1 /* $NetBSD: g42xxeb_machdep.c,v 1.14 2008/04/27 18:58:46 matt Exp $ */ 2 3 /* 4 * Copyright (c) 2002, 2003, 2004, 2005 Genetec Corporation. 5 * All rights reserved. 6 * 7 * Written by Hiroyuki Bessho for Genetec Corporation. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. The name of Genetec Corporation may not be used to endorse or 18 * promote products derived from this software without specific prior 19 * written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Machine dependant functions for kernel setup for Genetec G4250EBX 34 * evaluation board. 35 * 36 * Based on iq80310_machhdep.c 37 */ 38 /* 39 * Copyright (c) 2001 Wasabi Systems, Inc. 40 * All rights reserved. 41 * 42 * Written by Jason R. Thorpe for Wasabi Systems, Inc. 43 * 44 * Redistribution and use in source and binary forms, with or without 45 * modification, are permitted provided that the following conditions 46 * are met: 47 * 1. Redistributions of source code must retain the above copyright 48 * notice, this list of conditions and the following disclaimer. 49 * 2. Redistributions in binary form must reproduce the above copyright 50 * notice, this list of conditions and the following disclaimer in the 51 * documentation and/or other materials provided with the distribution. 52 * 3. All advertising materials mentioning features or use of this software 53 * must display the following acknowledgement: 54 * This product includes software developed for the NetBSD Project by 55 * Wasabi Systems, Inc. 56 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 57 * or promote products derived from this software without specific prior 58 * written permission. 59 * 60 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 61 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 62 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 63 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 64 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 65 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 66 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 67 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 68 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 69 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 70 * POSSIBILITY OF SUCH DAMAGE. 71 */ 72 73 /* 74 * Copyright (c) 1997,1998 Mark Brinicombe. 75 * Copyright (c) 1997,1998 Causality Limited. 76 * All rights reserved. 77 * 78 * Redistribution and use in source and binary forms, with or without 79 * modification, are permitted provided that the following conditions 80 * are met: 81 * 1. Redistributions of source code must retain the above copyright 82 * notice, this list of conditions and the following disclaimer. 83 * 2. Redistributions in binary form must reproduce the above copyright 84 * notice, this list of conditions and the following disclaimer in the 85 * documentation and/or other materials provided with the distribution. 86 * 3. All advertising materials mentioning features or use of this software 87 * must display the following acknowledgement: 88 * This product includes software developed by Mark Brinicombe 89 * for the NetBSD Project. 90 * 4. The name of the company nor the name of the author may be used to 91 * endorse or promote products derived from this software without specific 92 * prior written permission. 93 * 94 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 95 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 96 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 97 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 98 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 99 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 100 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 101 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 102 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 103 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 104 * SUCH DAMAGE. 105 * 106 * Machine dependant functions for kernel setup for Intel IQ80310 evaluation 107 * boards using RedBoot firmware. 108 */ 109 110 #include "opt_ddb.h" 111 #include "opt_kgdb.h" 112 #include "opt_pmap_debug.h" 113 #include "opt_md.h" 114 #include "opt_com.h" 115 #include "md.h" 116 #include "lcd.h" 117 118 #include <sys/param.h> 119 #include <sys/device.h> 120 #include <sys/systm.h> 121 #include <sys/kernel.h> 122 #include <sys/exec.h> 123 #include <sys/proc.h> 124 #include <sys/msgbuf.h> 125 #include <sys/reboot.h> 126 #include <sys/termios.h> 127 #include <sys/ksyms.h> 128 129 #include <uvm/uvm_extern.h> 130 131 #include <sys/conf.h> 132 #include <dev/cons.h> 133 #include <dev/md.h> 134 135 #include <machine/db_machdep.h> 136 #include <ddb/db_sym.h> 137 #include <ddb/db_extern.h> 138 #ifdef KGDB 139 #include <sys/kgdb.h> 140 #endif 141 142 #include <machine/bootconfig.h> 143 #include <machine/bus.h> 144 #include <machine/cpu.h> 145 #include <machine/frame.h> 146 #include <arm/undefined.h> 147 148 #include <arm/arm32/machdep.h> 149 150 #include <arm/xscale/pxa2x0reg.h> 151 #include <arm/xscale/pxa2x0var.h> 152 #include <arm/xscale/pxa2x0_gpio.h> 153 #include <evbarm/g42xxeb/g42xxeb_reg.h> 154 #include <evbarm/g42xxeb/g42xxeb_var.h> 155 156 /* Kernel text starts 2MB in from the bottom of the kernel address space. */ 157 #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000) 158 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000) 159 160 /* 161 * The range 0xc1000000 - 0xccffffff is available for kernel VM space 162 * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff 163 */ 164 #define KERNEL_VM_SIZE 0x0C000000 165 166 167 /* 168 * Address to call from cpu_reset() to reset the machine. 169 * This is machine architecture dependant as it varies depending 170 * on where the ROM appears when you turn the MMU off. 171 */ 172 173 u_int cpu_reset_address = 0; 174 175 /* Define various stack sizes in pages */ 176 #define IRQ_STACK_SIZE 1 177 #define ABT_STACK_SIZE 1 178 #define UND_STACK_SIZE 1 179 180 BootConfig bootconfig; /* Boot config storage */ 181 char *boot_args = NULL; 182 char *boot_file = NULL; 183 184 vm_offset_t physical_start; 185 vm_offset_t physical_freestart; 186 vm_offset_t physical_freeend; 187 vm_offset_t physical_end; 188 u_int free_pages; 189 vm_offset_t pagetables_start; 190 int physmem = 0; 191 192 /*int debug_flags;*/ 193 #ifndef PMAP_STATIC_L1S 194 int max_processes = 64; /* Default number */ 195 #endif /* !PMAP_STATIC_L1S */ 196 197 /* Physical and virtual addresses for some global pages */ 198 pv_addr_t irqstack; 199 pv_addr_t undstack; 200 pv_addr_t abtstack; 201 pv_addr_t kernelstack; 202 pv_addr_t minidataclean; 203 204 vm_offset_t msgbufphys; 205 206 extern u_int data_abort_handler_address; 207 extern u_int prefetch_abort_handler_address; 208 extern u_int undefined_handler_address; 209 210 #ifdef PMAP_DEBUG 211 extern int pmap_debug_level; 212 #endif 213 214 #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */ 215 #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */ 216 #define KERNEL_PT_KERNEL_NUM 4 217 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM) 218 /* Page tables for mapping kernel VM */ 219 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */ 220 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM) 221 222 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS]; 223 224 struct user *proc0paddr; 225 226 /* Prototypes */ 227 228 #if 0 229 void process_kernel_args(char *); 230 #endif 231 232 void consinit(void); 233 void kgdb_port_init(void); 234 void change_clock(uint32_t v); 235 236 bs_protos(bs_notimpl); 237 238 #include "com.h" 239 #if NCOM > 0 240 #include <dev/ic/comreg.h> 241 #include <dev/ic/comvar.h> 242 #endif 243 244 #ifndef CONSPEED 245 #define CONSPEED B115200 /* What RedBoot uses */ 246 #endif 247 #ifndef CONMODE 248 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ 249 #endif 250 251 int comcnspeed = CONSPEED; 252 int comcnmode = CONMODE; 253 254 static struct pxa2x0_gpioconf boarddep_gpioconf[] = { 255 { 44, GPIO_ALT_FN_1_IN }, /* BTCST */ 256 { 45, GPIO_ALT_FN_2_OUT }, /* BTRST */ 257 258 { -1 } 259 }; 260 static struct pxa2x0_gpioconf *g42xxeb_gpioconf[] = { 261 pxa25x_com_btuart_gpioconf, 262 pxa25x_com_ffuart_gpioconf, 263 #if 0 264 pxa25x_com_stuart_gpioconf, 265 pxa25x_pxaacu_gpioconf, 266 #endif 267 boarddep_gpioconf, 268 NULL 269 }; 270 271 /* 272 * void cpu_reboot(int howto, char *bootstr) 273 * 274 * Reboots the system 275 * 276 * Deal with any syncing, unmounting, dumping and shutdown hooks, 277 * then reset the CPU. 278 */ 279 void 280 cpu_reboot(int howto, char *bootstr) 281 { 282 #ifdef DIAGNOSTIC 283 /* info */ 284 printf("boot: howto=%08x curproc=%p\n", howto, curproc); 285 #endif 286 287 /* 288 * If we are still cold then hit the air brakes 289 * and crash to earth fast 290 */ 291 if (cold) { 292 doshutdownhooks(); 293 printf("The operating system has halted.\n"); 294 printf("Please press any key to reboot.\n\n"); 295 cngetc(); 296 printf("rebooting...\n"); 297 cpu_reset(); 298 /*NOTREACHED*/ 299 } 300 301 /* Disable console buffering */ 302 /* cnpollc(1);*/ 303 304 /* 305 * If RB_NOSYNC was not specified sync the discs. 306 * Note: Unless cold is set to 1 here, syslogd will die during the 307 * unmount. It looks like syslogd is getting woken up only to find 308 * that it cannot page part of the binary in as the filesystem has 309 * been unmounted. 310 */ 311 if (!(howto & RB_NOSYNC)) 312 bootsync(); 313 314 /* Say NO to interrupts */ 315 splhigh(); 316 317 /* Do a dump if requested. */ 318 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) 319 dumpsys(); 320 321 /* Run any shutdown hooks */ 322 doshutdownhooks(); 323 324 /* Make sure IRQ's are disabled */ 325 IRQdisable; 326 327 if (howto & RB_HALT) { 328 printf("The operating system has halted.\n"); 329 printf("Please press any key to reboot.\n\n"); 330 cngetc(); 331 } 332 333 printf("rebooting...\n"); 334 cpu_reset(); 335 /*NOTREACHED*/ 336 } 337 338 static inline 339 pd_entry_t * 340 read_ttb(void) 341 { 342 long ttb; 343 344 __asm volatile("mrc p15, 0, %0, c2, c0, 0" : "=r" (ttb)); 345 346 347 return (pd_entry_t *)(ttb & ~((1<<14)-1)); 348 } 349 350 /* 351 * Static device mappings. These peripheral registers are mapped at 352 * fixed virtual addresses very early in initarm() so that we can use 353 * them while booting the kernel, and stay at the same address 354 * throughout whole kernel's life time. 355 * 356 * We use this table twice; once with bootstrap page table, and once 357 * with kernel's page table which we build up in initarm(). 358 * 359 * Since we map these registers into the bootstrap page table using 360 * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map 361 * registers segment-aligned and segment-rounded in order to avoid 362 * using the 2nd page tables. 363 */ 364 365 #define _A(a) ((a) & ~L1_S_OFFSET) 366 #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1)) 367 368 static const struct pmap_devmap g42xxeb_devmap[] = { 369 { 370 G42XXEB_PLDREG_VBASE, 371 _A(G42XXEB_PLDREG_BASE), 372 _S(G42XXEB_PLDREG_SIZE), 373 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 374 }, 375 { 376 G42XXEB_GPIO_VBASE, 377 _A(PXA2X0_GPIO_BASE), 378 _S(PXA250_GPIO_SIZE), 379 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 380 }, 381 { 382 G42XXEB_CLKMAN_VBASE, 383 _A(PXA2X0_CLKMAN_BASE), 384 _S(PXA2X0_CLKMAN_SIZE), 385 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 386 }, 387 { 388 G42XXEB_INTCTL_VBASE, 389 _A(PXA2X0_INTCTL_BASE), 390 _S(PXA2X0_INTCTL_SIZE), 391 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 392 }, 393 { 394 G42XXEB_FFUART_VBASE, 395 _A(PXA2X0_FFUART_BASE), 396 _S(4 * COM_NPORTS), 397 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 398 }, 399 { 400 G42XXEB_BTUART_VBASE, 401 _A(PXA2X0_BTUART_BASE), 402 _S(4 * COM_NPORTS), 403 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 404 }, 405 {0, 0, 0, 0,} 406 }; 407 408 #undef _A 409 #undef _S 410 411 412 /* 413 * u_int initarm(...) 414 * 415 * Initial entry point on startup. This gets called before main() is 416 * entered. 417 * It should be responsible for setting up everything that must be 418 * in place when main is called. 419 * This includes 420 * Taking a copy of the boot configuration structure. 421 * Initialising the physical console so characters can be printed. 422 * Setting up page tables for the kernel 423 * Relocating the kernel to the bottom of physical memory 424 */ 425 u_int 426 initarm(void *arg) 427 { 428 extern vaddr_t xscale_cache_clean_addr; 429 int loop; 430 int loop1; 431 u_int l1pagetable; 432 paddr_t memstart; 433 psize_t memsize; 434 int led_data = 1; 435 #ifdef DIAGNOSTIC 436 extern vsize_t xscale_minidata_clean_size; /* used in KASSERT */ 437 #endif 438 439 #define LEDSTEP_P() ioreg8_write(G42XXEB_PLDREG_BASE+G42XXEB_LED, led_data++) 440 #define LEDSTEP() pldreg8_write(G42XXEB_LED, led_data++); 441 442 /* use physical address until pagetable is set */ 443 LEDSTEP_P(); 444 445 /* map some peripheral registers at static I/O area */ 446 pmap_devmap_bootstrap((vaddr_t)read_ttb(), g42xxeb_devmap); 447 448 LEDSTEP_P(); 449 450 /* start 32.768 kHz OSC */ 451 ioreg_write(G42XXEB_CLKMAN_VBASE + 0x08, 2); 452 /* Get ready for splfoo() */ 453 pxa2x0_intr_bootstrap(G42XXEB_INTCTL_VBASE); 454 455 LEDSTEP(); 456 457 /* 458 * Heads up ... Setup the CPU / MMU / TLB functions 459 */ 460 if (set_cpufuncs()) 461 panic("cpu not recognized!"); 462 463 LEDSTEP(); 464 465 /* 466 * Okay, RedBoot has provided us with the following memory map: 467 * 468 * Physical Address Range Description 469 * ----------------------- ---------------------------------- 470 * 0x00000000 - 0x01ffffff flash Memory (32MB) 471 * 0x04000000 - 0x05ffffff Application flash Memory (32MB) 472 * 0x08000000 - 0x080000ff I/O baseboard registers 473 * 0x0c000000 - 0x0c0fffff Ethernet Controller 474 * 0x14000000 - 0x17ffffff Expansion Card (64MB) 475 * 0x40000000 - 0x480fffff Processor Registers 476 * 0xa0000000 - 0xa3ffffff SDRAM Bank 0 (64MB) 477 * 478 * 479 * Virtual Address Range X C B Description 480 * ----------------------- - - - ---------------------------------- 481 * 0x00000000 - 0x00003fff N Y Y SDRAM 482 * 0x00004000 - 0x01ffffff N Y N ROM 483 * 0x08000000 - 0x080fffff N N N I/O baseboard registers 484 * 0x0a000000 - 0x0a0fffff N N N SRAM 485 * 0x40000000 - 0x480fffff N N N Processor Registers 486 * 0xa0000000 - 0xa000ffff N Y N RedBoot SDRAM 487 * 0xa0017000 - 0xa3ffffff Y Y Y SDRAM 488 * 0xc0000000 - 0xcfffffff Y Y Y Cache Flush Region 489 * (done by this routine) 490 * 0xfd000000 - 0xfd0000ff N N N I/O baseboard registers 491 * 0xfd100000 - 0xfd3fffff N N N Processor Registers. 492 * 0xfd400000 - 0xfd4fffff N N N FF-UART 493 * 0xfd500000 - 0xfd5fffff N N N BT-UART 494 * 495 * RedBoot's first level page table is at 0xa0004000. There 496 * are also 2 second-level tables at 0xa0008000 and 497 * 0xa0008400. We will continue to use them until we switch to 498 * our pagetable by setttb(). 499 */ 500 501 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); 502 503 LEDSTEP(); 504 505 /* setup GPIO for BTUART, in case bootloader doesn't take care of it */ 506 pxa2x0_gpio_bootstrap(G42XXEB_GPIO_VBASE); 507 pxa2x0_gpio_config(g42xxeb_gpioconf); 508 509 LEDSTEP(); 510 511 consinit(); 512 #ifdef KGDB 513 LEDSTEP(); 514 kgdb_port_init(); 515 #endif 516 517 LEDSTEP(); 518 519 /* Talk to the user */ 520 printf("\nNetBSD/evbarm (g42xxeb) booting ...\n"); 521 522 #if 0 523 /* 524 * Examine the boot args string for options we need to know about 525 * now. 526 */ 527 process_kernel_args((char *)nwbootinfo.bt_args); 528 #endif 529 530 memstart = 0xa0000000; 531 memsize = 0x04000000; /* 64MB */ 532 533 printf("initarm: Configuring system ...\n"); 534 535 /* Fake bootconfig structure for the benefit of pmap.c */ 536 /* XXX must make the memory description h/w independent */ 537 bootconfig.dramblocks = 1; 538 bootconfig.dram[0].address = memstart; 539 bootconfig.dram[0].pages = memsize / PAGE_SIZE; 540 541 /* 542 * Set up the variables that define the availablilty of 543 * physical memory. For now, we're going to set 544 * physical_freestart to 0xa0200000 (where the kernel 545 * was loaded), and allocate the memory we need downwards. 546 * If we get too close to the L1 table that we set up, we 547 * will panic. We will update physical_freestart and 548 * physical_freeend later to reflect what pmap_bootstrap() 549 * wants to see. 550 * 551 * XXX pmap_bootstrap() needs an enema. 552 */ 553 physical_start = bootconfig.dram[0].address; 554 physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE); 555 556 physical_freestart = 0xa0009000UL; 557 physical_freeend = 0xa0200000UL; 558 559 physmem = (physical_end - physical_start) / PAGE_SIZE; 560 561 #ifdef VERBOSE_INIT_ARM 562 /* Tell the user about the memory */ 563 printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem, 564 physical_start, physical_end - 1); 565 #endif 566 567 /* 568 * Okay, the kernel starts 2MB in from the bottom of physical 569 * memory. We are going to allocate our bootstrap pages downwards 570 * from there. 571 * 572 * We need to allocate some fixed page tables to get the kernel 573 * going. We allocate one page directory and a number of page 574 * tables and store the physical addresses in the kernel_pt_table 575 * array. 576 * 577 * The kernel page directory must be on a 16K boundary. The page 578 * tables must be on 4K bounaries. What we do is allocate the 579 * page directory on the first 16K boundary that we encounter, and 580 * the page tables on 4K boundaries otherwise. Since we allocate 581 * at least 3 L2 page tables, we are guaranteed to encounter at 582 * least one 16K aligned region. 583 */ 584 585 #ifdef VERBOSE_INIT_ARM 586 printf("Allocating page tables\n"); 587 #endif 588 589 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; 590 591 #ifdef VERBOSE_INIT_ARM 592 printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n", 593 physical_freestart, free_pages, free_pages); 594 #endif 595 596 /* Define a macro to simplify memory allocation */ 597 #define valloc_pages(var, np) \ 598 alloc_pages((var).pv_pa, (np)); \ 599 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start; 600 601 #define alloc_pages(var, np) \ 602 physical_freeend -= ((np) * PAGE_SIZE); \ 603 if (physical_freeend < physical_freestart) \ 604 panic("initarm: out of memory"); \ 605 (var) = physical_freeend; \ 606 free_pages -= (np); \ 607 memset((char *)(var), 0, ((np) * PAGE_SIZE)); 608 609 loop1 = 0; 610 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { 611 /* Are we 16KB aligned for an L1 ? */ 612 if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0 613 && kernel_l1pt.pv_pa == 0) { 614 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); 615 } else { 616 valloc_pages(kernel_pt_table[loop1], 617 L2_TABLE_SIZE / PAGE_SIZE); 618 ++loop1; 619 } 620 } 621 622 /* This should never be able to happen but better confirm that. */ 623 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0) 624 panic("initarm: Failed to align the kernel page directory"); 625 626 LEDSTEP(); 627 628 /* 629 * Allocate a page for the system page mapped to V0x00000000 630 * This page will just contain the system vectors and can be 631 * shared by all processes. 632 */ 633 alloc_pages(systempage.pv_pa, 1); 634 635 /* Allocate stacks for all modes */ 636 valloc_pages(irqstack, IRQ_STACK_SIZE); 637 valloc_pages(abtstack, ABT_STACK_SIZE); 638 valloc_pages(undstack, UND_STACK_SIZE); 639 valloc_pages(kernelstack, UPAGES); 640 641 /* Allocate enough pages for cleaning the Mini-Data cache. */ 642 KASSERT(xscale_minidata_clean_size <= PAGE_SIZE); 643 valloc_pages(minidataclean, 1); 644 645 #ifdef VERBOSE_INIT_ARM 646 printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, 647 irqstack.pv_va); 648 printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, 649 abtstack.pv_va); 650 printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, 651 undstack.pv_va); 652 printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, 653 kernelstack.pv_va); 654 #endif 655 656 /* 657 * XXX Defer this to later so that we can reclaim the memory 658 * XXX used by the RedBoot page tables. 659 */ 660 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); 661 662 /* 663 * Ok we have allocated physical pages for the primary kernel 664 * page tables 665 */ 666 667 #ifdef VERBOSE_INIT_ARM 668 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa); 669 #endif 670 671 /* 672 * Now we start construction of the L1 page table 673 * We start by mapping the L2 page tables into the L1. 674 * This means that we can replace L1 mappings later on if necessary 675 */ 676 l1pagetable = kernel_l1pt.pv_pa; 677 678 /* Map the L2 pages tables in the L1 page table */ 679 pmap_link_l2pt(l1pagetable, 0x00000000, 680 &kernel_pt_table[KERNEL_PT_SYS]); 681 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) 682 pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000, 683 &kernel_pt_table[KERNEL_PT_KERNEL + loop]); 684 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++) 685 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, 686 &kernel_pt_table[KERNEL_PT_VMDATA + loop]); 687 688 /* update the top of the kernel VM */ 689 pmap_curmaxkvaddr = 690 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); 691 692 #ifdef VERBOSE_INIT_ARM 693 printf("Mapping kernel\n"); 694 #endif 695 696 /* Now we fill in the L2 pagetable for the kernel static code/data */ 697 { 698 extern char etext[], _end[]; 699 size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE; 700 size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE; 701 u_int logical; 702 703 textsize = (textsize + PGOFSET) & ~PGOFSET; 704 totalsize = (totalsize + PGOFSET) & ~PGOFSET; 705 706 logical = 0x00200000; /* offset of kernel in RAM */ 707 708 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, 709 physical_start + logical, textsize, 710 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 711 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, 712 physical_start + logical, totalsize - textsize, 713 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 714 } 715 716 #ifdef VERBOSE_INIT_ARM 717 printf("Constructing L2 page tables\n"); 718 #endif 719 720 /* Map the stack pages */ 721 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, 722 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 723 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, 724 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 725 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, 726 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 727 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, 728 UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); 729 730 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, 731 L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE); 732 733 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { 734 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, 735 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, 736 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); 737 } 738 739 /* Map the Mini-Data cache clean area. */ 740 xscale_setup_minidata(l1pagetable, minidataclean.pv_va, 741 minidataclean.pv_pa); 742 743 /* Map the vector page. */ 744 #if 1 745 /* MULTI-ICE requires that page 0 is NC/NB so that it can download the 746 * cache-clean code there. */ 747 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, 748 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE); 749 #else 750 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, 751 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 752 #endif 753 754 /* 755 * map integrated peripherals at same address in l1pagetable 756 * so that we can continue to use console. 757 */ 758 pmap_devmap_bootstrap(l1pagetable, g42xxeb_devmap); 759 760 /* 761 * Give the XScale global cache clean code an appropriately 762 * sized chunk of unmapped VA space starting at 0xff000000 763 * (our device mappings end before this address). 764 */ 765 xscale_cache_clean_addr = 0xff000000U; 766 767 /* 768 * Now we have the real page tables in place so we can switch to them. 769 * Once this is done we will be running with the REAL kernel page 770 * tables. 771 */ 772 773 /* 774 * Update the physical_freestart/physical_freeend/free_pages 775 * variables. 776 */ 777 { 778 extern char _end[]; 779 780 physical_freestart = physical_start + 781 (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) - 782 KERNEL_BASE); 783 physical_freeend = physical_end; 784 free_pages = 785 (physical_freeend - physical_freestart) / PAGE_SIZE; 786 } 787 788 /* Switch tables */ 789 #ifdef VERBOSE_INIT_ARM 790 printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n", 791 physical_freestart, free_pages, free_pages); 792 printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa); 793 #endif 794 LEDSTEP(); 795 796 setttb(kernel_l1pt.pv_pa); 797 cpu_tlb_flushID(); 798 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); 799 LEDSTEP(); 800 801 /* 802 * Moved from cpu_startup() as data_abort_handler() references 803 * this during uvm init 804 */ 805 proc0paddr = (struct user *)kernelstack.pv_va; 806 lwp0.l_addr = proc0paddr; 807 808 #ifdef VERBOSE_INIT_ARM 809 printf("bootstrap done.\n"); 810 #endif 811 812 arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL); 813 814 /* 815 * Pages were allocated during the secondary bootstrap for the 816 * stacks for different CPU modes. 817 * We must now set the r13 registers in the different CPU modes to 818 * point to these stacks. 819 * Since the ARM stacks use STMFD etc. we must set r13 to the top end 820 * of the stack memory. 821 */ 822 #ifdef VERBOSE_INIT_ARM 823 printf("init subsystems: stacks "); 824 #endif 825 826 set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); 827 set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); 828 set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); 829 830 /* 831 * Well we should set a data abort handler. 832 * Once things get going this will change as we will need a proper 833 * handler. 834 * Until then we will use a handler that just panics but tells us 835 * why. 836 * Initialisation of the vectors will just panic on a data abort. 837 * This just fills in a slighly better one. 838 */ 839 #ifdef VERBOSE_INIT_ARM 840 printf("vectors "); 841 #endif 842 data_abort_handler_address = (u_int)data_abort_handler; 843 prefetch_abort_handler_address = (u_int)prefetch_abort_handler; 844 undefined_handler_address = (u_int)undefinedinstruction_bounce; 845 846 /* Initialise the undefined instruction handlers */ 847 #ifdef VERBOSE_INIT_ARM 848 printf("undefined "); 849 #endif 850 undefined_init(); 851 852 /* Load memory into UVM. */ 853 #ifdef VERBOSE_INIT_ARM 854 printf("page "); 855 #endif 856 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */ 857 uvm_page_physload(atop(physical_freestart), atop(physical_freeend), 858 atop(physical_freestart), atop(physical_freeend), 859 VM_FREELIST_DEFAULT); 860 861 /* Boot strap pmap telling it where the kernel page table is */ 862 #ifdef VERBOSE_INIT_ARM 863 printf("pmap "); 864 #endif 865 LEDSTEP(); 866 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); 867 LEDSTEP(); 868 869 #ifdef __HAVE_MEMORY_DISK__ 870 md_root_setconf(memory_disk, sizeof memory_disk); 871 #endif 872 873 #ifdef BOOTHOWTO 874 boothowto |= BOOTHOWTO; 875 #endif 876 877 { 878 uint8_t sw = pldreg8_read(G42XXEB_DIPSW); 879 880 if (0 == (sw & (1<<0))) 881 boothowto ^= RB_KDB; 882 if (0 == (sw & (1<<1))) 883 boothowto ^= RB_SINGLE; 884 } 885 886 LEDSTEP(); 887 888 #ifdef KGDB 889 if (boothowto & RB_KDB) { 890 kgdb_debug_init = 1; 891 kgdb_connect(1); 892 } 893 #endif 894 895 #ifdef DDB 896 db_machine_init(); 897 898 /* Firmware doesn't load symbols. */ 899 ddb_init(0, NULL, NULL); 900 901 if (boothowto & RB_KDB) 902 Debugger(); 903 #endif 904 905 pldreg8_write(G42XXEB_LED, 0); 906 907 /* We return the new stack pointer address */ 908 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP); 909 } 910 911 #if 0 912 void 913 process_kernel_args(char *args) 914 { 915 916 boothowto = 0; 917 918 /* Make a local copy of the bootargs */ 919 strncpy(bootargs, args, MAX_BOOT_STRING); 920 921 args = bootargs; 922 boot_file = bootargs; 923 924 /* Skip the kernel image filename */ 925 while (*args != ' ' && *args != 0) 926 ++args; 927 928 if (*args != 0) 929 *args++ = 0; 930 931 while (*args == ' ') 932 ++args; 933 934 boot_args = args; 935 936 printf("bootfile: %s\n", boot_file); 937 printf("bootargs: %s\n", boot_args); 938 939 parse_mi_bootargs(boot_args); 940 } 941 #endif 942 943 #ifdef KGDB 944 #ifndef KGDB_DEVNAME 945 #define KGDB_DEVNAME "ffuart" 946 #endif 947 const char kgdb_devname[] = KGDB_DEVNAME; 948 949 #if (NCOM > 0) 950 #ifndef KGDB_DEVMODE 951 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ 952 #endif 953 int comkgdbmode = KGDB_DEVMODE; 954 #endif /* NCOM */ 955 956 #endif /* KGDB */ 957 958 959 void 960 consinit(void) 961 { 962 static int consinit_called = 0; 963 uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN); 964 #if 0 965 char *console = CONSDEVNAME; 966 #endif 967 968 if (consinit_called != 0) 969 return; 970 971 consinit_called = 1; 972 973 #if NCOM > 0 974 975 #ifdef FFUARTCONSOLE 976 #ifdef KGDB 977 if (0 == strcmp(kgdb_devname, "ffuart")){ 978 /* port is reserved for kgdb */ 979 } else 980 #endif 981 if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_FFUART_BASE, 982 comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) { 983 #if 0 984 pxa2x0_clkman_config(CKEN_FFUART, 1); 985 #else 986 ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN, 987 ckenreg|CKEN_FFUART); 988 #endif 989 990 return; 991 } 992 #endif /* FFUARTCONSOLE */ 993 994 #ifdef BTUARTCONSOLE 995 #ifdef KGDB 996 if (0 == strcmp(kgdb_devname, "btuart")) { 997 /* port is reserved for kgdb */ 998 } else 999 #endif 1000 if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_BTUART_BASE, 1001 comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) { 1002 ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN, 1003 ckenreg|CKEN_BTUART); 1004 return; 1005 } 1006 #endif /* BTUARTCONSOLE */ 1007 1008 1009 #endif /* NCOM */ 1010 1011 } 1012 1013 #ifdef KGDB 1014 void 1015 kgdb_port_init(void) 1016 { 1017 #if (NCOM > 0) && defined(COM_PXA2X0) 1018 paddr_t paddr = 0; 1019 uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN); 1020 1021 if (0 == strcmp(kgdb_devname, "ffuart")) { 1022 paddr = PXA2X0_FFUART_BASE; 1023 ckenreg |= CKEN_FFUART; 1024 } 1025 else if (0 == strcmp(kgdb_devname, "btuart")) { 1026 paddr = PXA2X0_BTUART_BASE; 1027 ckenreg |= CKEN_BTUART; 1028 } 1029 1030 if (paddr && 1031 0 == com_kgdb_attach(&pxa2x0_a4x_bs_tag, paddr, 1032 kgdb_rate, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comkgdbmode)) { 1033 1034 ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN, ckenreg); 1035 1036 } 1037 1038 #endif 1039 } 1040 #endif 1041 1042