2 page tables\n");
490 #endif
491 
492 	/* Map the stack pages */
493 	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
494 	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
495 	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
496 	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
497 	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
498 	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
499 	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
500 	    UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
501 
502 	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
503 	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
504 
505 	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
506 		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
507 		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
508 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
509 	}
510 
511 	/* Map the Mini-Data cache clean area. */
512 	xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
513 	    minidataclean.pv_pa);
514 
515 	/* Map the vector page. */
516 	pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
517 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
518 
519 	/* Map the statically mapped devices. */
520 	pmap_devmap_bootstrap(l1pagetable, hdlg_devmap);
521 
522 	/*
523 	 * Give the XScale global cache clean code an appropriately
524 	 * sized chunk of unmapped VA space starting at 0xff000000
525 	 * (our device mappings end before this address).
526 	 */
527 	xscale_cache_clean_addr = 0xff000000U;
528 
529 	/*
530 	 * Now we have the real page tables in place so we can switch to them.
531 	 * Once this is done we will be running with the REAL kernel page
532 	 * tables.
533 	 */
534 
535 	/*
536 	 * Update the physical_freestart/physical_freeend/free_pages
537 	 * variables.
538 	 */
539 	{
540 		extern char _end[];
541 
542 		physical_freestart = physical_start +
543 		    (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
544 		     KERNEL_BASE);
545 		physical_freeend = physical_end;
546 		free_pages =
547 		    (physical_freeend - physical_freestart) / PAGE_SIZE;
548 	}
549 
550 	/* Switch tables */
551 #ifdef VERBOSE_INIT_ARM
552 	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
553 	       physical_freestart, free_pages, free_pages);
554 	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
555 #endif
556 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
557 	cpu_setttb(kernel_l1pt.pv_pa);
558 	cpu_tlb_flushID();
559 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
560 
561 	/*
562 	 * Moved from cpu_startup() as data_abort_handler() references
563 	 * this during uvm init
564 	 */
565 	uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
566 
567 #ifdef VERBOSE_INIT_ARM
568 	printf("done!\n");
569 #endif
570 
571 #ifdef VERBOSE_INIT_ARM
572 	printf("bootstrap done.\n");
573 #endif
574 
575 	arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
576 
577 	/*
578 	 * Pages were allocated during the secondary bootstrap for the
579 	 * stacks for different CPU modes.
580 	 * We must now set the r13 registers in the different CPU modes to
581 	 * point to these stacks.
582 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
583 	 * of the stack memory.
584 	 */
585 #ifdef VERBOSE_INIT_ARM
586 	printf("init subsystems: stacks ");
587 #endif
588 
589 	set_stackptr(PSR_IRQ32_MODE,
590 	    irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
591 	set_stackptr(PSR_ABT32_MODE,
592 	    abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
593 	set_stackptr(PSR_UND32_MODE,
594 	    undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
595 
596 	/*
597 	 * Well we should set a data abort handler.
598 	 * Once things get going this will change as we will need a proper
599 	 * handler.
600 	 * Until then we will use a handler that just panics but tells us
601 	 * why.
602 	 * Initialisation of the vectors will just panic on a data abort.
603 	 * This just fills in a slightly better one.
604 	 */
605 #ifdef VERBOSE_INIT_ARM
606 	printf("vectors ");
607 #endif
608 	data_abort_handler_address = (u_int)data_abort_handler;
609 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
610 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
611 
612 	/* Initialise the undefined instruction handlers */
613 #ifdef VERBOSE_INIT_ARM
614 	printf("undefined ");
615 #endif
616 	undefined_init();
617 
618 	/* Load memory into UVM. */
619 #ifdef VERBOSE_INIT_ARM
620 	printf("page ");
621 #endif
622 	uvm_setpagesize();	/* initialize PAGE_SIZE-dependent variables */
623 	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
624 	    atop(physical_freestart), atop(physical_freeend),
625 	    VM_FREELIST_DEFAULT);
626 
627 	/* Boot strap pmap telling it where the kernel page table is */
628 #ifdef VERBOSE_INIT_ARM
629 	printf("pmap ");
630 #endif
631 	pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
632 
633 	/* Setup the IRQ system */
634 #ifdef VERBOSE_INIT_ARM
635 	printf("irq ");
636 #endif
637 	i80321_intr_init();
638 
639 #ifdef VERBOSE_INIT_ARM
640 	printf("done.\n");
641 #endif
642 
643 #ifdef BOOTHOWTO
644 	boothowto = BOOTHOWTO;
645 #endif
646 
647 #ifdef DDB
648 	db_machine_init();
649 	if (boothowto & RB_KDB)
650 		Debugger();
651 #endif
652 
653 	/* We return the new stack pointer address */
654 	return (kernelstack.pv_va + USPACE_SVC_STACK_TOP);
655 }
656 
657 /*
658  * void cpu_reboot(int howto, char *bootstr)
659  *
660  * Reboots the system
661  *
662  * Deal with any syncing, unmounting, dumping and shutdown hooks,
663  * then reset the CPU.
664  */
665 void
666 cpu_reboot(int howto, char *bootstr)
667 {
668 
669 	/*
670 	 * If we are still cold then hit the air brakes
671 	 * and crash to earth fast
672 	 */
673 	if (cold) {
674 		*(volatile uint8_t *)HDLG_LEDCTRL |= LEDCTRL_STAT_RED;
675 		howto |= RB_HALT;
676 		goto haltsys;
677 	}
678 
679 	/* Disable console buffering */
680 
681 	/*
682 	 * If RB_NOSYNC was not specified sync the discs.
683 	 * Note: Unless cold is set to 1 here, syslogd will die during the
684 	 * unmount.  It looks like syslogd is getting woken up only to find
685 	 * that it cannot page part of the binary in as the filesystem has
686 	 * been unmounted.
687 	 */
688 	if ((howto & RB_NOSYNC) == 0) {
689 		bootsync();
690 		/*resettodr();*/
691 	}
692 
693 	/* wait 1s */
694 	delay(1 * 1000 * 1000);
695 
696 	/* Say NO to interrupts */
697 	splhigh();
698 
699 	/* Do a dump if requested. */
700 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) {
701 		dumpsys();
702 	}
703 
704 haltsys:
705 	/* Run any shutdown hooks */
706 	doshutdownhooks();
707 
708 	pmf_system_shutdown(boothowto);
709 
710 	/* Make sure IRQ's are disabled */
711 	IRQdisable;
712 
713 	if (howto & RB_HALT) {
714 		*(volatile uint8_t *)HDLG_PWRMNG = PWRMNG_POWOFF;
715 		delay(3 * 1000 * 1000);	/* wait 3s */
716 
717 		printf("SHUTDOWN FAILED!\n");
718 		printf("The operating system has halted.\n");
719 		printf("Please press any key to reboot.\n\n");
720 		cngetc();
721 	}
722 
723 	printf("rebooting...\n\r");
724 
725 	(void)disable_interrupts(I32_bit|F32_bit);
726 	cpu_idcache_wbinv_all();
727 	cpu_drain_writebuf();
728 
729 	*(volatile uint8_t *)HDLG_PWRMNG = PWRMNG_RESET;
730 	delay(1 * 1000 * 1000);	/* wait 1s */
731 
732 	/* ...and if that didn't work, just croak. */
733 	printf("RESET FAILED!\n");
734 	for (;;) {
735 		continue;
736 	}
737 }
738 
739 /*
740  * console
741  */
742 #include "com.h"
743 #if NCOM > 0
744 #include <dev/ic/comreg.h>
745 #include <dev/ic/comvar.h>
746 #endif
747 
748 /*
749  * Define the default console speed for the board.  This is generally
750  * what the firmware provided with the board defaults to.
751  */
752 #ifndef CONSPEED
753 #define CONSPEED B115200
754 #endif /* ! CONSPEED */
755 
756 #ifndef CONUNIT
757 #define	CONUNIT	0
758 #endif
759 
760 #ifndef CONMODE
761 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
762 #endif
763 
764 int comcnspeed = CONSPEED;
765 int comcnmode = CONMODE;
766 int comcnunit = CONUNIT;
767 
768 #if KGDB
769 #ifndef KGDB_DEVNAME
770 #error Must define KGDB_DEVNAME
771 #endif
772 const char kgdb_devname[] = KGDB_DEVNAME;
773 
774 #ifndef KGDB_DEVADDR
775 #error Must define KGDB_DEVADDR
776 #endif
777 unsigned long kgdb_devaddr = KGDB_DEVADDR;
778 
779 #ifndef KGDB_DEVRATE
780 #define KGDB_DEVRATE	CONSPEED
781 #endif
782 int kgdb_devrate = KGDB_DEVRATE;
783 
784 #ifndef KGDB_DEVMODE
785 #define KGDB_DEVMODE	CONMODE
786 #endif
787 int kgdb_devmode = KGDB_DEVMODE;
788 #endif /* KGDB */
789 
790 void
791 consinit(void)
792 {
793 	static const bus_addr_t comcnaddrs[] = {
794 		HDLG_UART1,		/* com0 */
795 	};
796 	static int consinit_called;
797 
798 	if (consinit_called)
799 		return;
800 	consinit_called = 1;
801 
802 	/*
803 	 * Console devices are mapped VA==PA.  Our devmap reflects
804 	 * this, so register it now so drivers can map the console
805 	 * device.
806 	 */
807 	pmap_devmap_register(hdlg_devmap);
808 
809 #if NCOM > 0
810 	if (comcnattach(&obio_bs_tag, comcnaddrs[comcnunit], comcnspeed,
811 	    COM_FREQ, COM_TYPE_NORMAL, comcnmode))
812 		panic("can't init serial console @%lx", comcnaddrs[comcnunit]);
813 #else
814 	panic("serial console @%lx not configured", comcnaddrs[comcnunit]);
815 #endif
816 #if KGDB
817 #if NCOM > 0
818 	if (strcmp(kgdb_devname, "com") == 0) {
819 		com_kgdb_attach(&obio_bs_tag, kgdb_devaddr, kgdb_devrate,
820 				COM_FREQ, COM_TYPE_NORMAL, kgdb_devmode);
821 	}
822 #endif	/* NCOM > 0 */
823 #endif	/* KGDB */
824 }
825