xref: /netbsd-src/sys/arch/evbarm/g42xxeb/g42xxeb_machdep.c (revision f3b496ec9be495acbb17756f05d342b6b7b495e9)
1 /*	$NetBSD: g42xxeb_machdep.c,v 1.8 2006/05/17 04:22:46 mrg Exp $ */
2 
3 /*
4  * Copyright (c) 2002, 2003, 2004, 2005  Genetec Corporation.
5  * All rights reserved.
6  *
7  * Written by Hiroyuki Bessho for Genetec Corporation.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. The name of Genetec Corporation may not be used to endorse or
18  *    promote products derived from this software without specific prior
19  *    written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL GENETEC CORPORATION
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  *
33  * Machine dependant functions for kernel setup for Genetec G4250EBX
34  * evaluation board.
35  *
36  * Based on iq80310_machhdep.c
37  */
38 /*
39  * Copyright (c) 2001 Wasabi Systems, Inc.
40  * All rights reserved.
41  *
42  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
43  *
44  * Redistribution and use in source and binary forms, with or without
45  * modification, are permitted provided that the following conditions
46  * are met:
47  * 1. Redistributions of source code must retain the above copyright
48  *    notice, this list of conditions and the following disclaimer.
49  * 2. Redistributions in binary form must reproduce the above copyright
50  *    notice, this list of conditions and the following disclaimer in the
51  *    documentation and/or other materials provided with the distribution.
52  * 3. All advertising materials mentioning features or use of this software
53  *    must display the following acknowledgement:
54  *	This product includes software developed for the NetBSD Project by
55  *	Wasabi Systems, Inc.
56  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
57  *    or promote products derived from this software without specific prior
58  *    written permission.
59  *
60  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
61  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
62  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
63  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
64  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
65  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
66  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
67  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
68  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
69  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
70  * POSSIBILITY OF SUCH DAMAGE.
71  */
72 
73 /*
74  * Copyright (c) 1997,1998 Mark Brinicombe.
75  * Copyright (c) 1997,1998 Causality Limited.
76  * All rights reserved.
77  *
78  * Redistribution and use in source and binary forms, with or without
79  * modification, are permitted provided that the following conditions
80  * are met:
81  * 1. Redistributions of source code must retain the above copyright
82  *    notice, this list of conditions and the following disclaimer.
83  * 2. Redistributions in binary form must reproduce the above copyright
84  *    notice, this list of conditions and the following disclaimer in the
85  *    documentation and/or other materials provided with the distribution.
86  * 3. All advertising materials mentioning features or use of this software
87  *    must display the following acknowledgement:
88  *	This product includes software developed by Mark Brinicombe
89  *	for the NetBSD Project.
90  * 4. The name of the company nor the name of the author may be used to
91  *    endorse or promote products derived from this software without specific
92  *    prior written permission.
93  *
94  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
95  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
96  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
97  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
98  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
99  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
100  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
101  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
102  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
103  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
104  * SUCH DAMAGE.
105  *
106  * Machine dependant functions for kernel setup for Intel IQ80310 evaluation
107  * boards using RedBoot firmware.
108  */
109 
110 #include "opt_ddb.h"
111 #include "opt_kgdb.h"
112 #include "opt_ipkdb.h"
113 #include "opt_pmap_debug.h"
114 #include "opt_md.h"
115 #include "opt_com.h"
116 #include "md.h"
117 #include "lcd.h"
118 
119 #include <sys/param.h>
120 #include <sys/device.h>
121 #include <sys/systm.h>
122 #include <sys/kernel.h>
123 #include <sys/exec.h>
124 #include <sys/proc.h>
125 #include <sys/msgbuf.h>
126 #include <sys/reboot.h>
127 #include <sys/termios.h>
128 #include <sys/ksyms.h>
129 
130 #include <uvm/uvm_extern.h>
131 
132 #include <sys/conf.h>
133 #include <dev/cons.h>
134 #include <dev/md.h>
135 
136 #include <machine/db_machdep.h>
137 #include <ddb/db_sym.h>
138 #include <ddb/db_extern.h>
139 #ifdef KGDB
140 #include <sys/kgdb.h>
141 #endif
142 #ifdef IPKDB
143 #include <ipkdb/ipkdb.h>		/* for prototypes */
144 #include <machine/ipkdb.h>
145 #endif
146 
147 #include <machine/bootconfig.h>
148 #include <machine/bus.h>
149 #include <machine/cpu.h>
150 #include <machine/frame.h>
151 #include <arm/undefined.h>
152 
153 #include <arm/arm32/machdep.h>
154 
155 #include <arm/xscale/pxa2x0reg.h>
156 #include <arm/xscale/pxa2x0var.h>
157 #include <arm/xscale/pxa2x0_gpio.h>
158 #include <evbarm/g42xxeb/g42xxeb_reg.h>
159 #include <evbarm/g42xxeb/g42xxeb_var.h>
160 
161 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
162 #define	KERNEL_TEXT_BASE	(KERNEL_BASE + 0x00200000)
163 #define	KERNEL_VM_BASE		(KERNEL_BASE + 0x01000000)
164 
165 /*
166  * The range 0xc1000000 - 0xccffffff is available for kernel VM space
167  * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
168  */
169 #define KERNEL_VM_SIZE		0x0C000000
170 
171 
172 /*
173  * Address to call from cpu_reset() to reset the machine.
174  * This is machine architecture dependant as it varies depending
175  * on where the ROM appears when you turn the MMU off.
176  */
177 
178 u_int cpu_reset_address = 0;
179 
180 /* Define various stack sizes in pages */
181 #define IRQ_STACK_SIZE	1
182 #define ABT_STACK_SIZE	1
183 #ifdef IPKDB
184 #define UND_STACK_SIZE	2
185 #else
186 #define UND_STACK_SIZE	1
187 #endif
188 
189 BootConfig bootconfig;		/* Boot config storage */
190 char *boot_args = NULL;
191 char *boot_file = NULL;
192 
193 vm_offset_t physical_start;
194 vm_offset_t physical_freestart;
195 vm_offset_t physical_freeend;
196 vm_offset_t physical_end;
197 u_int free_pages;
198 vm_offset_t pagetables_start;
199 int physmem = 0;
200 
201 /*int debug_flags;*/
202 #ifndef PMAP_STATIC_L1S
203 int max_processes = 64;			/* Default number */
204 #endif	/* !PMAP_STATIC_L1S */
205 
206 /* Physical and virtual addresses for some global pages */
207 pv_addr_t systempage;
208 pv_addr_t irqstack;
209 pv_addr_t undstack;
210 pv_addr_t abtstack;
211 pv_addr_t kernelstack;
212 pv_addr_t minidataclean;
213 
214 vm_offset_t msgbufphys;
215 
216 extern u_int data_abort_handler_address;
217 extern u_int prefetch_abort_handler_address;
218 extern u_int undefined_handler_address;
219 
220 #ifdef PMAP_DEBUG
221 extern int pmap_debug_level;
222 #endif
223 
224 #define KERNEL_PT_SYS		0	/* Page table for mapping proc0 zero page */
225 #define KERNEL_PT_KERNEL	1	/* Page table for mapping kernel */
226 #define	KERNEL_PT_KERNEL_NUM	4
227 #define KERNEL_PT_VMDATA	(KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
228 				        /* Page tables for mapping kernel VM */
229 #define	KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
230 #define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
231 
232 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
233 
234 struct user *proc0paddr;
235 
236 /* Prototypes */
237 
238 #if 0
239 void	process_kernel_args(char *);
240 void	parse_mi_bootargs(char *args);
241 #endif
242 
243 void	consinit(void);
244 void	kgdb_port_init(void);
245 void	change_clock(uint32_t v);
246 
247 bs_protos(bs_notimpl);
248 
249 #include "com.h"
250 #if NCOM > 0
251 #include <dev/ic/comreg.h>
252 #include <dev/ic/comvar.h>
253 #endif
254 
255 #ifndef CONSPEED
256 #define CONSPEED B115200	/* What RedBoot uses */
257 #endif
258 #ifndef CONMODE
259 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
260 #endif
261 
262 int comcnspeed = CONSPEED;
263 int comcnmode = CONMODE;
264 
265 /*
266  * void cpu_reboot(int howto, char *bootstr)
267  *
268  * Reboots the system
269  *
270  * Deal with any syncing, unmounting, dumping and shutdown hooks,
271  * then reset the CPU.
272  */
273 void
274 cpu_reboot(int howto, char *bootstr)
275 {
276 #ifdef DIAGNOSTIC
277 	/* info */
278 	printf("boot: howto=%08x curproc=%p\n", howto, curproc);
279 #endif
280 
281 	/*
282 	 * If we are still cold then hit the air brakes
283 	 * and crash to earth fast
284 	 */
285 	if (cold) {
286 		doshutdownhooks();
287 		printf("The operating system has halted.\n");
288 		printf("Please press any key to reboot.\n\n");
289 		cngetc();
290 		printf("rebooting...\n");
291 		cpu_reset();
292 		/*NOTREACHED*/
293 	}
294 
295 	/* Disable console buffering */
296 /*	cnpollc(1);*/
297 
298 	/*
299 	 * If RB_NOSYNC was not specified sync the discs.
300 	 * Note: Unless cold is set to 1 here, syslogd will die during the
301 	 * unmount.  It looks like syslogd is getting woken up only to find
302 	 * that it cannot page part of the binary in as the filesystem has
303 	 * been unmounted.
304 	 */
305 	if (!(howto & RB_NOSYNC))
306 		bootsync();
307 
308 	/* Say NO to interrupts */
309 	splhigh();
310 
311 	/* Do a dump if requested. */
312 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
313 		dumpsys();
314 
315 	/* Run any shutdown hooks */
316 	doshutdownhooks();
317 
318 	/* Make sure IRQ's are disabled */
319 	IRQdisable;
320 
321 	if (howto & RB_HALT) {
322 		printf("The operating system has halted.\n");
323 		printf("Please press any key to reboot.\n\n");
324 		cngetc();
325 	}
326 
327 	printf("rebooting...\n");
328 	cpu_reset();
329 	/*NOTREACHED*/
330 }
331 
332 static inline
333 pd_entry_t *
334 read_ttb(void)
335 {
336   long ttb;
337 
338   __asm volatile("mrc	p15, 0, %0, c2, c0, 0" : "=r" (ttb));
339 
340 
341   return (pd_entry_t *)(ttb & ~((1<<14)-1));
342 }
343 
344 /*
345  * Static device mappings. These peripheral registers are mapped at
346  * fixed virtual addresses very early in initarm() so that we can use
347  * them while booting the kernel, and stay at the same address
348  * throughout whole kernel's life time.
349  *
350  * We use this table twice; once with bootstrap page table, and once
351  * with kernel's page table which we build up in initarm().
352  *
353  * Since we map these registers into the bootstrap page table using
354  * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
355  * registers segment-aligned and segment-rounded in order to avoid
356  * using the 2nd page tables.
357  */
358 
359 #define	_A(a)	((a) & ~L1_S_OFFSET)
360 #define	_S(s)	(((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
361 
362 static const struct pmap_devmap g42xxeb_devmap[] = {
363     {
364 	    G42XXEB_PLDREG_VBASE,
365 	    _A(G42XXEB_PLDREG_BASE),
366 	    _S(G42XXEB_PLDREG_SIZE),
367 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
368     },
369     {
370 	    G42XXEB_GPIO_VBASE,
371 	    _A(PXA2X0_GPIO_BASE),
372 	    _S(PXA250_GPIO_SIZE),
373 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
374     },
375     {
376 	    G42XXEB_CLKMAN_VBASE,
377 	    _A(PXA2X0_CLKMAN_BASE),
378 	    _S(PXA2X0_CLKMAN_SIZE),
379 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
380     },
381     {
382 	    G42XXEB_INTCTL_VBASE,
383 	    _A(PXA2X0_INTCTL_BASE),
384 	    _S(PXA2X0_INTCTL_SIZE),
385 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
386     },
387     {
388 	    G42XXEB_FFUART_VBASE,
389 	    _A(PXA2X0_FFUART_BASE),
390 	    _S(4 * COM_NPORTS),
391 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
392     },
393     {
394 	    G42XXEB_BTUART_VBASE,
395 	    _A(PXA2X0_BTUART_BASE),
396 	    _S(4 * COM_NPORTS),
397 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE,
398     },
399     {0, 0, 0, 0,}
400 };
401 
402 #undef	_A
403 #undef	_S
404 
405 
406 /*
407  * u_int initarm(...)
408  *
409  * Initial entry point on startup. This gets called before main() is
410  * entered.
411  * It should be responsible for setting up everything that must be
412  * in place when main is called.
413  * This includes
414  *   Taking a copy of the boot configuration structure.
415  *   Initialising the physical console so characters can be printed.
416  *   Setting up page tables for the kernel
417  *   Relocating the kernel to the bottom of physical memory
418  */
419 u_int
420 initarm(void *arg)
421 {
422 	extern vaddr_t xscale_cache_clean_addr;
423 	int loop;
424 	int loop1;
425 	u_int l1pagetable;
426 	pv_addr_t kernel_l1pt;
427 	paddr_t memstart;
428 	psize_t memsize;
429 	int led_data = 1;
430 #ifdef DIAGNOSTIC
431 	extern vsize_t xscale_minidata_clean_size; /* used in KASSERT */
432 #endif
433 
434 #define LEDSTEP_P() ioreg8_write(G42XXEB_PLDREG_BASE+G42XXEB_LED, led_data++)
435 #define LEDSTEP() pldreg8_write(G42XXEB_LED, led_data++);
436 
437 	/* use physical address until pagetable is set */
438 	LEDSTEP_P();
439 
440 	/* map some peripheral registers at static I/O area */
441 	pmap_devmap_bootstrap((vaddr_t)read_ttb(), g42xxeb_devmap);
442 
443 	LEDSTEP_P();
444 
445 	/* start 32.768 kHz OSC */
446 	ioreg_write(G42XXEB_CLKMAN_VBASE + 0x08, 2);
447 	/* Get ready for splfoo() */
448 	pxa2x0_intr_bootstrap(G42XXEB_INTCTL_VBASE);
449 
450 	LEDSTEP();
451 
452 	/*
453 	 * Heads up ... Setup the CPU / MMU / TLB functions
454 	 */
455 	if (set_cpufuncs())
456 		panic("cpu not recognized!");
457 
458 	LEDSTEP();
459 
460 	/*
461 	 * Okay, RedBoot has provided us with the following memory map:
462 	 *
463 	 * Physical Address Range     Description
464 	 * -----------------------    ----------------------------------
465 	 * 0x00000000 - 0x01ffffff    flash Memory   (32MB)
466 	 * 0x04000000 - 0x05ffffff    Application flash Memory  (32MB)
467 	 * 0x08000000 - 0x080000ff    I/O baseboard registers
468 	 * 0x0c000000 - 0x0c0fffff    Ethernet Controller
469 	 * 0x14000000 - 0x17ffffff    Expansion Card (64MB)
470 	 * 0x40000000 - 0x480fffff    Processor Registers
471 	 * 0xa0000000 - 0xa3ffffff    SDRAM Bank 0 (64MB)
472 	 *
473 	 *
474 	 * Virtual Address Range    X C B  Description
475 	 * -----------------------  - - -  ----------------------------------
476 	 * 0x00000000 - 0x00003fff  N Y Y  SDRAM
477 	 * 0x00004000 - 0x01ffffff  N Y N  ROM
478 	 * 0x08000000 - 0x080fffff  N N N  I/O baseboard registers
479 	 * 0x0a000000 - 0x0a0fffff  N N N  SRAM
480 	 * 0x40000000 - 0x480fffff  N N N  Processor Registers
481 	 * 0xa0000000 - 0xa000ffff  N Y N  RedBoot SDRAM
482 	 * 0xa0017000 - 0xa3ffffff  Y Y Y  SDRAM
483 	 * 0xc0000000 - 0xcfffffff  Y Y Y  Cache Flush Region
484 	 * (done by this routine)
485 	 * 0xfd000000 - 0xfd0000ff  N N N  I/O baseboard registers
486 	 * 0xfd100000 - 0xfd3fffff  N N N  Processor Registers.
487 	 * 0xfd400000 - 0xfd4fffff  N N N  FF-UART
488 	 * 0xfd500000 - 0xfd5fffff  N N N  BT-UART
489 	 *
490 	 * RedBoot's first level page table is at 0xa0004000.  There
491 	 * are also 2 second-level tables at 0xa0008000 and
492 	 * 0xa0008400.  We will continue to use them until we switch to
493 	 * our pagetable by setttb().
494 	 */
495 
496 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
497 
498 	LEDSTEP();
499 
500 	/* setup GPIO for BTUART, in case bootloader doesn't take care of it */
501 	pxa2x0_gpio_bootstrap(G42XXEB_GPIO_VBASE);
502 	pxa2x0_gpio_set_function(42, GPIO_ALT_FN_1_IN);
503 	pxa2x0_gpio_set_function(43, GPIO_ALT_FN_2_OUT);
504 	pxa2x0_gpio_set_function(44, GPIO_ALT_FN_1_IN);
505 	pxa2x0_gpio_set_function(45, GPIO_ALT_FN_2_OUT);
506 
507 	LEDSTEP();
508 
509 	consinit();
510 #ifdef KGDB
511 	LEDSTEP();
512 	kgdb_port_init();
513 #endif
514 
515 	LEDSTEP();
516 
517 	/* Talk to the user */
518 	printf("\nNetBSD/evbarm (g42xxeb) booting ...\n");
519 
520 #if 0
521 	/*
522 	 * Examine the boot args string for options we need to know about
523 	 * now.
524 	 */
525 	process_kernel_args((char *)nwbootinfo.bt_args);
526 #endif
527 
528 	memstart = 0xa0000000;
529 	memsize = 0x04000000;		/* 64MB */
530 
531 	printf("initarm: Configuring system ...\n");
532 
533 	/* Fake bootconfig structure for the benefit of pmap.c */
534 	/* XXX must make the memory description h/w independant */
535 	bootconfig.dramblocks = 1;
536 	bootconfig.dram[0].address = memstart;
537 	bootconfig.dram[0].pages = memsize / PAGE_SIZE;
538 
539 	/*
540 	 * Set up the variables that define the availablilty of
541 	 * physical memory.  For now, we're going to set
542 	 * physical_freestart to 0xa0200000 (where the kernel
543 	 * was loaded), and allocate the memory we need downwards.
544 	 * If we get too close to the L1 table that we set up, we
545 	 * will panic.  We will update physical_freestart and
546 	 * physical_freeend later to reflect what pmap_bootstrap()
547 	 * wants to see.
548 	 *
549 	 * XXX pmap_bootstrap() needs an enema.
550 	 */
551 	physical_start = bootconfig.dram[0].address;
552 	physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
553 
554 	physical_freestart = 0xa0009000UL;
555 	physical_freeend = 0xa0200000UL;
556 
557 	physmem = (physical_end - physical_start) / PAGE_SIZE;
558 
559 #ifdef VERBOSE_INIT_ARM
560 	/* Tell the user about the memory */
561 	printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
562 	    physical_start, physical_end - 1);
563 #endif
564 
565 	/*
566 	 * Okay, the kernel starts 2MB in from the bottom of physical
567 	 * memory.  We are going to allocate our bootstrap pages downwards
568 	 * from there.
569 	 *
570 	 * We need to allocate some fixed page tables to get the kernel
571 	 * going.  We allocate one page directory and a number of page
572 	 * tables and store the physical addresses in the kernel_pt_table
573 	 * array.
574 	 *
575 	 * The kernel page directory must be on a 16K boundary.  The page
576 	 * tables must be on 4K bounaries.  What we do is allocate the
577 	 * page directory on the first 16K boundary that we encounter, and
578 	 * the page tables on 4K boundaries otherwise.  Since we allocate
579 	 * at least 3 L2 page tables, we are guaranteed to encounter at
580 	 * least one 16K aligned region.
581 	 */
582 
583 #ifdef VERBOSE_INIT_ARM
584 	printf("Allocating page tables\n");
585 #endif
586 
587 	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
588 
589 #ifdef VERBOSE_INIT_ARM
590 	printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
591 	       physical_freestart, free_pages, free_pages);
592 #endif
593 
594 	/* Define a macro to simplify memory allocation */
595 #define	valloc_pages(var, np)				\
596 	alloc_pages((var).pv_pa, (np));			\
597 	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
598 
599 #define alloc_pages(var, np)				\
600 	physical_freeend -= ((np) * PAGE_SIZE);		\
601 	if (physical_freeend < physical_freestart)	\
602 		panic("initarm: out of memory");	\
603 	(var) = physical_freeend;			\
604 	free_pages -= (np);				\
605 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
606 
607 	loop1 = 0;
608 	kernel_l1pt.pv_pa = 0;
609 	kernel_l1pt.pv_va = 0;
610 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
611 		/* Are we 16KB aligned for an L1 ? */
612 		if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
613 		    && kernel_l1pt.pv_pa == 0) {
614 			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
615 		} else {
616 			valloc_pages(kernel_pt_table[loop1],
617 			    L2_TABLE_SIZE / PAGE_SIZE);
618 			++loop1;
619 		}
620 	}
621 
622 	/* This should never be able to happen but better confirm that. */
623 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
624 		panic("initarm: Failed to align the kernel page directory");
625 
626 	LEDSTEP();
627 
628 	/*
629 	 * Allocate a page for the system page mapped to V0x00000000
630 	 * This page will just contain the system vectors and can be
631 	 * shared by all processes.
632 	 */
633 	alloc_pages(systempage.pv_pa, 1);
634 
635 	/* Allocate stacks for all modes */
636 	valloc_pages(irqstack, IRQ_STACK_SIZE);
637 	valloc_pages(abtstack, ABT_STACK_SIZE);
638 	valloc_pages(undstack, UND_STACK_SIZE);
639 	valloc_pages(kernelstack, UPAGES);
640 
641 	/* Allocate enough pages for cleaning the Mini-Data cache. */
642 	KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
643 	valloc_pages(minidataclean, 1);
644 
645 #ifdef VERBOSE_INIT_ARM
646 	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
647 	    irqstack.pv_va);
648 	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
649 	    abtstack.pv_va);
650 	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
651 	    undstack.pv_va);
652 	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
653 	    kernelstack.pv_va);
654 #endif
655 
656 	/*
657 	 * XXX Defer this to later so that we can reclaim the memory
658 	 * XXX used by the RedBoot page tables.
659 	 */
660 	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
661 
662 	/*
663 	 * Ok we have allocated physical pages for the primary kernel
664 	 * page tables
665 	 */
666 
667 #ifdef VERBOSE_INIT_ARM
668 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
669 #endif
670 
671 	/*
672 	 * Now we start construction of the L1 page table
673 	 * We start by mapping the L2 page tables into the L1.
674 	 * This means that we can replace L1 mappings later on if necessary
675 	 */
676 	l1pagetable = kernel_l1pt.pv_pa;
677 
678 	/* Map the L2 pages tables in the L1 page table */
679 	pmap_link_l2pt(l1pagetable, 0x00000000,
680 	    &kernel_pt_table[KERNEL_PT_SYS]);
681 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
682 		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
683 		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
684 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
685 		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
686 		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
687 
688 	/* update the top of the kernel VM */
689 	pmap_curmaxkvaddr =
690 	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
691 
692 #ifdef VERBOSE_INIT_ARM
693 	printf("Mapping kernel\n");
694 #endif
695 
696 	/* Now we fill in the L2 pagetable for the kernel static code/data */
697 	{
698 		extern char etext[], _end[];
699 		size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
700 		size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
701 		u_int logical;
702 
703 		textsize = (textsize + PGOFSET) & ~PGOFSET;
704 		totalsize = (totalsize + PGOFSET) & ~PGOFSET;
705 
706 		logical = 0x00200000;	/* offset of kernel in RAM */
707 
708 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
709 		    physical_start + logical, textsize,
710 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
711 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
712 		    physical_start + logical, totalsize - textsize,
713 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
714 	}
715 
716 #ifdef VERBOSE_INIT_ARM
717 	printf("Constructing L2 page tables\n");
718 #endif
719 
720 	/* Map the stack pages */
721 	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
722 	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
723 	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
724 	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
725 	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
726 	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
727 	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
728 	    UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
729 
730 	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
731 	    L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
732 
733 	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
734 		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
735 		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
736 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
737 	}
738 
739 	/* Map the Mini-Data cache clean area. */
740 	xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
741 	    minidataclean.pv_pa);
742 
743 	/* Map the vector page. */
744 #if 1
745 	/* MULTI-ICE requires that page 0 is NC/NB so that it can download the
746 	 * cache-clean code there.  */
747 	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
748 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
749 #else
750 	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
751 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
752 #endif
753 
754 	/*
755 	 * map integrated peripherals at same address in l1pagetable
756 	 * so that we can continue to use console.
757 	 */
758 	pmap_devmap_bootstrap(l1pagetable, g42xxeb_devmap);
759 
760 	/*
761 	 * Give the XScale global cache clean code an appropriately
762 	 * sized chunk of unmapped VA space starting at 0xff000000
763 	 * (our device mappings end before this address).
764 	 */
765 	xscale_cache_clean_addr = 0xff000000U;
766 
767 	/*
768 	 * Now we have the real page tables in place so we can switch to them.
769 	 * Once this is done we will be running with the REAL kernel page
770 	 * tables.
771 	 */
772 
773 	/*
774 	 * Update the physical_freestart/physical_freeend/free_pages
775 	 * variables.
776 	 */
777 	{
778 		extern char _end[];
779 
780 		physical_freestart = physical_start +
781 		    (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
782 		     KERNEL_BASE);
783 		physical_freeend = physical_end;
784 		free_pages =
785 		    (physical_freeend - physical_freestart) / PAGE_SIZE;
786 	}
787 
788 	/* Switch tables */
789 #ifdef VERBOSE_INIT_ARM
790 	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
791 	       physical_freestart, free_pages, free_pages);
792 	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
793 #endif
794 	LEDSTEP();
795 
796 	setttb(kernel_l1pt.pv_pa);
797 	cpu_tlb_flushID();
798 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
799 	LEDSTEP();
800 
801 	/*
802 	 * Moved from cpu_startup() as data_abort_handler() references
803 	 * this during uvm init
804 	 */
805 	proc0paddr = (struct user *)kernelstack.pv_va;
806 	lwp0.l_addr = proc0paddr;
807 
808 #ifdef VERBOSE_INIT_ARM
809 	printf("bootstrap done.\n");
810 #endif
811 
812 	arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
813 
814 	/*
815 	 * Pages were allocated during the secondary bootstrap for the
816 	 * stacks for different CPU modes.
817 	 * We must now set the r13 registers in the different CPU modes to
818 	 * point to these stacks.
819 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
820 	 * of the stack memory.
821 	 */
822 #ifdef	VERBOSE_INIT_ARM
823 	printf("init subsystems: stacks ");
824 #endif
825 
826 	set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
827 	set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
828 	set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
829 
830 	/*
831 	 * Well we should set a data abort handler.
832 	 * Once things get going this will change as we will need a proper
833 	 * handler.
834 	 * Until then we will use a handler that just panics but tells us
835 	 * why.
836 	 * Initialisation of the vectors will just panic on a data abort.
837 	 * This just fills in a slighly better one.
838 	 */
839 #ifdef	VERBOSE_INIT_ARM
840 	printf("vectors ");
841 #endif
842 	data_abort_handler_address = (u_int)data_abort_handler;
843 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
844 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
845 
846 	/* Initialise the undefined instruction handlers */
847 #ifdef	VERBOSE_INIT_ARM
848 	printf("undefined ");
849 #endif
850 	undefined_init();
851 
852 	/* Load memory into UVM. */
853 #ifdef	VERBOSE_INIT_ARM
854 	printf("page ");
855 #endif
856 	uvm_setpagesize();	/* initialize PAGE_SIZE-dependent variables */
857 	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
858 	    atop(physical_freestart), atop(physical_freeend),
859 	    VM_FREELIST_DEFAULT);
860 
861 	/* Boot strap pmap telling it where the kernel page table is */
862 #ifdef	VERBOSE_INIT_ARM
863 	printf("pmap ");
864 #endif
865 	LEDSTEP();
866 	pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, KERNEL_VM_BASE,
867 	    KERNEL_VM_BASE + KERNEL_VM_SIZE);
868 	LEDSTEP();
869 
870 #ifdef __HAVE_MEMORY_DISK__
871 	md_root_setconf(memory_disk, sizeof memory_disk);
872 #endif
873 
874 #ifdef BOOTHOWTO
875 	boothowto |= BOOTHOWTO;
876 #endif
877 
878 	{
879 		uint8_t sw = pldreg8_read(G42XXEB_DIPSW);
880 
881 		if (0 == (sw & (1<<0)))
882 			boothowto ^= RB_KDB;
883 		if (0 == (sw & (1<<1)))
884 			boothowto ^= RB_SINGLE;
885 	}
886 
887 	LEDSTEP();
888 
889 #ifdef IPKDB
890 	/* Initialise ipkdb */
891 	ipkdb_init();
892 	if (boothowto & RB_KDB)
893 		ipkdb_connect(0);
894 #endif
895 
896 #ifdef KGDB
897 	if (boothowto & RB_KDB) {
898 		kgdb_debug_init = 1;
899 		kgdb_connect(1);
900 	}
901 #endif
902 
903 #ifdef DDB
904 	db_machine_init();
905 
906 	/* Firmware doesn't load symbols. */
907 	ddb_init(0, NULL, NULL);
908 
909 	if (boothowto & RB_KDB)
910 		Debugger();
911 #endif
912 
913 	pldreg8_write(G42XXEB_LED, 0);
914 
915 	/* We return the new stack pointer address */
916 	return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
917 }
918 
919 #if 0
920 void
921 process_kernel_args(char *args)
922 {
923 
924 	boothowto = 0;
925 
926 	/* Make a local copy of the bootargs */
927 	strncpy(bootargs, args, MAX_BOOT_STRING);
928 
929 	args = bootargs;
930 	boot_file = bootargs;
931 
932 	/* Skip the kernel image filename */
933 	while (*args != ' ' && *args != 0)
934 		++args;
935 
936 	if (*args != 0)
937 		*args++ = 0;
938 
939 	while (*args == ' ')
940 		++args;
941 
942 	boot_args = args;
943 
944 	printf("bootfile: %s\n", boot_file);
945 	printf("bootargs: %s\n", boot_args);
946 
947 	parse_mi_bootargs(boot_args);
948 }
949 #endif
950 
951 #ifdef KGDB
952 #ifndef KGDB_DEVNAME
953 #define KGDB_DEVNAME "ffuart"
954 #endif
955 const char kgdb_devname[] = KGDB_DEVNAME;
956 
957 #if (NCOM > 0)
958 #ifndef KGDB_DEVMODE
959 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
960 #endif
961 int comkgdbmode = KGDB_DEVMODE;
962 #endif /* NCOM */
963 
964 #endif /* KGDB */
965 
966 
967 void
968 consinit(void)
969 {
970 	static int consinit_called = 0;
971 	uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN);
972 #if 0
973 	char *console = CONSDEVNAME;
974 #endif
975 
976 	if (consinit_called != 0)
977 		return;
978 
979 	consinit_called = 1;
980 
981 #if NCOM > 0
982 
983 #ifdef FFUARTCONSOLE
984 #ifdef KGDB
985 	if (0 == strcmp(kgdb_devname, "ffuart")){
986 		/* port is reserved for kgdb */
987 	} else
988 #endif
989 	if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_FFUART_BASE,
990 		comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
991 #if 0
992 		pxa2x0_clkman_config(CKEN_FFUART, 1);
993 #else
994 		ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN,
995 		    ckenreg|CKEN_FFUART);
996 #endif
997 
998 		return;
999 	}
1000 #endif /* FFUARTCONSOLE */
1001 
1002 #ifdef BTUARTCONSOLE
1003 #ifdef KGDB
1004 	if (0 == strcmp(kgdb_devname, "btuart")) {
1005 		/* port is reserved for kgdb */
1006 	} else
1007 #endif
1008 	if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_BTUART_BASE,
1009 		comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
1010 		ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN,
1011 		    ckenreg|CKEN_BTUART);
1012 		return;
1013 	}
1014 #endif /* BTUARTCONSOLE */
1015 
1016 
1017 #endif /* NCOM */
1018 
1019 }
1020 
1021 #ifdef KGDB
1022 void
1023 kgdb_port_init(void)
1024 {
1025 #if (NCOM > 0) && defined(COM_PXA2X0)
1026 	paddr_t paddr = 0;
1027 	uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN);
1028 
1029 	if (0 == strcmp(kgdb_devname, "ffuart")) {
1030 		paddr = PXA2X0_FFUART_BASE;
1031 		ckenreg |= CKEN_FFUART;
1032 	}
1033 	else if (0 == strcmp(kgdb_devname, "btuart")) {
1034 		paddr = PXA2X0_BTUART_BASE;
1035 		ckenreg |= CKEN_BTUART;
1036 	}
1037 
1038 	if (paddr &&
1039 	    0 == com_kgdb_attach(&pxa2x0_a4x_bs_tag, paddr,
1040 		kgdb_rate, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comkgdbmode)) {
1041 
1042 		ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN, ckenreg);
1043 
1044 	}
1045 
1046 #endif
1047 }
1048 #endif
1049 
1050