1 /* $NetBSD: g42xxeb_machdep.c,v 1.37 2020/04/18 11:00:39 skrll Exp $ */ 2 3 /* 4 * Copyright (c) 2002, 2003, 2004, 2005 Genetec Corporation. 5 * All rights reserved. 6 * 7 * Written by Hiroyuki Bessho for Genetec Corporation. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. The name of Genetec Corporation may not be used to endorse or 18 * promote products derived from this software without specific prior 19 * written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Machine dependent functions for kernel setup for Genetec G4250EBX 34 * evaluation board. 35 * 36 * Based on iq80310_machhdep.c 37 */ 38 /* 39 * Copyright (c) 2001 Wasabi Systems, Inc. 40 * All rights reserved. 41 * 42 * Written by Jason R. Thorpe for Wasabi Systems, Inc. 43 * 44 * Redistribution and use in source and binary forms, with or without 45 * modification, are permitted provided that the following conditions 46 * are met: 47 * 1. Redistributions of source code must retain the above copyright 48 * notice, this list of conditions and the following disclaimer. 49 * 2. Redistributions in binary form must reproduce the above copyright 50 * notice, this list of conditions and the following disclaimer in the 51 * documentation and/or other materials provided with the distribution. 52 * 3. All advertising materials mentioning features or use of this software 53 * must display the following acknowledgement: 54 * This product includes software developed for the NetBSD Project by 55 * Wasabi Systems, Inc. 56 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 57 * or promote products derived from this software without specific prior 58 * written permission. 59 * 60 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 61 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 62 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 63 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 64 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 65 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 66 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 67 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 68 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 69 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 70 * POSSIBILITY OF SUCH DAMAGE. 71 */ 72 73 /* 74 * Copyright (c) 1997,1998 Mark Brinicombe. 75 * Copyright (c) 1997,1998 Causality Limited. 76 * All rights reserved. 77 * 78 * Redistribution and use in source and binary forms, with or without 79 * modification, are permitted provided that the following conditions 80 * are met: 81 * 1. Redistributions of source code must retain the above copyright 82 * notice, this list of conditions and the following disclaimer. 83 * 2. Redistributions in binary form must reproduce the above copyright 84 * notice, this list of conditions and the following disclaimer in the 85 * documentation and/or other materials provided with the distribution. 86 * 3. All advertising materials mentioning features or use of this software 87 * must display the following acknowledgement: 88 * This product includes software developed by Mark Brinicombe 89 * for the NetBSD Project. 90 * 4. The name of the company nor the name of the author may be used to 91 * endorse or promote products derived from this software without specific 92 * prior written permission. 93 * 94 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 95 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 96 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 97 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 98 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 99 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 100 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 101 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 102 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 103 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 104 * SUCH DAMAGE. 105 * 106 * Machine dependent functions for kernel setup for Intel IQ80310 evaluation 107 * boards using RedBoot firmware. 108 */ 109 110 #include "opt_arm_debug.h" 111 #include "opt_console.h" 112 #include "opt_ddb.h" 113 #include "opt_kgdb.h" 114 #include "opt_md.h" 115 #include "opt_com.h" 116 #include "lcd.h" 117 118 #include <sys/param.h> 119 #include <sys/device.h> 120 #include <sys/systm.h> 121 #include <sys/kernel.h> 122 #include <sys/exec.h> 123 #include <sys/proc.h> 124 #include <sys/msgbuf.h> 125 #include <sys/reboot.h> 126 #include <sys/termios.h> 127 #include <sys/ksyms.h> 128 #include <sys/bus.h> 129 #include <sys/cpu.h> 130 131 #include <uvm/uvm_extern.h> 132 133 #include <sys/conf.h> 134 #include <dev/cons.h> 135 #include <dev/md.h> 136 137 #include <machine/db_machdep.h> 138 #include <ddb/db_sym.h> 139 #include <ddb/db_extern.h> 140 #ifdef KGDB 141 #include <sys/kgdb.h> 142 #endif 143 144 #include <machine/bootconfig.h> 145 #include <arm/locore.h> 146 #include <arm/undefined.h> 147 148 #include <arm/arm32/machdep.h> 149 150 #include <arm/xscale/pxa2x0reg.h> 151 #include <arm/xscale/pxa2x0var.h> 152 #include <arm/xscale/pxa2x0_gpio.h> 153 #include <evbarm/g42xxeb/g42xxeb_reg.h> 154 #include <evbarm/g42xxeb/g42xxeb_var.h> 155 156 /* Kernel text starts 2MB in from the bottom of the kernel address space. */ 157 #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000) 158 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000) 159 160 /* 161 * The range 0xc1000000 - 0xccffffff is available for kernel VM space 162 * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff 163 */ 164 #define KERNEL_VM_SIZE 0x0C000000 165 166 BootConfig bootconfig; /* Boot config storage */ 167 char *boot_args = NULL; 168 char *boot_file = NULL; 169 170 vaddr_t physical_start; 171 vaddr_t physical_freestart; 172 vaddr_t physical_freeend; 173 vaddr_t physical_end; 174 u_int free_pages; 175 176 /*int debug_flags;*/ 177 #ifndef PMAP_STATIC_L1S 178 int max_processes = 64; /* Default number */ 179 #endif /* !PMAP_STATIC_L1S */ 180 181 /* Physical and virtual addresses for some global pages */ 182 pv_addr_t minidataclean; 183 184 paddr_t msgbufphys; 185 186 #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */ 187 #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */ 188 #define KERNEL_PT_KERNEL_NUM 4 189 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM) 190 /* Page tables for mapping kernel VM */ 191 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */ 192 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM) 193 194 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS]; 195 196 /* Prototypes */ 197 198 #if 0 199 void process_kernel_args(char *); 200 #endif 201 202 void consinit(void); 203 void kgdb_port_init(void); 204 void change_clock(uint32_t v); 205 206 bs_protos(bs_notimpl); 207 208 #include "com.h" 209 #if NCOM > 0 210 #include <dev/ic/comreg.h> 211 #include <dev/ic/comvar.h> 212 #endif 213 214 #ifndef CONSPEED 215 #define CONSPEED B115200 /* What RedBoot uses */ 216 #endif 217 #ifndef CONMODE 218 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ 219 #endif 220 221 int comcnspeed = CONSPEED; 222 int comcnmode = CONMODE; 223 224 static struct pxa2x0_gpioconf boarddep_gpioconf[] = { 225 { 44, GPIO_ALT_FN_1_IN }, /* BTCST */ 226 { 45, GPIO_ALT_FN_2_OUT }, /* BTRST */ 227 228 { -1 } 229 }; 230 static struct pxa2x0_gpioconf *g42xxeb_gpioconf[] = { 231 pxa25x_com_btuart_gpioconf, 232 pxa25x_com_ffuart_gpioconf, 233 #if 0 234 pxa25x_com_stuart_gpioconf, 235 pxa25x_pxaacu_gpioconf, 236 #endif 237 boarddep_gpioconf, 238 NULL 239 }; 240 241 /* 242 * void cpu_reboot(int howto, char *bootstr) 243 * 244 * Reboots the system 245 * 246 * Deal with any syncing, unmounting, dumping and shutdown hooks, 247 * then reset the CPU. 248 */ 249 void 250 cpu_reboot(int howto, char *bootstr) 251 { 252 #ifdef DIAGNOSTIC 253 /* info */ 254 printf("boot: howto=%08x curproc=%p\n", howto, curproc); 255 #endif 256 257 /* 258 * If we are still cold then hit the air brakes 259 * and crash to earth fast 260 */ 261 if (cold) { 262 doshutdownhooks(); 263 pmf_system_shutdown(boothowto); 264 printf("The operating system has halted.\n"); 265 printf("Please press any key to reboot.\n\n"); 266 cngetc(); 267 printf("rebooting...\n"); 268 cpu_reset(); 269 /*NOTREACHED*/ 270 } 271 272 /* Disable console buffering */ 273 /* cnpollc(1);*/ 274 275 /* 276 * If RB_NOSYNC was not specified sync the discs. 277 * Note: Unless cold is set to 1 here, syslogd will die during the 278 * unmount. It looks like syslogd is getting woken up only to find 279 * that it cannot page part of the binary in as the filesystem has 280 * been unmounted. 281 */ 282 if (!(howto & RB_NOSYNC)) 283 bootsync(); 284 285 /* Say NO to interrupts */ 286 splhigh(); 287 288 /* Do a dump if requested. */ 289 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) 290 dumpsys(); 291 292 /* Run any shutdown hooks */ 293 doshutdownhooks(); 294 295 pmf_system_shutdown(boothowto); 296 297 /* Make sure IRQ's are disabled */ 298 IRQdisable; 299 300 if (howto & RB_HALT) { 301 printf("The operating system has halted.\n"); 302 printf("Please press any key to reboot.\n\n"); 303 cngetc(); 304 } 305 306 printf("rebooting...\n"); 307 cpu_reset(); 308 /*NOTREACHED*/ 309 } 310 311 static inline 312 pd_entry_t * 313 read_ttb(void) 314 { 315 long ttb; 316 317 __asm volatile("mrc p15, 0, %0, c2, c0, 0" : "=r" (ttb)); 318 319 320 return (pd_entry_t *)(ttb & ~((1<<14)-1)); 321 } 322 323 /* 324 * Static device mappings. These peripheral registers are mapped at 325 * fixed virtual addresses very early in initarm() so that we can use 326 * them while booting the kernel, and stay at the same address 327 * throughout whole kernel's life time. 328 * 329 * We use this table twice; once with bootstrap page table, and once 330 * with kernel's page table which we build up in initarm(). 331 * 332 * Since we map these registers into the bootstrap page table using 333 * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map 334 * registers segment-aligned and segment-rounded in order to avoid 335 * using the 2nd page tables. 336 */ 337 338 #define _A(a) ((a) & ~L1_S_OFFSET) 339 #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1)) 340 341 static const struct pmap_devmap g42xxeb_devmap[] = { 342 { 343 G42XXEB_PLDREG_VBASE, 344 _A(G42XXEB_PLDREG_BASE), 345 _S(G42XXEB_PLDREG_SIZE), 346 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 347 }, 348 { 349 G42XXEB_GPIO_VBASE, 350 _A(PXA2X0_GPIO_BASE), 351 _S(PXA250_GPIO_SIZE), 352 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 353 }, 354 { 355 G42XXEB_CLKMAN_VBASE, 356 _A(PXA2X0_CLKMAN_BASE), 357 _S(PXA2X0_CLKMAN_SIZE), 358 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 359 }, 360 { 361 G42XXEB_INTCTL_VBASE, 362 _A(PXA2X0_INTCTL_BASE), 363 _S(PXA2X0_INTCTL_SIZE), 364 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 365 }, 366 { 367 G42XXEB_FFUART_VBASE, 368 _A(PXA2X0_FFUART_BASE), 369 _S(4 * COM_NPORTS), 370 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 371 }, 372 { 373 G42XXEB_BTUART_VBASE, 374 _A(PXA2X0_BTUART_BASE), 375 _S(4 * COM_NPORTS), 376 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 377 }, 378 {0, 0, 0, 0,} 379 }; 380 381 #undef _A 382 #undef _S 383 384 385 /* 386 * vaddr_t initarm(...) 387 * 388 * Initial entry point on startup. This gets called before main() is 389 * entered. 390 * It should be responsible for setting up everything that must be 391 * in place when main is called. 392 * This includes 393 * Taking a copy of the boot configuration structure. 394 * Initialising the physical console so characters can be printed. 395 * Setting up page tables for the kernel 396 * Relocating the kernel to the bottom of physical memory 397 */ 398 vaddr_t 399 initarm(void *arg) 400 { 401 extern vaddr_t xscale_cache_clean_addr; 402 int loop; 403 int loop1; 404 u_int l1pagetable; 405 paddr_t memstart; 406 psize_t memsize; 407 int led_data = 1; 408 #ifdef DIAGNOSTIC 409 extern vsize_t xscale_minidata_clean_size; /* used in KASSERT */ 410 #endif 411 412 #define LEDSTEP_P() ioreg8_write(G42XXEB_PLDREG_BASE+G42XXEB_LED, led_data++) 413 #define LEDSTEP() pldreg8_write(G42XXEB_LED, led_data++); 414 415 /* use physical address until pagetable is set */ 416 LEDSTEP_P(); 417 418 /* map some peripheral registers at static I/O area */ 419 pmap_devmap_bootstrap((vaddr_t)read_ttb(), g42xxeb_devmap); 420 421 LEDSTEP_P(); 422 423 /* start 32.768 kHz OSC */ 424 ioreg_write(G42XXEB_CLKMAN_VBASE + 0x08, 2); 425 /* Get ready for splfoo() */ 426 pxa2x0_intr_bootstrap(G42XXEB_INTCTL_VBASE); 427 428 LEDSTEP(); 429 430 /* 431 * Heads up ... Setup the CPU / MMU / TLB functions 432 */ 433 if (set_cpufuncs()) 434 panic("cpu not recognized!"); 435 436 LEDSTEP(); 437 438 /* 439 * Okay, RedBoot has provided us with the following memory map: 440 * 441 * Physical Address Range Description 442 * ----------------------- ---------------------------------- 443 * 0x00000000 - 0x01ffffff flash Memory (32MB) 444 * 0x04000000 - 0x05ffffff Application flash Memory (32MB) 445 * 0x08000000 - 0x080000ff I/O baseboard registers 446 * 0x0c000000 - 0x0c0fffff Ethernet Controller 447 * 0x14000000 - 0x17ffffff Expansion Card (64MB) 448 * 0x40000000 - 0x480fffff Processor Registers 449 * 0xa0000000 - 0xa3ffffff SDRAM Bank 0 (64MB) 450 * 451 * 452 * Virtual Address Range X C B Description 453 * ----------------------- - - - ---------------------------------- 454 * 0x00000000 - 0x00003fff N Y Y SDRAM 455 * 0x00004000 - 0x01ffffff N Y N ROM 456 * 0x08000000 - 0x080fffff N N N I/O baseboard registers 457 * 0x0a000000 - 0x0a0fffff N N N SRAM 458 * 0x40000000 - 0x480fffff N N N Processor Registers 459 * 0xa0000000 - 0xa000ffff N Y N RedBoot SDRAM 460 * 0xa0017000 - 0xa3ffffff Y Y Y SDRAM 461 * 0xc0000000 - 0xcfffffff Y Y Y Cache Flush Region 462 * (done by this routine) 463 * 0xfd000000 - 0xfd0000ff N N N I/O baseboard registers 464 * 0xfd100000 - 0xfd3fffff N N N Processor Registers. 465 * 0xfd400000 - 0xfd4fffff N N N FF-UART 466 * 0xfd500000 - 0xfd5fffff N N N BT-UART 467 * 468 * RedBoot's first level page table is at 0xa0004000. There 469 * are also 2 second-level tables at 0xa0008000 and 470 * 0xa0008400. We will continue to use them until we switch to 471 * our pagetable by cpu_setttb(). 472 */ 473 474 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); 475 476 LEDSTEP(); 477 478 /* setup GPIO for BTUART, in case bootloader doesn't take care of it */ 479 pxa2x0_gpio_bootstrap(G42XXEB_GPIO_VBASE); 480 pxa2x0_gpio_config(g42xxeb_gpioconf); 481 482 LEDSTEP(); 483 484 consinit(); 485 #ifdef KGDB 486 LEDSTEP(); 487 kgdb_port_init(); 488 #endif 489 490 LEDSTEP(); 491 492 /* Talk to the user */ 493 printf("\nNetBSD/evbarm (g42xxeb) booting ...\n"); 494 495 #if 0 496 /* 497 * Examine the boot args string for options we need to know about 498 * now. 499 */ 500 process_kernel_args((char *)nwbootinfo.bt_args); 501 #endif 502 503 memstart = 0xa0000000; 504 memsize = 0x04000000; /* 64MB */ 505 506 printf("initarm: Configuring system ...\n"); 507 508 /* Fake bootconfig structure for the benefit of pmap.c */ 509 /* XXX must make the memory description h/w independent */ 510 bootconfig.dramblocks = 1; 511 bootconfig.dram[0].address = memstart; 512 bootconfig.dram[0].pages = memsize / PAGE_SIZE; 513 514 /* 515 * Set up the variables that define the availablilty of 516 * physical memory. For now, we're going to set 517 * physical_freestart to 0xa0200000 (where the kernel 518 * was loaded), and allocate the memory we need downwards. 519 * If we get too close to the L1 table that we set up, we 520 * will panic. We will update physical_freestart and 521 * physical_freeend later to reflect what pmap_bootstrap() 522 * wants to see. 523 * 524 * XXX pmap_bootstrap() needs an enema. 525 */ 526 physical_start = bootconfig.dram[0].address; 527 physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE); 528 529 physical_freestart = 0xa0009000UL; 530 physical_freeend = 0xa0200000UL; 531 532 physmem = (physical_end - physical_start) / PAGE_SIZE; 533 534 #ifdef VERBOSE_INIT_ARM 535 /* Tell the user about the memory */ 536 printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem, 537 physical_start, physical_end - 1); 538 #endif 539 540 /* 541 * Okay, the kernel starts 2MB in from the bottom of physical 542 * memory. We are going to allocate our bootstrap pages downwards 543 * from there. 544 * 545 * We need to allocate some fixed page tables to get the kernel 546 * going. We allocate one page directory and a number of page 547 * tables and store the physical addresses in the kernel_pt_table 548 * array. 549 * 550 * The kernel page directory must be on a 16K boundary. The page 551 * tables must be on 4K bounaries. What we do is allocate the 552 * page directory on the first 16K boundary that we encounter, and 553 * the page tables on 4K boundaries otherwise. Since we allocate 554 * at least 3 L2 page tables, we are guaranteed to encounter at 555 * least one 16K aligned region. 556 */ 557 558 #ifdef VERBOSE_INIT_ARM 559 printf("Allocating page tables\n"); 560 #endif 561 562 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; 563 564 #ifdef VERBOSE_INIT_ARM 565 printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n", 566 physical_freestart, free_pages, free_pages); 567 #endif 568 569 /* Define a macro to simplify memory allocation */ 570 #define valloc_pages(var, np) \ 571 alloc_pages((var).pv_pa, (np)); \ 572 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start; 573 574 #define alloc_pages(var, np) \ 575 physical_freeend -= ((np) * PAGE_SIZE); \ 576 if (physical_freeend < physical_freestart) \ 577 panic("initarm: out of memory"); \ 578 (var) = physical_freeend; \ 579 free_pages -= (np); \ 580 memset((char *)(var), 0, ((np) * PAGE_SIZE)); 581 582 loop1 = 0; 583 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { 584 /* Are we 16KB aligned for an L1 ? */ 585 if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0 586 && kernel_l1pt.pv_pa == 0) { 587 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); 588 } else { 589 valloc_pages(kernel_pt_table[loop1], 590 L2_TABLE_SIZE / PAGE_SIZE); 591 ++loop1; 592 } 593 } 594 595 /* This should never be able to happen but better confirm that. */ 596 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0) 597 panic("initarm: Failed to align the kernel page directory"); 598 599 LEDSTEP(); 600 601 /* 602 * Allocate a page for the system page mapped to V0x00000000 603 * This page will just contain the system vectors and can be 604 * shared by all processes. 605 */ 606 alloc_pages(systempage.pv_pa, 1); 607 608 /* Allocate stacks for all modes */ 609 valloc_pages(irqstack, IRQ_STACK_SIZE); 610 valloc_pages(abtstack, ABT_STACK_SIZE); 611 valloc_pages(undstack, UND_STACK_SIZE); 612 valloc_pages(kernelstack, UPAGES); 613 614 /* Allocate enough pages for cleaning the Mini-Data cache. */ 615 KASSERT(xscale_minidata_clean_size <= PAGE_SIZE); 616 valloc_pages(minidataclean, 1); 617 618 #ifdef VERBOSE_INIT_ARM 619 printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, 620 irqstack.pv_va); 621 printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, 622 abtstack.pv_va); 623 printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, 624 undstack.pv_va); 625 printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, 626 kernelstack.pv_va); 627 #endif 628 629 /* 630 * XXX Defer this to later so that we can reclaim the memory 631 * XXX used by the RedBoot page tables. 632 */ 633 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); 634 635 /* 636 * Ok we have allocated physical pages for the primary kernel 637 * page tables 638 */ 639 640 #ifdef VERBOSE_INIT_ARM 641 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa); 642 #endif 643 644 /* 645 * Now we start construction of the L1 page table 646 * We start by mapping the L2 page tables into the L1. 647 * This means that we can replace L1 mappings later on if necessary 648 */ 649 l1pagetable = kernel_l1pt.pv_pa; 650 651 /* Map the L2 pages tables in the L1 page table */ 652 pmap_link_l2pt(l1pagetable, 0x00000000, 653 &kernel_pt_table[KERNEL_PT_SYS]); 654 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) 655 pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000, 656 &kernel_pt_table[KERNEL_PT_KERNEL + loop]); 657 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++) 658 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, 659 &kernel_pt_table[KERNEL_PT_VMDATA + loop]); 660 661 /* update the top of the kernel VM */ 662 pmap_curmaxkvaddr = 663 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); 664 665 #ifdef VERBOSE_INIT_ARM 666 printf("Mapping kernel\n"); 667 #endif 668 669 /* Now we fill in the L2 pagetable for the kernel static code/data */ 670 { 671 extern char etext[], _end[]; 672 size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE; 673 size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE; 674 u_int logical; 675 676 textsize = (textsize + PGOFSET) & ~PGOFSET; 677 totalsize = (totalsize + PGOFSET) & ~PGOFSET; 678 679 logical = 0x00200000; /* offset of kernel in RAM */ 680 681 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, 682 physical_start + logical, textsize, 683 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 684 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, 685 physical_start + logical, totalsize - textsize, 686 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 687 } 688 689 #ifdef VERBOSE_INIT_ARM 690 printf("Constructing L2 page tables\n"); 691 #endif 692 693 /* Map the stack pages */ 694 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, 695 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 696 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, 697 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 698 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, 699 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 700 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, 701 UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); 702 703 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, 704 L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE); 705 706 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { 707 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, 708 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, 709 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); 710 } 711 712 /* Map the Mini-Data cache clean area. */ 713 xscale_setup_minidata(l1pagetable, minidataclean.pv_va, 714 minidataclean.pv_pa); 715 716 /* Map the vector page. */ 717 #if 1 718 /* MULTI-ICE requires that page 0 is NC/NB so that it can download the 719 * cache-clean code there. */ 720 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, 721 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE); 722 #else 723 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, 724 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 725 #endif 726 727 /* 728 * map integrated peripherals at same address in l1pagetable 729 * so that we can continue to use console. 730 */ 731 pmap_devmap_bootstrap(l1pagetable, g42xxeb_devmap); 732 733 /* 734 * Give the XScale global cache clean code an appropriately 735 * sized chunk of unmapped VA space starting at 0xff000000 736 * (our device mappings end before this address). 737 */ 738 xscale_cache_clean_addr = 0xff000000U; 739 740 /* 741 * Now we have the real page tables in place so we can switch to them. 742 * Once this is done we will be running with the REAL kernel page 743 * tables. 744 */ 745 746 /* 747 * Update the physical_freestart/physical_freeend/free_pages 748 * variables. 749 */ 750 { 751 extern char _end[]; 752 753 physical_freestart = physical_start + 754 (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) - 755 KERNEL_BASE); 756 physical_freeend = physical_end; 757 free_pages = 758 (physical_freeend - physical_freestart) / PAGE_SIZE; 759 } 760 761 /* Switch tables */ 762 #ifdef VERBOSE_INIT_ARM 763 printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n", 764 physical_freestart, free_pages, free_pages); 765 printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa); 766 #endif 767 LEDSTEP(); 768 769 cpu_setttb(kernel_l1pt.pv_pa, true); 770 cpu_tlb_flushID(); 771 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); 772 LEDSTEP(); 773 774 /* 775 * Moved from cpu_startup() as data_abort_handler() references 776 * this during uvm init 777 */ 778 uvm_lwp_setuarea(&lwp0, kernelstack.pv_va); 779 780 #ifdef VERBOSE_INIT_ARM 781 printf("bootstrap done.\n"); 782 #endif 783 784 arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL); 785 786 /* 787 * Pages were allocated during the secondary bootstrap for the 788 * stacks for different CPU modes. 789 * We must now set the r13 registers in the different CPU modes to 790 * point to these stacks. 791 * Since the ARM stacks use STMFD etc. we must set r13 to the top end 792 * of the stack memory. 793 */ 794 #ifdef VERBOSE_INIT_ARM 795 printf("init subsystems: stacks "); 796 #endif 797 798 set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); 799 set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); 800 set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); 801 802 /* 803 * Well we should set a data abort handler. 804 * Once things get going this will change as we will need a proper 805 * handler. 806 * Until then we will use a handler that just panics but tells us 807 * why. 808 * Initialisation of the vectors will just panic on a data abort. 809 * This just fills in a slighly better one. 810 */ 811 #ifdef VERBOSE_INIT_ARM 812 printf("vectors "); 813 #endif 814 data_abort_handler_address = (u_int)data_abort_handler; 815 prefetch_abort_handler_address = (u_int)prefetch_abort_handler; 816 undefined_handler_address = (u_int)undefinedinstruction_bounce; 817 818 /* Initialise the undefined instruction handlers */ 819 #ifdef VERBOSE_INIT_ARM 820 printf("undefined "); 821 #endif 822 undefined_init(); 823 824 /* Load memory into UVM. */ 825 #ifdef VERBOSE_INIT_ARM 826 printf("page "); 827 #endif 828 uvm_md_init(); 829 uvm_page_physload(atop(physical_freestart), atop(physical_freeend), 830 atop(physical_freestart), atop(physical_freeend), 831 VM_FREELIST_DEFAULT); 832 833 /* Boot strap pmap telling it where managed kernel virtual memory is */ 834 #ifdef VERBOSE_INIT_ARM 835 printf("pmap "); 836 #endif 837 LEDSTEP(); 838 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); 839 LEDSTEP(); 840 841 #ifdef __HAVE_MEMORY_DISK__ 842 md_root_setconf(memory_disk, sizeof memory_disk); 843 #endif 844 845 #ifdef BOOTHOWTO 846 boothowto |= BOOTHOWTO; 847 #endif 848 849 { 850 uint8_t sw = pldreg8_read(G42XXEB_DIPSW); 851 852 if (0 == (sw & (1<<0))) 853 boothowto ^= RB_KDB; 854 if (0 == (sw & (1<<1))) 855 boothowto ^= RB_SINGLE; 856 } 857 858 LEDSTEP(); 859 860 #ifdef KGDB 861 if (boothowto & RB_KDB) { 862 kgdb_debug_init = 1; 863 kgdb_connect(1); 864 } 865 #endif 866 867 #ifdef DDB 868 db_machine_init(); 869 870 /* Firmware doesn't load symbols. */ 871 ddb_init(0, NULL, NULL); 872 873 if (boothowto & RB_KDB) 874 Debugger(); 875 #endif 876 877 pldreg8_write(G42XXEB_LED, 0); 878 879 /* We return the new stack pointer address */ 880 return kernelstack.pv_va + USPACE_SVC_STACK_TOP; 881 } 882 883 #if 0 884 void 885 process_kernel_args(char *args) 886 { 887 888 boothowto = 0; 889 890 /* Make a local copy of the bootargs */ 891 strncpy(bootargs, args, MAX_BOOT_STRING); 892 893 args = bootargs; 894 boot_file = bootargs; 895 896 /* Skip the kernel image filename */ 897 while (*args != ' ' && *args != 0) 898 ++args; 899 900 if (*args != 0) 901 *args++ = 0; 902 903 while (*args == ' ') 904 ++args; 905 906 boot_args = args; 907 908 printf("bootfile: %s\n", boot_file); 909 printf("bootargs: %s\n", boot_args); 910 911 parse_mi_bootargs(boot_args); 912 } 913 #endif 914 915 #ifdef KGDB 916 #ifndef KGDB_DEVNAME 917 #define KGDB_DEVNAME "ffuart" 918 #endif 919 const char kgdb_devname[] = KGDB_DEVNAME; 920 921 #if (NCOM > 0) 922 #ifndef KGDB_DEVMODE 923 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ 924 #endif 925 int comkgdbmode = KGDB_DEVMODE; 926 #endif /* NCOM */ 927 928 #endif /* KGDB */ 929 930 931 void 932 consinit(void) 933 { 934 static int consinit_called = 0; 935 uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN); 936 #if 0 937 char *console = CONSDEVNAME; 938 #endif 939 940 if (consinit_called != 0) 941 return; 942 943 consinit_called = 1; 944 945 #if NCOM > 0 946 947 #ifdef FFUARTCONSOLE 948 #ifdef KGDB 949 if (0 == strcmp(kgdb_devname, "ffuart")){ 950 /* port is reserved for kgdb */ 951 } else 952 #endif 953 if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_FFUART_BASE, 954 comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) { 955 #if 0 956 pxa2x0_clkman_config(CKEN_FFUART, 1); 957 #else 958 ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN, 959 ckenreg|CKEN_FFUART); 960 #endif 961 962 return; 963 } 964 #endif /* FFUARTCONSOLE */ 965 966 #ifdef BTUARTCONSOLE 967 #ifdef KGDB 968 if (0 == strcmp(kgdb_devname, "btuart")) { 969 /* port is reserved for kgdb */ 970 } else 971 #endif 972 if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_BTUART_BASE, 973 comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) { 974 ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN, 975 ckenreg|CKEN_BTUART); 976 return; 977 } 978 #endif /* BTUARTCONSOLE */ 979 980 981 #endif /* NCOM */ 982 983 } 984 985 #ifdef KGDB 986 void 987 kgdb_port_init(void) 988 { 989 #if (NCOM > 0) && defined(COM_PXA2X0) 990 paddr_t paddr = 0; 991 uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN); 992 993 if (0 == strcmp(kgdb_devname, "ffuart")) { 994 paddr = PXA2X0_FFUART_BASE; 995 ckenreg |= CKEN_FFUART; 996 } 997 else if (0 == strcmp(kgdb_devname, "btuart")) { 998 paddr = PXA2X0_BTUART_BASE; 999 ckenreg |= CKEN_BTUART; 1000 } 1001 1002 if (paddr && 1003 0 == com_kgdb_attach(&pxa2x0_a4x_bs_tag, paddr, 1004 kgdb_rate, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comkgdbmode)) { 1005 1006 ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN, ckenreg); 1007 1008 } 1009 1010 #endif 1011 } 1012 #endif 1013 1014