1 /* $NetBSD: hdlg_machdep.c,v 1.4 2006/12/18 13:50:58 nonaka Exp $ */ 2 3 /* 4 * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc. 5 * All rights reserved. 6 * 7 * Written by Jason R. Thorpe and Steve C. Woodford for Wasabi Systems, Inc. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed for the NetBSD Project by 20 * Wasabi Systems, Inc. 21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 22 * or promote products derived from this software without specific prior 23 * written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 35 * POSSIBILITY OF SUCH DAMAGE. 36 */ 37 38 /* 39 * Copyright (c) 1997,1998 Mark Brinicombe. 40 * Copyright (c) 1997,1998 Causality Limited. 41 * All rights reserved. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. All advertising materials mentioning features or use of this software 52 * must display the following acknowledgement: 53 * This product includes software developed by Mark Brinicombe 54 * for the NetBSD Project. 55 * 4. The name of the company nor the name of the author may be used to 56 * endorse or promote products derived from this software without specific 57 * prior written permission. 58 * 59 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 60 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 61 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 62 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 63 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 64 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 65 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 69 * SUCH DAMAGE. 70 * 71 * Machine dependant functions for kernel setup for GigaLANDISK 72 * using RedBoot firmware. 73 */ 74 75 #include <sys/cdefs.h> 76 __KERNEL_RCSID(0, "$NetBSD: hdlg_machdep.c,v 1.4 2006/12/18 13:50:58 nonaka Exp $"); 77 78 #include "opt_ddb.h" 79 #include "opt_kgdb.h" 80 #include "opt_pmap_debug.h" 81 82 #include <sys/param.h> 83 #include <sys/device.h> 84 #include <sys/systm.h> 85 #include <sys/kernel.h> 86 #include <sys/exec.h> 87 #include <sys/proc.h> 88 #include <sys/msgbuf.h> 89 #include <sys/reboot.h> 90 #include <sys/termios.h> 91 #include <sys/ksyms.h> 92 93 #include <uvm/uvm_extern.h> 94 95 #include <dev/cons.h> 96 97 #include <machine/db_machdep.h> 98 #include <ddb/db_sym.h> 99 #include <ddb/db_extern.h> 100 101 #include <machine/bootconfig.h> 102 #include <machine/bus.h> 103 #include <machine/cpu.h> 104 #include <machine/frame.h> 105 #include <arm/undefined.h> 106 107 #include <arm/arm32/machdep.h> 108 109 #include <arm/xscale/i80321reg.h> 110 #include <arm/xscale/i80321var.h> 111 112 #include <dev/pci/ppbreg.h> 113 114 #include <evbarm/hdl_g/hdlgreg.h> 115 #include <evbarm/hdl_g/hdlgvar.h> 116 #include <evbarm/hdl_g/obiovar.h> 117 118 #include "opt_ipkdb.h" 119 #include "ksyms.h" 120 121 /* Kernel text starts 2MB in from the bottom of the kernel address space. */ 122 #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000) 123 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000) 124 125 /* 126 * The range 0xc1000000 - 0xccffffff is available for kernel VM space 127 * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff 128 */ 129 #define KERNEL_VM_SIZE 0x0C000000 130 131 /* 132 * Address to call from cpu_reset() to reset the machine. 133 * This is machine architecture dependant as it varies depending 134 * on where the ROM appears when you turn the MMU off. 135 * 136 * XXX Not actually used on hdlg -- clean up the generic 137 * ARM code. 138 */ 139 u_int cpu_reset_address = 0x00000000; 140 141 /* Define various stack sizes in pages */ 142 #define IRQ_STACK_SIZE 1 143 #define ABT_STACK_SIZE 1 144 #ifdef IPKDB 145 #define UND_STACK_SIZE 2 146 #else 147 #define UND_STACK_SIZE 1 148 #endif 149 150 BootConfig bootconfig; /* Boot config storage */ 151 char *boot_args = NULL; 152 char *boot_file = NULL; 153 154 vm_offset_t physical_start; 155 vm_offset_t physical_freestart; 156 vm_offset_t physical_freeend; 157 vm_offset_t physical_end; 158 u_int free_pages; 159 vm_offset_t pagetables_start; 160 int physmem = 0; 161 162 /*int debug_flags;*/ 163 #ifndef PMAP_STATIC_L1S 164 int max_processes = 64; /* Default number */ 165 #endif /* !PMAP_STATIC_L1S */ 166 167 /* Physical and virtual addresses for some global pages */ 168 pv_addr_t systempage; 169 pv_addr_t irqstack; 170 pv_addr_t undstack; 171 pv_addr_t abtstack; 172 pv_addr_t kernelstack; 173 pv_addr_t minidataclean; 174 175 vm_offset_t msgbufphys; 176 177 extern u_int data_abort_handler_address; 178 extern u_int prefetch_abort_handler_address; 179 extern u_int undefined_handler_address; 180 181 #ifdef PMAP_DEBUG 182 extern int pmap_debug_level; 183 #endif 184 185 #define KERNEL_PT_SYS 0 /* L2 table for mapping zero page */ 186 187 #define KERNEL_PT_KERNEL 1 /* L2 table for mapping kernel */ 188 #define KERNEL_PT_KERNEL_NUM 4 189 190 /* L2 table for mapping i80321 */ 191 #define KERNEL_PT_IOPXS (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM) 192 193 /* L2 tables for mapping kernel VM */ 194 #define KERNEL_PT_VMDATA (KERNEL_PT_IOPXS + 1) 195 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */ 196 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM) 197 198 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS]; 199 200 struct user *proc0paddr; 201 202 /* Prototypes */ 203 void consinit(void); 204 205 /* Static device mappings. */ 206 static const struct pmap_devmap hdlg_devmap[] = { 207 /* 208 * Map the on-board devices VA == PA so that we can access them 209 * with the MMU on or off. 210 */ 211 { 212 HDLG_OBIO_BASE, 213 HDLG_OBIO_BASE, 214 HDLG_OBIO_SIZE, 215 VM_PROT_READ|VM_PROT_WRITE, 216 PTE_NOCACHE, 217 }, 218 219 { 220 HDLG_IOW_VBASE, 221 VERDE_OUT_XLATE_IO_WIN0_BASE, 222 VERDE_OUT_XLATE_IO_WIN_SIZE, 223 VM_PROT_READ|VM_PROT_WRITE, 224 PTE_NOCACHE, 225 }, 226 227 { 228 HDLG_80321_VBASE, 229 VERDE_PMMR_BASE, 230 VERDE_PMMR_SIZE, 231 VM_PROT_READ|VM_PROT_WRITE, 232 PTE_NOCACHE, 233 }, 234 235 { 236 0, 237 0, 238 0, 239 0, 240 0, 241 } 242 }; 243 244 static void 245 hardclock_hook(void) 246 { 247 248 /* Nothing to do */ 249 } 250 251 /* 252 * u_int initarm(...) 253 * 254 * Initial entry point on startup. This gets called before main() is 255 * entered. 256 * It should be responsible for setting up everything that must be 257 * in place when main is called. 258 * This includes 259 * Taking a copy of the boot configuration structure. 260 * Initialising the physical console so characters can be printed. 261 * Setting up page tables for the kernel 262 * Relocating the kernel to the bottom of physical memory 263 */ 264 u_int 265 initarm(void *arg) 266 { 267 extern vaddr_t xscale_cache_clean_addr; 268 #ifdef DIAGNOSTIC 269 extern vsize_t xscale_minidata_clean_size; 270 #endif 271 int loop; 272 int loop1; 273 u_int l1pagetable; 274 pv_addr_t kernel_l1pt; 275 paddr_t memstart; 276 psize_t memsize; 277 278 /* Calibrate the delay loop. */ 279 i80321_calibrate_delay(); 280 i80321_hardclock_hook = hardclock_hook; 281 282 /* 283 * Since we map the on-board devices VA==PA, and the kernel 284 * is running VA==PA, it's possible for us to initialize 285 * the console now. 286 */ 287 consinit(); 288 289 #ifdef VERBOSE_INIT_ARM 290 /* Talk to the user */ 291 printf("\nNetBSD/evbarm (HDL-G) booting ...\n"); 292 #endif 293 294 /* 295 * Heads up ... Setup the CPU / MMU / TLB functions 296 */ 297 if (set_cpufuncs()) 298 panic("CPU not recognized!"); 299 300 /* 301 * We are currently running with the MMU enabled and the 302 * entire address space mapped VA==PA, except for the 303 * first 64M of RAM is also double-mapped at 0xc0000000. 304 * There is an L1 page table at 0xa0004000. 305 */ 306 307 /* 308 * Fetch the SDRAM start/size from the i80321 SDRAM configuration 309 * registers. 310 */ 311 i80321_sdram_bounds(&obio_bs_tag, VERDE_PMMR_BASE + VERDE_MCU_BASE, 312 &memstart, &memsize); 313 314 #ifdef VERBOSE_INIT_ARM 315 printf("initarm: Configuring system ...\n"); 316 #endif 317 318 /* Fake bootconfig structure for the benefit of pmap.c */ 319 /* XXX must make the memory description h/w independent */ 320 bootconfig.dramblocks = 1; 321 bootconfig.dram[0].address = memstart; 322 bootconfig.dram[0].pages = memsize / PAGE_SIZE; 323 324 /* 325 * Set up the variables that define the availablilty of 326 * physical memory. For now, we're going to set 327 * physical_freestart to 0xa0200000 (where the kernel 328 * was loaded), and allocate the memory we need downwards. 329 * If we get too close to the L1 table that we set up, we 330 * will panic. We will update physical_freestart and 331 * physical_freeend later to reflect what pmap_bootstrap() 332 * wants to see. 333 * 334 * XXX pmap_bootstrap() needs an enema. 335 */ 336 physical_start = bootconfig.dram[0].address; 337 physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE); 338 339 physical_freestart = 0xa0009000UL; 340 physical_freeend = 0xa0200000UL; 341 342 physmem = (physical_end - physical_start) / PAGE_SIZE; 343 344 #ifdef VERBOSE_INIT_ARM 345 /* Tell the user about the memory */ 346 printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem, 347 physical_start, physical_end - 1); 348 #endif 349 350 /* 351 * Okay, the kernel starts 2MB in from the bottom of physical 352 * memory. We are going to allocate our bootstrap pages downwards 353 * from there. 354 * 355 * We need to allocate some fixed page tables to get the kernel 356 * going. We allocate one page directory and a number of page 357 * tables and store the physical addresses in the kernel_pt_table 358 * array. 359 * 360 * The kernel page directory must be on a 16K boundary. The page 361 * tables must be on 4K boundaries. What we do is allocate the 362 * page directory on the first 16K boundary that we encounter, and 363 * the page tables on 4K boundaries otherwise. Since we allocate 364 * at least 3 L2 page tables, we are guaranteed to encounter at 365 * least one 16K aligned region. 366 */ 367 368 #ifdef VERBOSE_INIT_ARM 369 printf("Allocating page tables\n"); 370 #endif 371 372 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; 373 374 #ifdef VERBOSE_INIT_ARM 375 printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n", 376 physical_freestart, free_pages, free_pages); 377 #endif 378 379 /* Define a macro to simplify memory allocation */ 380 #define valloc_pages(var, np) \ 381 alloc_pages((var).pv_pa, (np)); \ 382 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start; 383 384 #define alloc_pages(var, np) \ 385 physical_freeend -= ((np) * PAGE_SIZE); \ 386 if (physical_freeend < physical_freestart) \ 387 panic("initarm: out of memory"); \ 388 (var) = physical_freeend; \ 389 free_pages -= (np); \ 390 memset((char *)(var), 0, ((np) * PAGE_SIZE)); 391 392 loop1 = 0; 393 kernel_l1pt.pv_pa = 0; 394 kernel_l1pt.pv_va = 0; 395 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { 396 /* Are we 16KB aligned for an L1 ? */ 397 if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0 398 && kernel_l1pt.pv_pa == 0) { 399 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); 400 } else { 401 valloc_pages(kernel_pt_table[loop1], 402 L2_TABLE_SIZE / PAGE_SIZE); 403 ++loop1; 404 } 405 } 406 407 /* This should never be able to happen but better confirm that. */ 408 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0) 409 panic("initarm: Failed to align the kernel page directory"); 410 411 /* 412 * Allocate a page for the system page mapped to V0x00000000 413 * This page will just contain the system vectors and can be 414 * shared by all processes. 415 */ 416 alloc_pages(systempage.pv_pa, 1); 417 418 /* Allocate stacks for all modes */ 419 valloc_pages(irqstack, IRQ_STACK_SIZE); 420 valloc_pages(abtstack, ABT_STACK_SIZE); 421 valloc_pages(undstack, UND_STACK_SIZE); 422 valloc_pages(kernelstack, UPAGES); 423 424 /* Allocate enough pages for cleaning the Mini-Data cache. */ 425 KASSERT(xscale_minidata_clean_size <= PAGE_SIZE); 426 valloc_pages(minidataclean, 1); 427 428 #ifdef VERBOSE_INIT_ARM 429 printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, 430 irqstack.pv_va); 431 printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, 432 abtstack.pv_va); 433 printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, 434 undstack.pv_va); 435 printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, 436 kernelstack.pv_va); 437 #endif 438 439 /* 440 * XXX Defer this to later so that we can reclaim the memory 441 * XXX used by the RedBoot page tables. 442 */ 443 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); 444 445 /* 446 * Ok we have allocated physical pages for the primary kernel 447 * page tables 448 */ 449 450 #ifdef VERBOSE_INIT_ARM 451 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa); 452 #endif 453 454 /* 455 * Now we start construction of the L1 page table 456 * We start by mapping the L2 page tables into the L1. 457 * This means that we can replace L1 mappings later on if necessary 458 */ 459 l1pagetable = kernel_l1pt.pv_pa; 460 461 /* Map the L2 pages tables in the L1 page table */ 462 pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1), 463 &kernel_pt_table[KERNEL_PT_SYS]); 464 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) 465 pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000, 466 &kernel_pt_table[KERNEL_PT_KERNEL + loop]); 467 pmap_link_l2pt(l1pagetable, HDLG_IOPXS_VBASE, 468 &kernel_pt_table[KERNEL_PT_IOPXS]); 469 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++) 470 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, 471 &kernel_pt_table[KERNEL_PT_VMDATA + loop]); 472 473 /* update the top of the kernel VM */ 474 pmap_curmaxkvaddr = 475 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); 476 477 #ifdef VERBOSE_INIT_ARM 478 printf("Mapping kernel\n"); 479 #endif 480 481 /* Now we fill in the L2 pagetable for the kernel static code/data */ 482 { 483 extern char etext[], _end[]; 484 size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE; 485 size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE; 486 u_int logical; 487 488 textsize = (textsize + PGOFSET) & ~PGOFSET; 489 totalsize = (totalsize + PGOFSET) & ~PGOFSET; 490 491 logical = 0x00200000; /* offset of kernel in RAM */ 492 493 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, 494 physical_start + logical, textsize, 495 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 496 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, 497 physical_start + logical, totalsize - textsize, 498 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 499 } 500 501 #ifdef VERBOSE_INIT_ARM 502 printf("Constructing L2 page tables\n"); 503 #endif 504 505 /* Map the stack pages */ 506 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, 507 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 508 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, 509 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 510 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, 511 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 512 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, 513 UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 514 515 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, 516 L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); 517 518 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { 519 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, 520 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, 521 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); 522 } 523 524 /* Map the Mini-Data cache clean area. */ 525 xscale_setup_minidata(l1pagetable, minidataclean.pv_va, 526 minidataclean.pv_pa); 527 528 /* Map the vector page. */ 529 pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa, 530 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 531 532 /* Map the statically mapped devices. */ 533 pmap_devmap_bootstrap(l1pagetable, hdlg_devmap); 534 535 /* 536 * Give the XScale global cache clean code an appropriately 537 * sized chunk of unmapped VA space starting at 0xff000000 538 * (our device mappings end before this address). 539 */ 540 xscale_cache_clean_addr = 0xff000000U; 541 542 /* 543 * Now we have the real page tables in place so we can switch to them. 544 * Once this is done we will be running with the REAL kernel page 545 * tables. 546 */ 547 548 /* 549 * Update the physical_freestart/physical_freeend/free_pages 550 * variables. 551 */ 552 { 553 extern char _end[]; 554 555 physical_freestart = physical_start + 556 (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) - 557 KERNEL_BASE); 558 physical_freeend = physical_end; 559 free_pages = 560 (physical_freeend - physical_freestart) / PAGE_SIZE; 561 } 562 563 /* Switch tables */ 564 #ifdef VERBOSE_INIT_ARM 565 printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n", 566 physical_freestart, free_pages, free_pages); 567 printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa); 568 #endif 569 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); 570 setttb(kernel_l1pt.pv_pa); 571 cpu_tlb_flushID(); 572 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); 573 574 /* 575 * Moved from cpu_startup() as data_abort_handler() references 576 * this during uvm init 577 */ 578 proc0paddr = (struct user *)kernelstack.pv_va; 579 lwp0.l_addr = proc0paddr; 580 581 #ifdef VERBOSE_INIT_ARM 582 printf("done!\n"); 583 #endif 584 585 #ifdef VERBOSE_INIT_ARM 586 printf("bootstrap done.\n"); 587 #endif 588 589 arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL); 590 591 /* 592 * Pages were allocated during the secondary bootstrap for the 593 * stacks for different CPU modes. 594 * We must now set the r13 registers in the different CPU modes to 595 * point to these stacks. 596 * Since the ARM stacks use STMFD etc. we must set r13 to the top end 597 * of the stack memory. 598 */ 599 #ifdef VERBOSE_INIT_ARM 600 printf("init subsystems: stacks "); 601 #endif 602 603 set_stackptr(PSR_IRQ32_MODE, 604 irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); 605 set_stackptr(PSR_ABT32_MODE, 606 abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); 607 set_stackptr(PSR_UND32_MODE, 608 undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); 609 610 /* 611 * Well we should set a data abort handler. 612 * Once things get going this will change as we will need a proper 613 * handler. 614 * Until then we will use a handler that just panics but tells us 615 * why. 616 * Initialisation of the vectors will just panic on a data abort. 617 * This just fills in a slightly better one. 618 */ 619 #ifdef VERBOSE_INIT_ARM 620 printf("vectors "); 621 #endif 622 data_abort_handler_address = (u_int)data_abort_handler; 623 prefetch_abort_handler_address = (u_int)prefetch_abort_handler; 624 undefined_handler_address = (u_int)undefinedinstruction_bounce; 625 626 /* Initialise the undefined instruction handlers */ 627 #ifdef VERBOSE_INIT_ARM 628 printf("undefined "); 629 #endif 630 undefined_init(); 631 632 /* Load memory into UVM. */ 633 #ifdef VERBOSE_INIT_ARM 634 printf("page "); 635 #endif 636 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */ 637 uvm_page_physload(atop(physical_freestart), atop(physical_freeend), 638 atop(physical_freestart), atop(physical_freeend), 639 VM_FREELIST_DEFAULT); 640 641 /* Boot strap pmap telling it where the kernel page table is */ 642 #ifdef VERBOSE_INIT_ARM 643 printf("pmap "); 644 #endif 645 pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, KERNEL_VM_BASE, 646 KERNEL_VM_BASE + KERNEL_VM_SIZE); 647 648 /* Setup the IRQ system */ 649 #ifdef VERBOSE_INIT_ARM 650 printf("irq "); 651 #endif 652 i80321_intr_init(); 653 654 #ifdef VERBOSE_INIT_ARM 655 printf("done.\n"); 656 #endif 657 658 #ifdef BOOTHOWTO 659 boothowto = BOOTHOWTO; 660 #endif 661 662 #ifdef IPKDB 663 /* Initialise ipkdb */ 664 ipkdb_init(); 665 if (boothowto & RB_KDB) 666 ipkdb_connect(0); 667 #endif 668 669 #if NKSYMS || defined(DDB) || defined(LKM) 670 /* Firmware doesn't load symbols. */ 671 ksyms_init(0, NULL, NULL); 672 #endif 673 674 #ifdef DDB 675 db_machine_init(); 676 if (boothowto & RB_KDB) 677 Debugger(); 678 #endif 679 680 /* We return the new stack pointer address */ 681 return (kernelstack.pv_va + USPACE_SVC_STACK_TOP); 682 } 683 684 /* 685 * void cpu_reboot(int howto, char *bootstr) 686 * 687 * Reboots the system 688 * 689 * Deal with any syncing, unmounting, dumping and shutdown hooks, 690 * then reset the CPU. 691 */ 692 void 693 cpu_reboot(int howto, char *bootstr) 694 { 695 696 /* 697 * If we are still cold then hit the air brakes 698 * and crash to earth fast 699 */ 700 if (cold) { 701 *(volatile uint8_t *)HDLG_LEDCTRL |= LEDCTRL_STAT_RED; 702 howto |= RB_HALT; 703 goto haltsys; 704 } 705 706 /* Disable console buffering */ 707 708 /* 709 * If RB_NOSYNC was not specified sync the discs. 710 * Note: Unless cold is set to 1 here, syslogd will die during the 711 * unmount. It looks like syslogd is getting woken up only to find 712 * that it cannot page part of the binary in as the filesystem has 713 * been unmounted. 714 */ 715 if ((howto & RB_NOSYNC) == 0) { 716 bootsync(); 717 /*resettodr();*/ 718 } 719 720 /* wait 1s */ 721 delay(1 * 1000 * 1000); 722 723 /* Say NO to interrupts */ 724 splhigh(); 725 726 /* Do a dump if requested. */ 727 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) { 728 dumpsys(); 729 } 730 731 haltsys: 732 /* Run any shutdown hooks */ 733 doshutdownhooks(); 734 735 /* Make sure IRQ's are disabled */ 736 IRQdisable; 737 738 if (howto & RB_HALT) { 739 *(volatile uint8_t *)HDLG_PWRMNG = PWRMNG_POWOFF; 740 delay(3 * 1000 * 1000); /* wait 3s */ 741 742 printf("SHUTDOWN FAILED!\n"); 743 printf("The operating system has halted.\n"); 744 printf("Please press any key to reboot.\n\n"); 745 cngetc(); 746 } 747 748 printf("rebooting...\n\r"); 749 750 (void)disable_interrupts(I32_bit|F32_bit); 751 cpu_idcache_wbinv_all(); 752 cpu_drain_writebuf(); 753 754 *(volatile uint8_t *)HDLG_PWRMNG = PWRMNG_RESET; 755 delay(1 * 1000 * 1000); /* wait 1s */ 756 757 /* ...and if that didn't work, just croak. */ 758 printf("RESET FAILED!\n"); 759 for (;;) { 760 continue; 761 } 762 } 763 764 /* 765 * console 766 */ 767 #include "com.h" 768 #if NCOM > 0 769 #include <dev/ic/comreg.h> 770 #include <dev/ic/comvar.h> 771 #endif 772 773 /* 774 * Define the default console speed for the board. This is generally 775 * what the firmware provided with the board defaults to. 776 */ 777 #ifndef CONSPEED 778 #define CONSPEED B115200 779 #endif /* ! CONSPEED */ 780 781 #ifndef CONUNIT 782 #define CONUNIT 0 783 #endif 784 785 #ifndef CONMODE 786 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ 787 #endif 788 789 int comcnspeed = CONSPEED; 790 int comcnmode = CONMODE; 791 int comcnunit = CONUNIT; 792 793 #if KGDB 794 #ifndef KGDB_DEVNAME 795 #error Must define KGDB_DEVNAME 796 #endif 797 const char kgdb_devname[] = KGDB_DEVNAME; 798 799 #ifndef KGDB_DEVADDR 800 #error Must define KGDB_DEVADDR 801 #endif 802 unsigned long kgdb_devaddr = KGDB_DEVADDR; 803 804 #ifndef KGDB_DEVRATE 805 #define KGDB_DEVRATE CONSPEED 806 #endif 807 int kgdb_devrate = KGDB_DEVRATE; 808 809 #ifndef KGDB_DEVMODE 810 #define KGDB_DEVMODE CONMODE 811 #endif 812 int kgdb_devmode = KGDB_DEVMODE; 813 #endif /* KGDB */ 814 815 void 816 consinit(void) 817 { 818 static const bus_addr_t comcnaddrs[] = { 819 HDLG_UART1, /* com0 */ 820 }; 821 static int consinit_called; 822 823 if (consinit_called) 824 return; 825 consinit_called = 1; 826 827 /* 828 * Console devices are mapped VA==PA. Our devmap reflects 829 * this, so register it now so drivers can map the console 830 * device. 831 */ 832 pmap_devmap_register(hdlg_devmap); 833 834 #if NCOM > 0 835 if (comcnattach(&obio_bs_tag, comcnaddrs[comcnunit], comcnspeed, 836 COM_FREQ, COM_TYPE_NORMAL, comcnmode)) 837 panic("can't init serial console @%lx", comcnaddrs[comcnunit]); 838 #else 839 panic("serial console @%lx not configured", comcnaddrs[comcnunit]); 840 #endif 841 #if KGDB 842 #if NCOM > 0 843 if (strcmp(kgdb_devname, "com") == 0) { 844 com_kgdb_attach(&obio_bs_tag, kgdb_devaddr, kgdb_devrate, 845 COM_FREQ, COM_TYPE_NORMAL, kgdb_devmode); 846 } 847 #endif /* NCOM > 0 */ 848 #endif /* KGDB */ 849 } 850