1 /* $NetBSD: g42xxeb_machdep.c,v 1.24 2011/07/01 20:38:17 dyoung Exp $ */ 2 3 /* 4 * Copyright (c) 2002, 2003, 2004, 2005 Genetec Corporation. 5 * All rights reserved. 6 * 7 * Written by Hiroyuki Bessho for Genetec Corporation. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. The name of Genetec Corporation may not be used to endorse or 18 * promote products derived from this software without specific prior 19 * written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Machine dependent functions for kernel setup for Genetec G4250EBX 34 * evaluation board. 35 * 36 * Based on iq80310_machhdep.c 37 */ 38 /* 39 * Copyright (c) 2001 Wasabi Systems, Inc. 40 * All rights reserved. 41 * 42 * Written by Jason R. Thorpe for Wasabi Systems, Inc. 43 * 44 * Redistribution and use in source and binary forms, with or without 45 * modification, are permitted provided that the following conditions 46 * are met: 47 * 1. Redistributions of source code must retain the above copyright 48 * notice, this list of conditions and the following disclaimer. 49 * 2. Redistributions in binary form must reproduce the above copyright 50 * notice, this list of conditions and the following disclaimer in the 51 * documentation and/or other materials provided with the distribution. 52 * 3. All advertising materials mentioning features or use of this software 53 * must display the following acknowledgement: 54 * This product includes software developed for the NetBSD Project by 55 * Wasabi Systems, Inc. 56 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 57 * or promote products derived from this software without specific prior 58 * written permission. 59 * 60 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 61 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 62 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 63 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 64 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 65 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 66 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 67 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 68 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 69 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 70 * POSSIBILITY OF SUCH DAMAGE. 71 */ 72 73 /* 74 * Copyright (c) 1997,1998 Mark Brinicombe. 75 * Copyright (c) 1997,1998 Causality Limited. 76 * All rights reserved. 77 * 78 * Redistribution and use in source and binary forms, with or without 79 * modification, are permitted provided that the following conditions 80 * are met: 81 * 1. Redistributions of source code must retain the above copyright 82 * notice, this list of conditions and the following disclaimer. 83 * 2. Redistributions in binary form must reproduce the above copyright 84 * notice, this list of conditions and the following disclaimer in the 85 * documentation and/or other materials provided with the distribution. 86 * 3. All advertising materials mentioning features or use of this software 87 * must display the following acknowledgement: 88 * This product includes software developed by Mark Brinicombe 89 * for the NetBSD Project. 90 * 4. The name of the company nor the name of the author may be used to 91 * endorse or promote products derived from this software without specific 92 * prior written permission. 93 * 94 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 95 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 96 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 97 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 98 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 99 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 100 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 101 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 102 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 103 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 104 * SUCH DAMAGE. 105 * 106 * Machine dependent functions for kernel setup for Intel IQ80310 evaluation 107 * boards using RedBoot firmware. 108 */ 109 110 #include "opt_ddb.h" 111 #include "opt_kgdb.h" 112 #include "opt_pmap_debug.h" 113 #include "opt_md.h" 114 #include "opt_com.h" 115 #include "lcd.h" 116 117 #include <sys/param.h> 118 #include <sys/device.h> 119 #include <sys/systm.h> 120 #include <sys/kernel.h> 121 #include <sys/exec.h> 122 #include <sys/proc.h> 123 #include <sys/msgbuf.h> 124 #include <sys/reboot.h> 125 #include <sys/termios.h> 126 #include <sys/ksyms.h> 127 128 #include <uvm/uvm_extern.h> 129 130 #include <sys/conf.h> 131 #include <dev/cons.h> 132 #include <dev/md.h> 133 134 #include <machine/db_machdep.h> 135 #include <ddb/db_sym.h> 136 #include <ddb/db_extern.h> 137 #ifdef KGDB 138 #include <sys/kgdb.h> 139 #endif 140 141 #include <machine/bootconfig.h> 142 #include <sys/bus.h> 143 #include <machine/cpu.h> 144 #include <machine/frame.h> 145 #include <arm/undefined.h> 146 147 #include <arm/arm32/machdep.h> 148 149 #include <arm/xscale/pxa2x0reg.h> 150 #include <arm/xscale/pxa2x0var.h> 151 #include <arm/xscale/pxa2x0_gpio.h> 152 #include <evbarm/g42xxeb/g42xxeb_reg.h> 153 #include <evbarm/g42xxeb/g42xxeb_var.h> 154 155 /* Kernel text starts 2MB in from the bottom of the kernel address space. */ 156 #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000) 157 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000) 158 159 /* 160 * The range 0xc1000000 - 0xccffffff is available for kernel VM space 161 * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff 162 */ 163 #define KERNEL_VM_SIZE 0x0C000000 164 165 166 /* 167 * Address to call from cpu_reset() to reset the machine. 168 * This is machine architecture dependent as it varies depending 169 * on where the ROM appears when you turn the MMU off. 170 */ 171 172 u_int cpu_reset_address = 0; 173 174 /* Define various stack sizes in pages */ 175 #define IRQ_STACK_SIZE 1 176 #define ABT_STACK_SIZE 1 177 #define UND_STACK_SIZE 1 178 179 BootConfig bootconfig; /* Boot config storage */ 180 char *boot_args = NULL; 181 char *boot_file = NULL; 182 183 vm_offset_t physical_start; 184 vm_offset_t physical_freestart; 185 vm_offset_t physical_freeend; 186 vm_offset_t physical_end; 187 u_int free_pages; 188 189 /*int debug_flags;*/ 190 #ifndef PMAP_STATIC_L1S 191 int max_processes = 64; /* Default number */ 192 #endif /* !PMAP_STATIC_L1S */ 193 194 /* Physical and virtual addresses for some global pages */ 195 pv_addr_t irqstack; 196 pv_addr_t undstack; 197 pv_addr_t abtstack; 198 pv_addr_t kernelstack; 199 pv_addr_t minidataclean; 200 201 vm_offset_t msgbufphys; 202 203 extern u_int data_abort_handler_address; 204 extern u_int prefetch_abort_handler_address; 205 extern u_int undefined_handler_address; 206 207 #ifdef PMAP_DEBUG 208 extern int pmap_debug_level; 209 #endif 210 211 #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */ 212 #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */ 213 #define KERNEL_PT_KERNEL_NUM 4 214 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM) 215 /* Page tables for mapping kernel VM */ 216 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */ 217 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM) 218 219 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS]; 220 221 /* Prototypes */ 222 223 #if 0 224 void process_kernel_args(char *); 225 #endif 226 227 void consinit(void); 228 void kgdb_port_init(void); 229 void change_clock(uint32_t v); 230 231 bs_protos(bs_notimpl); 232 233 #include "com.h" 234 #if NCOM > 0 235 #include <dev/ic/comreg.h> 236 #include <dev/ic/comvar.h> 237 #endif 238 239 #ifndef CONSPEED 240 #define CONSPEED B115200 /* What RedBoot uses */ 241 #endif 242 #ifndef CONMODE 243 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ 244 #endif 245 246 int comcnspeed = CONSPEED; 247 int comcnmode = CONMODE; 248 249 static struct pxa2x0_gpioconf boarddep_gpioconf[] = { 250 { 44, GPIO_ALT_FN_1_IN }, /* BTCST */ 251 { 45, GPIO_ALT_FN_2_OUT }, /* BTRST */ 252 253 { -1 } 254 }; 255 static struct pxa2x0_gpioconf *g42xxeb_gpioconf[] = { 256 pxa25x_com_btuart_gpioconf, 257 pxa25x_com_ffuart_gpioconf, 258 #if 0 259 pxa25x_com_stuart_gpioconf, 260 pxa25x_pxaacu_gpioconf, 261 #endif 262 boarddep_gpioconf, 263 NULL 264 }; 265 266 /* 267 * void cpu_reboot(int howto, char *bootstr) 268 * 269 * Reboots the system 270 * 271 * Deal with any syncing, unmounting, dumping and shutdown hooks, 272 * then reset the CPU. 273 */ 274 void 275 cpu_reboot(int howto, char *bootstr) 276 { 277 #ifdef DIAGNOSTIC 278 /* info */ 279 printf("boot: howto=%08x curproc=%p\n", howto, curproc); 280 #endif 281 282 /* 283 * If we are still cold then hit the air brakes 284 * and crash to earth fast 285 */ 286 if (cold) { 287 doshutdownhooks(); 288 pmf_system_shutdown(boothowto); 289 printf("The operating system has halted.\n"); 290 printf("Please press any key to reboot.\n\n"); 291 cngetc(); 292 printf("rebooting...\n"); 293 cpu_reset(); 294 /*NOTREACHED*/ 295 } 296 297 /* Disable console buffering */ 298 /* cnpollc(1);*/ 299 300 /* 301 * If RB_NOSYNC was not specified sync the discs. 302 * Note: Unless cold is set to 1 here, syslogd will die during the 303 * unmount. It looks like syslogd is getting woken up only to find 304 * that it cannot page part of the binary in as the filesystem has 305 * been unmounted. 306 */ 307 if (!(howto & RB_NOSYNC)) 308 bootsync(); 309 310 /* Say NO to interrupts */ 311 splhigh(); 312 313 /* Do a dump if requested. */ 314 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) 315 dumpsys(); 316 317 /* Run any shutdown hooks */ 318 doshutdownhooks(); 319 320 pmf_system_shutdown(boothowto); 321 322 /* Make sure IRQ's are disabled */ 323 IRQdisable; 324 325 if (howto & RB_HALT) { 326 printf("The operating system has halted.\n"); 327 printf("Please press any key to reboot.\n\n"); 328 cngetc(); 329 } 330 331 printf("rebooting...\n"); 332 cpu_reset(); 333 /*NOTREACHED*/ 334 } 335 336 static inline 337 pd_entry_t * 338 read_ttb(void) 339 { 340 long ttb; 341 342 __asm volatile("mrc p15, 0, %0, c2, c0, 0" : "=r" (ttb)); 343 344 345 return (pd_entry_t *)(ttb & ~((1<<14)-1)); 346 } 347 348 /* 349 * Static device mappings. These peripheral registers are mapped at 350 * fixed virtual addresses very early in initarm() so that we can use 351 * them while booting the kernel, and stay at the same address 352 * throughout whole kernel's life time. 353 * 354 * We use this table twice; once with bootstrap page table, and once 355 * with kernel's page table which we build up in initarm(). 356 * 357 * Since we map these registers into the bootstrap page table using 358 * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map 359 * registers segment-aligned and segment-rounded in order to avoid 360 * using the 2nd page tables. 361 */ 362 363 #define _A(a) ((a) & ~L1_S_OFFSET) 364 #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1)) 365 366 static const struct pmap_devmap g42xxeb_devmap[] = { 367 { 368 G42XXEB_PLDREG_VBASE, 369 _A(G42XXEB_PLDREG_BASE), 370 _S(G42XXEB_PLDREG_SIZE), 371 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 372 }, 373 { 374 G42XXEB_GPIO_VBASE, 375 _A(PXA2X0_GPIO_BASE), 376 _S(PXA250_GPIO_SIZE), 377 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 378 }, 379 { 380 G42XXEB_CLKMAN_VBASE, 381 _A(PXA2X0_CLKMAN_BASE), 382 _S(PXA2X0_CLKMAN_SIZE), 383 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 384 }, 385 { 386 G42XXEB_INTCTL_VBASE, 387 _A(PXA2X0_INTCTL_BASE), 388 _S(PXA2X0_INTCTL_SIZE), 389 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 390 }, 391 { 392 G42XXEB_FFUART_VBASE, 393 _A(PXA2X0_FFUART_BASE), 394 _S(4 * COM_NPORTS), 395 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 396 }, 397 { 398 G42XXEB_BTUART_VBASE, 399 _A(PXA2X0_BTUART_BASE), 400 _S(4 * COM_NPORTS), 401 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 402 }, 403 {0, 0, 0, 0,} 404 }; 405 406 #undef _A 407 #undef _S 408 409 410 /* 411 * u_int initarm(...) 412 * 413 * Initial entry point on startup. This gets called before main() is 414 * entered. 415 * It should be responsible for setting up everything that must be 416 * in place when main is called. 417 * This includes 418 * Taking a copy of the boot configuration structure. 419 * Initialising the physical console so characters can be printed. 420 * Setting up page tables for the kernel 421 * Relocating the kernel to the bottom of physical memory 422 */ 423 u_int 424 initarm(void *arg) 425 { 426 extern vaddr_t xscale_cache_clean_addr; 427 int loop; 428 int loop1; 429 u_int l1pagetable; 430 paddr_t memstart; 431 psize_t memsize; 432 int led_data = 1; 433 #ifdef DIAGNOSTIC 434 extern vsize_t xscale_minidata_clean_size; /* used in KASSERT */ 435 #endif 436 437 #define LEDSTEP_P() ioreg8_write(G42XXEB_PLDREG_BASE+G42XXEB_LED, led_data++) 438 #define LEDSTEP() pldreg8_write(G42XXEB_LED, led_data++); 439 440 /* use physical address until pagetable is set */ 441 LEDSTEP_P(); 442 443 /* map some peripheral registers at static I/O area */ 444 pmap_devmap_bootstrap((vaddr_t)read_ttb(), g42xxeb_devmap); 445 446 LEDSTEP_P(); 447 448 /* start 32.768 kHz OSC */ 449 ioreg_write(G42XXEB_CLKMAN_VBASE + 0x08, 2); 450 /* Get ready for splfoo() */ 451 pxa2x0_intr_bootstrap(G42XXEB_INTCTL_VBASE); 452 453 LEDSTEP(); 454 455 /* 456 * Heads up ... Setup the CPU / MMU / TLB functions 457 */ 458 if (set_cpufuncs()) 459 panic("cpu not recognized!"); 460 461 LEDSTEP(); 462 463 /* 464 * Okay, RedBoot has provided us with the following memory map: 465 * 466 * Physical Address Range Description 467 * ----------------------- ---------------------------------- 468 * 0x00000000 - 0x01ffffff flash Memory (32MB) 469 * 0x04000000 - 0x05ffffff Application flash Memory (32MB) 470 * 0x08000000 - 0x080000ff I/O baseboard registers 471 * 0x0c000000 - 0x0c0fffff Ethernet Controller 472 * 0x14000000 - 0x17ffffff Expansion Card (64MB) 473 * 0x40000000 - 0x480fffff Processor Registers 474 * 0xa0000000 - 0xa3ffffff SDRAM Bank 0 (64MB) 475 * 476 * 477 * Virtual Address Range X C B Description 478 * ----------------------- - - - ---------------------------------- 479 * 0x00000000 - 0x00003fff N Y Y SDRAM 480 * 0x00004000 - 0x01ffffff N Y N ROM 481 * 0x08000000 - 0x080fffff N N N I/O baseboard registers 482 * 0x0a000000 - 0x0a0fffff N N N SRAM 483 * 0x40000000 - 0x480fffff N N N Processor Registers 484 * 0xa0000000 - 0xa000ffff N Y N RedBoot SDRAM 485 * 0xa0017000 - 0xa3ffffff Y Y Y SDRAM 486 * 0xc0000000 - 0xcfffffff Y Y Y Cache Flush Region 487 * (done by this routine) 488 * 0xfd000000 - 0xfd0000ff N N N I/O baseboard registers 489 * 0xfd100000 - 0xfd3fffff N N N Processor Registers. 490 * 0xfd400000 - 0xfd4fffff N N N FF-UART 491 * 0xfd500000 - 0xfd5fffff N N N BT-UART 492 * 493 * RedBoot's first level page table is at 0xa0004000. There 494 * are also 2 second-level tables at 0xa0008000 and 495 * 0xa0008400. We will continue to use them until we switch to 496 * our pagetable by cpu_setttb(). 497 */ 498 499 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); 500 501 LEDSTEP(); 502 503 /* setup GPIO for BTUART, in case bootloader doesn't take care of it */ 504 pxa2x0_gpio_bootstrap(G42XXEB_GPIO_VBASE); 505 pxa2x0_gpio_config(g42xxeb_gpioconf); 506 507 LEDSTEP(); 508 509 consinit(); 510 #ifdef KGDB 511 LEDSTEP(); 512 kgdb_port_init(); 513 #endif 514 515 LEDSTEP(); 516 517 /* Talk to the user */ 518 printf("\nNetBSD/evbarm (g42xxeb) booting ...\n"); 519 520 #if 0 521 /* 522 * Examine the boot args string for options we need to know about 523 * now. 524 */ 525 process_kernel_args((char *)nwbootinfo.bt_args); 526 #endif 527 528 memstart = 0xa0000000; 529 memsize = 0x04000000; /* 64MB */ 530 531 printf("initarm: Configuring system ...\n"); 532 533 /* Fake bootconfig structure for the benefit of pmap.c */ 534 /* XXX must make the memory description h/w independent */ 535 bootconfig.dramblocks = 1; 536 bootconfig.dram[0].address = memstart; 537 bootconfig.dram[0].pages = memsize / PAGE_SIZE; 538 539 /* 540 * Set up the variables that define the availablilty of 541 * physical memory. For now, we're going to set 542 * physical_freestart to 0xa0200000 (where the kernel 543 * was loaded), and allocate the memory we need downwards. 544 * If we get too close to the L1 table that we set up, we 545 * will panic. We will update physical_freestart and 546 * physical_freeend later to reflect what pmap_bootstrap() 547 * wants to see. 548 * 549 * XXX pmap_bootstrap() needs an enema. 550 */ 551 physical_start = bootconfig.dram[0].address; 552 physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE); 553 554 physical_freestart = 0xa0009000UL; 555 physical_freeend = 0xa0200000UL; 556 557 physmem = (physical_end - physical_start) / PAGE_SIZE; 558 559 #ifdef VERBOSE_INIT_ARM 560 /* Tell the user about the memory */ 561 printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem, 562 physical_start, physical_end - 1); 563 #endif 564 565 /* 566 * Okay, the kernel starts 2MB in from the bottom of physical 567 * memory. We are going to allocate our bootstrap pages downwards 568 * from there. 569 * 570 * We need to allocate some fixed page tables to get the kernel 571 * going. We allocate one page directory and a number of page 572 * tables and store the physical addresses in the kernel_pt_table 573 * array. 574 * 575 * The kernel page directory must be on a 16K boundary. The page 576 * tables must be on 4K bounaries. What we do is allocate the 577 * page directory on the first 16K boundary that we encounter, and 578 * the page tables on 4K boundaries otherwise. Since we allocate 579 * at least 3 L2 page tables, we are guaranteed to encounter at 580 * least one 16K aligned region. 581 */ 582 583 #ifdef VERBOSE_INIT_ARM 584 printf("Allocating page tables\n"); 585 #endif 586 587 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; 588 589 #ifdef VERBOSE_INIT_ARM 590 printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n", 591 physical_freestart, free_pages, free_pages); 592 #endif 593 594 /* Define a macro to simplify memory allocation */ 595 #define valloc_pages(var, np) \ 596 alloc_pages((var).pv_pa, (np)); \ 597 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start; 598 599 #define alloc_pages(var, np) \ 600 physical_freeend -= ((np) * PAGE_SIZE); \ 601 if (physical_freeend < physical_freestart) \ 602 panic("initarm: out of memory"); \ 603 (var) = physical_freeend; \ 604 free_pages -= (np); \ 605 memset((char *)(var), 0, ((np) * PAGE_SIZE)); 606 607 loop1 = 0; 608 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { 609 /* Are we 16KB aligned for an L1 ? */ 610 if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0 611 && kernel_l1pt.pv_pa == 0) { 612 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); 613 } else { 614 valloc_pages(kernel_pt_table[loop1], 615 L2_TABLE_SIZE / PAGE_SIZE); 616 ++loop1; 617 } 618 } 619 620 /* This should never be able to happen but better confirm that. */ 621 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0) 622 panic("initarm: Failed to align the kernel page directory"); 623 624 LEDSTEP(); 625 626 /* 627 * Allocate a page for the system page mapped to V0x00000000 628 * This page will just contain the system vectors and can be 629 * shared by all processes. 630 */ 631 alloc_pages(systempage.pv_pa, 1); 632 633 /* Allocate stacks for all modes */ 634 valloc_pages(irqstack, IRQ_STACK_SIZE); 635 valloc_pages(abtstack, ABT_STACK_SIZE); 636 valloc_pages(undstack, UND_STACK_SIZE); 637 valloc_pages(kernelstack, UPAGES); 638 639 /* Allocate enough pages for cleaning the Mini-Data cache. */ 640 KASSERT(xscale_minidata_clean_size <= PAGE_SIZE); 641 valloc_pages(minidataclean, 1); 642 643 #ifdef VERBOSE_INIT_ARM 644 printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, 645 irqstack.pv_va); 646 printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, 647 abtstack.pv_va); 648 printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, 649 undstack.pv_va); 650 printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, 651 kernelstack.pv_va); 652 #endif 653 654 /* 655 * XXX Defer this to later so that we can reclaim the memory 656 * XXX used by the RedBoot page tables. 657 */ 658 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); 659 660 /* 661 * Ok we have allocated physical pages for the primary kernel 662 * page tables 663 */ 664 665 #ifdef VERBOSE_INIT_ARM 666 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa); 667 #endif 668 669 /* 670 * Now we start construction of the L1 page table 671 * We start by mapping the L2 page tables into the L1. 672 * This means that we can replace L1 mappings later on if necessary 673 */ 674 l1pagetable = kernel_l1pt.pv_pa; 675 676 /* Map the L2 pages tables in the L1 page table */ 677 pmap_link_l2pt(l1pagetable, 0x00000000, 678 &kernel_pt_table[KERNEL_PT_SYS]); 679 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) 680 pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000, 681 &kernel_pt_table[KERNEL_PT_KERNEL + loop]); 682 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++) 683 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, 684 &kernel_pt_table[KERNEL_PT_VMDATA + loop]); 685 686 /* update the top of the kernel VM */ 687 pmap_curmaxkvaddr = 688 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); 689 690 #ifdef VERBOSE_INIT_ARM 691 printf("Mapping kernel\n"); 692 #endif 693 694 /* Now we fill in the L2 pagetable for the kernel static code/data */ 695 { 696 extern char etext[], _end[]; 697 size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE; 698 size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE; 699 u_int logical; 700 701 textsize = (textsize + PGOFSET) & ~PGOFSET; 702 totalsize = (totalsize + PGOFSET) & ~PGOFSET; 703 704 logical = 0x00200000; /* offset of kernel in RAM */ 705 706 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, 707 physical_start + logical, textsize, 708 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 709 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, 710 physical_start + logical, totalsize - textsize, 711 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 712 } 713 714 #ifdef VERBOSE_INIT_ARM 715 printf("Constructing L2 page tables\n"); 716 #endif 717 718 /* Map the stack pages */ 719 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, 720 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 721 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, 722 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 723 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, 724 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 725 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, 726 UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); 727 728 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, 729 L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE); 730 731 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { 732 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, 733 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, 734 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); 735 } 736 737 /* Map the Mini-Data cache clean area. */ 738 xscale_setup_minidata(l1pagetable, minidataclean.pv_va, 739 minidataclean.pv_pa); 740 741 /* Map the vector page. */ 742 #if 1 743 /* MULTI-ICE requires that page 0 is NC/NB so that it can download the 744 * cache-clean code there. */ 745 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, 746 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE); 747 #else 748 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, 749 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 750 #endif 751 752 /* 753 * map integrated peripherals at same address in l1pagetable 754 * so that we can continue to use console. 755 */ 756 pmap_devmap_bootstrap(l1pagetable, g42xxeb_devmap); 757 758 /* 759 * Give the XScale global cache clean code an appropriately 760 * sized chunk of unmapped VA space starting at 0xff000000 761 * (our device mappings end before this address). 762 */ 763 xscale_cache_clean_addr = 0xff000000U; 764 765 /* 766 * Now we have the real page tables in place so we can switch to them. 767 * Once this is done we will be running with the REAL kernel page 768 * tables. 769 */ 770 771 /* 772 * Update the physical_freestart/physical_freeend/free_pages 773 * variables. 774 */ 775 { 776 extern char _end[]; 777 778 physical_freestart = physical_start + 779 (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) - 780 KERNEL_BASE); 781 physical_freeend = physical_end; 782 free_pages = 783 (physical_freeend - physical_freestart) / PAGE_SIZE; 784 } 785 786 /* Switch tables */ 787 #ifdef VERBOSE_INIT_ARM 788 printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n", 789 physical_freestart, free_pages, free_pages); 790 printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa); 791 #endif 792 LEDSTEP(); 793 794 cpu_setttb(kernel_l1pt.pv_pa); 795 cpu_tlb_flushID(); 796 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); 797 LEDSTEP(); 798 799 /* 800 * Moved from cpu_startup() as data_abort_handler() references 801 * this during uvm init 802 */ 803 uvm_lwp_setuarea(&lwp0, kernelstack.pv_va); 804 805 #ifdef VERBOSE_INIT_ARM 806 printf("bootstrap done.\n"); 807 #endif 808 809 arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL); 810 811 /* 812 * Pages were allocated during the secondary bootstrap for the 813 * stacks for different CPU modes. 814 * We must now set the r13 registers in the different CPU modes to 815 * point to these stacks. 816 * Since the ARM stacks use STMFD etc. we must set r13 to the top end 817 * of the stack memory. 818 */ 819 #ifdef VERBOSE_INIT_ARM 820 printf("init subsystems: stacks "); 821 #endif 822 823 set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); 824 set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); 825 set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); 826 827 /* 828 * Well we should set a data abort handler. 829 * Once things get going this will change as we will need a proper 830 * handler. 831 * Until then we will use a handler that just panics but tells us 832 * why. 833 * Initialisation of the vectors will just panic on a data abort. 834 * This just fills in a slighly better one. 835 */ 836 #ifdef VERBOSE_INIT_ARM 837 printf("vectors "); 838 #endif 839 data_abort_handler_address = (u_int)data_abort_handler; 840 prefetch_abort_handler_address = (u_int)prefetch_abort_handler; 841 undefined_handler_address = (u_int)undefinedinstruction_bounce; 842 843 /* Initialise the undefined instruction handlers */ 844 #ifdef VERBOSE_INIT_ARM 845 printf("undefined "); 846 #endif 847 undefined_init(); 848 849 /* Load memory into UVM. */ 850 #ifdef VERBOSE_INIT_ARM 851 printf("page "); 852 #endif 853 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */ 854 uvm_page_physload(atop(physical_freestart), atop(physical_freeend), 855 atop(physical_freestart), atop(physical_freeend), 856 VM_FREELIST_DEFAULT); 857 858 /* Boot strap pmap telling it where the kernel page table is */ 859 #ifdef VERBOSE_INIT_ARM 860 printf("pmap "); 861 #endif 862 LEDSTEP(); 863 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); 864 LEDSTEP(); 865 866 #ifdef __HAVE_MEMORY_DISK__ 867 md_root_setconf(memory_disk, sizeof memory_disk); 868 #endif 869 870 #ifdef BOOTHOWTO 871 boothowto |= BOOTHOWTO; 872 #endif 873 874 { 875 uint8_t sw = pldreg8_read(G42XXEB_DIPSW); 876 877 if (0 == (sw & (1<<0))) 878 boothowto ^= RB_KDB; 879 if (0 == (sw & (1<<1))) 880 boothowto ^= RB_SINGLE; 881 } 882 883 LEDSTEP(); 884 885 #ifdef KGDB 886 if (boothowto & RB_KDB) { 887 kgdb_debug_init = 1; 888 kgdb_connect(1); 889 } 890 #endif 891 892 #ifdef DDB 893 db_machine_init(); 894 895 /* Firmware doesn't load symbols. */ 896 ddb_init(0, NULL, NULL); 897 898 if (boothowto & RB_KDB) 899 Debugger(); 900 #endif 901 902 pldreg8_write(G42XXEB_LED, 0); 903 904 /* We return the new stack pointer address */ 905 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP); 906 } 907 908 #if 0 909 void 910 process_kernel_args(char *args) 911 { 912 913 boothowto = 0; 914 915 /* Make a local copy of the bootargs */ 916 strncpy(bootargs, args, MAX_BOOT_STRING); 917 918 args = bootargs; 919 boot_file = bootargs; 920 921 /* Skip the kernel image filename */ 922 while (*args != ' ' && *args != 0) 923 ++args; 924 925 if (*args != 0) 926 *args++ = 0; 927 928 while (*args == ' ') 929 ++args; 930 931 boot_args = args; 932 933 printf("bootfile: %s\n", boot_file); 934 printf("bootargs: %s\n", boot_args); 935 936 parse_mi_bootargs(boot_args); 937 } 938 #endif 939 940 #ifdef KGDB 941 #ifndef KGDB_DEVNAME 942 #define KGDB_DEVNAME "ffuart" 943 #endif 944 const char kgdb_devname[] = KGDB_DEVNAME; 945 946 #if (NCOM > 0) 947 #ifndef KGDB_DEVMODE 948 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ 949 #endif 950 int comkgdbmode = KGDB_DEVMODE; 951 #endif /* NCOM */ 952 953 #endif /* KGDB */ 954 955 956 void 957 consinit(void) 958 { 959 static int consinit_called = 0; 960 uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN); 961 #if 0 962 char *console = CONSDEVNAME; 963 #endif 964 965 if (consinit_called != 0) 966 return; 967 968 consinit_called = 1; 969 970 #if NCOM > 0 971 972 #ifdef FFUARTCONSOLE 973 #ifdef KGDB 974 if (0 == strcmp(kgdb_devname, "ffuart")){ 975 /* port is reserved for kgdb */ 976 } else 977 #endif 978 if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_FFUART_BASE, 979 comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) { 980 #if 0 981 pxa2x0_clkman_config(CKEN_FFUART, 1); 982 #else 983 ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN, 984 ckenreg|CKEN_FFUART); 985 #endif 986 987 return; 988 } 989 #endif /* FFUARTCONSOLE */ 990 991 #ifdef BTUARTCONSOLE 992 #ifdef KGDB 993 if (0 == strcmp(kgdb_devname, "btuart")) { 994 /* port is reserved for kgdb */ 995 } else 996 #endif 997 if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_BTUART_BASE, 998 comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) { 999 ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN, 1000 ckenreg|CKEN_BTUART); 1001 return; 1002 } 1003 #endif /* BTUARTCONSOLE */ 1004 1005 1006 #endif /* NCOM */ 1007 1008 } 1009 1010 #ifdef KGDB 1011 void 1012 kgdb_port_init(void) 1013 { 1014 #if (NCOM > 0) && defined(COM_PXA2X0) 1015 paddr_t paddr = 0; 1016 uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN); 1017 1018 if (0 == strcmp(kgdb_devname, "ffuart")) { 1019 paddr = PXA2X0_FFUART_BASE; 1020 ckenreg |= CKEN_FFUART; 1021 } 1022 else if (0 == strcmp(kgdb_devname, "btuart")) { 1023 paddr = PXA2X0_BTUART_BASE; 1024 ckenreg |= CKEN_BTUART; 1025 } 1026 1027 if (paddr && 1028 0 == com_kgdb_attach(&pxa2x0_a4x_bs_tag, paddr, 1029 kgdb_rate, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comkgdbmode)) { 1030 1031 ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN, ckenreg); 1032 1033 } 1034 1035 #endif 1036 } 1037 #endif 1038 1039