1 /* $NetBSD: g42xxeb_machdep.c,v 1.15 2008/11/11 06:46:41 dyoung Exp $ */ 2 3 /* 4 * Copyright (c) 2002, 2003, 2004, 2005 Genetec Corporation. 5 * All rights reserved. 6 * 7 * Written by Hiroyuki Bessho for Genetec Corporation. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. The name of Genetec Corporation may not be used to endorse or 18 * promote products derived from this software without specific prior 19 * written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Machine dependant functions for kernel setup for Genetec G4250EBX 34 * evaluation board. 35 * 36 * Based on iq80310_machhdep.c 37 */ 38 /* 39 * Copyright (c) 2001 Wasabi Systems, Inc. 40 * All rights reserved. 41 * 42 * Written by Jason R. Thorpe for Wasabi Systems, Inc. 43 * 44 * Redistribution and use in source and binary forms, with or without 45 * modification, are permitted provided that the following conditions 46 * are met: 47 * 1. Redistributions of source code must retain the above copyright 48 * notice, this list of conditions and the following disclaimer. 49 * 2. Redistributions in binary form must reproduce the above copyright 50 * notice, this list of conditions and the following disclaimer in the 51 * documentation and/or other materials provided with the distribution. 52 * 3. All advertising materials mentioning features or use of this software 53 * must display the following acknowledgement: 54 * This product includes software developed for the NetBSD Project by 55 * Wasabi Systems, Inc. 56 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 57 * or promote products derived from this software without specific prior 58 * written permission. 59 * 60 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 61 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 62 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 63 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 64 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 65 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 66 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 67 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 68 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 69 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 70 * POSSIBILITY OF SUCH DAMAGE. 71 */ 72 73 /* 74 * Copyright (c) 1997,1998 Mark Brinicombe. 75 * Copyright (c) 1997,1998 Causality Limited. 76 * All rights reserved. 77 * 78 * Redistribution and use in source and binary forms, with or without 79 * modification, are permitted provided that the following conditions 80 * are met: 81 * 1. Redistributions of source code must retain the above copyright 82 * notice, this list of conditions and the following disclaimer. 83 * 2. Redistributions in binary form must reproduce the above copyright 84 * notice, this list of conditions and the following disclaimer in the 85 * documentation and/or other materials provided with the distribution. 86 * 3. All advertising materials mentioning features or use of this software 87 * must display the following acknowledgement: 88 * This product includes software developed by Mark Brinicombe 89 * for the NetBSD Project. 90 * 4. The name of the company nor the name of the author may be used to 91 * endorse or promote products derived from this software without specific 92 * prior written permission. 93 * 94 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 95 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 96 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 97 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 98 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 99 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 100 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 101 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 102 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 103 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 104 * SUCH DAMAGE. 105 * 106 * Machine dependant functions for kernel setup for Intel IQ80310 evaluation 107 * boards using RedBoot firmware. 108 */ 109 110 #include "opt_ddb.h" 111 #include "opt_kgdb.h" 112 #include "opt_pmap_debug.h" 113 #include "opt_md.h" 114 #include "opt_com.h" 115 #include "md.h" 116 #include "lcd.h" 117 118 #include <sys/param.h> 119 #include <sys/device.h> 120 #include <sys/systm.h> 121 #include <sys/kernel.h> 122 #include <sys/exec.h> 123 #include <sys/proc.h> 124 #include <sys/msgbuf.h> 125 #include <sys/reboot.h> 126 #include <sys/termios.h> 127 #include <sys/ksyms.h> 128 129 #include <uvm/uvm_extern.h> 130 131 #include <sys/conf.h> 132 #include <dev/cons.h> 133 #include <dev/md.h> 134 135 #include <machine/db_machdep.h> 136 #include <ddb/db_sym.h> 137 #include <ddb/db_extern.h> 138 #ifdef KGDB 139 #include <sys/kgdb.h> 140 #endif 141 142 #include <machine/bootconfig.h> 143 #include <machine/bus.h> 144 #include <machine/cpu.h> 145 #include <machine/frame.h> 146 #include <arm/undefined.h> 147 148 #include <arm/arm32/machdep.h> 149 150 #include <arm/xscale/pxa2x0reg.h> 151 #include <arm/xscale/pxa2x0var.h> 152 #include <arm/xscale/pxa2x0_gpio.h> 153 #include <evbarm/g42xxeb/g42xxeb_reg.h> 154 #include <evbarm/g42xxeb/g42xxeb_var.h> 155 156 /* Kernel text starts 2MB in from the bottom of the kernel address space. */ 157 #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000) 158 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000) 159 160 /* 161 * The range 0xc1000000 - 0xccffffff is available for kernel VM space 162 * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff 163 */ 164 #define KERNEL_VM_SIZE 0x0C000000 165 166 167 /* 168 * Address to call from cpu_reset() to reset the machine. 169 * This is machine architecture dependant as it varies depending 170 * on where the ROM appears when you turn the MMU off. 171 */ 172 173 u_int cpu_reset_address = 0; 174 175 /* Define various stack sizes in pages */ 176 #define IRQ_STACK_SIZE 1 177 #define ABT_STACK_SIZE 1 178 #define UND_STACK_SIZE 1 179 180 BootConfig bootconfig; /* Boot config storage */ 181 char *boot_args = NULL; 182 char *boot_file = NULL; 183 184 vm_offset_t physical_start; 185 vm_offset_t physical_freestart; 186 vm_offset_t physical_freeend; 187 vm_offset_t physical_end; 188 u_int free_pages; 189 vm_offset_t pagetables_start; 190 int physmem = 0; 191 192 /*int debug_flags;*/ 193 #ifndef PMAP_STATIC_L1S 194 int max_processes = 64; /* Default number */ 195 #endif /* !PMAP_STATIC_L1S */ 196 197 /* Physical and virtual addresses for some global pages */ 198 pv_addr_t irqstack; 199 pv_addr_t undstack; 200 pv_addr_t abtstack; 201 pv_addr_t kernelstack; 202 pv_addr_t minidataclean; 203 204 vm_offset_t msgbufphys; 205 206 extern u_int data_abort_handler_address; 207 extern u_int prefetch_abort_handler_address; 208 extern u_int undefined_handler_address; 209 210 #ifdef PMAP_DEBUG 211 extern int pmap_debug_level; 212 #endif 213 214 #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */ 215 #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */ 216 #define KERNEL_PT_KERNEL_NUM 4 217 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM) 218 /* Page tables for mapping kernel VM */ 219 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */ 220 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM) 221 222 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS]; 223 224 struct user *proc0paddr; 225 226 /* Prototypes */ 227 228 #if 0 229 void process_kernel_args(char *); 230 #endif 231 232 void consinit(void); 233 void kgdb_port_init(void); 234 void change_clock(uint32_t v); 235 236 bs_protos(bs_notimpl); 237 238 #include "com.h" 239 #if NCOM > 0 240 #include <dev/ic/comreg.h> 241 #include <dev/ic/comvar.h> 242 #endif 243 244 #ifndef CONSPEED 245 #define CONSPEED B115200 /* What RedBoot uses */ 246 #endif 247 #ifndef CONMODE 248 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ 249 #endif 250 251 int comcnspeed = CONSPEED; 252 int comcnmode = CONMODE; 253 254 static struct pxa2x0_gpioconf boarddep_gpioconf[] = { 255 { 44, GPIO_ALT_FN_1_IN }, /* BTCST */ 256 { 45, GPIO_ALT_FN_2_OUT }, /* BTRST */ 257 258 { -1 } 259 }; 260 static struct pxa2x0_gpioconf *g42xxeb_gpioconf[] = { 261 pxa25x_com_btuart_gpioconf, 262 pxa25x_com_ffuart_gpioconf, 263 #if 0 264 pxa25x_com_stuart_gpioconf, 265 pxa25x_pxaacu_gpioconf, 266 #endif 267 boarddep_gpioconf, 268 NULL 269 }; 270 271 /* 272 * void cpu_reboot(int howto, char *bootstr) 273 * 274 * Reboots the system 275 * 276 * Deal with any syncing, unmounting, dumping and shutdown hooks, 277 * then reset the CPU. 278 */ 279 void 280 cpu_reboot(int howto, char *bootstr) 281 { 282 #ifdef DIAGNOSTIC 283 /* info */ 284 printf("boot: howto=%08x curproc=%p\n", howto, curproc); 285 #endif 286 287 /* 288 * If we are still cold then hit the air brakes 289 * and crash to earth fast 290 */ 291 if (cold) { 292 doshutdownhooks(); 293 pmf_system_shutdown(boothowto); 294 printf("The operating system has halted.\n"); 295 printf("Please press any key to reboot.\n\n"); 296 cngetc(); 297 printf("rebooting...\n"); 298 cpu_reset(); 299 /*NOTREACHED*/ 300 } 301 302 /* Disable console buffering */ 303 /* cnpollc(1);*/ 304 305 /* 306 * If RB_NOSYNC was not specified sync the discs. 307 * Note: Unless cold is set to 1 here, syslogd will die during the 308 * unmount. It looks like syslogd is getting woken up only to find 309 * that it cannot page part of the binary in as the filesystem has 310 * been unmounted. 311 */ 312 if (!(howto & RB_NOSYNC)) 313 bootsync(); 314 315 /* Say NO to interrupts */ 316 splhigh(); 317 318 /* Do a dump if requested. */ 319 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) 320 dumpsys(); 321 322 /* Run any shutdown hooks */ 323 doshutdownhooks(); 324 325 pmf_system_shutdown(boothowto); 326 327 /* Make sure IRQ's are disabled */ 328 IRQdisable; 329 330 if (howto & RB_HALT) { 331 printf("The operating system has halted.\n"); 332 printf("Please press any key to reboot.\n\n"); 333 cngetc(); 334 } 335 336 printf("rebooting...\n"); 337 cpu_reset(); 338 /*NOTREACHED*/ 339 } 340 341 static inline 342 pd_entry_t * 343 read_ttb(void) 344 { 345 long ttb; 346 347 __asm volatile("mrc p15, 0, %0, c2, c0, 0" : "=r" (ttb)); 348 349 350 return (pd_entry_t *)(ttb & ~((1<<14)-1)); 351 } 352 353 /* 354 * Static device mappings. These peripheral registers are mapped at 355 * fixed virtual addresses very early in initarm() so that we can use 356 * them while booting the kernel, and stay at the same address 357 * throughout whole kernel's life time. 358 * 359 * We use this table twice; once with bootstrap page table, and once 360 * with kernel's page table which we build up in initarm(). 361 * 362 * Since we map these registers into the bootstrap page table using 363 * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map 364 * registers segment-aligned and segment-rounded in order to avoid 365 * using the 2nd page tables. 366 */ 367 368 #define _A(a) ((a) & ~L1_S_OFFSET) 369 #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1)) 370 371 static const struct pmap_devmap g42xxeb_devmap[] = { 372 { 373 G42XXEB_PLDREG_VBASE, 374 _A(G42XXEB_PLDREG_BASE), 375 _S(G42XXEB_PLDREG_SIZE), 376 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 377 }, 378 { 379 G42XXEB_GPIO_VBASE, 380 _A(PXA2X0_GPIO_BASE), 381 _S(PXA250_GPIO_SIZE), 382 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 383 }, 384 { 385 G42XXEB_CLKMAN_VBASE, 386 _A(PXA2X0_CLKMAN_BASE), 387 _S(PXA2X0_CLKMAN_SIZE), 388 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 389 }, 390 { 391 G42XXEB_INTCTL_VBASE, 392 _A(PXA2X0_INTCTL_BASE), 393 _S(PXA2X0_INTCTL_SIZE), 394 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 395 }, 396 { 397 G42XXEB_FFUART_VBASE, 398 _A(PXA2X0_FFUART_BASE), 399 _S(4 * COM_NPORTS), 400 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 401 }, 402 { 403 G42XXEB_BTUART_VBASE, 404 _A(PXA2X0_BTUART_BASE), 405 _S(4 * COM_NPORTS), 406 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 407 }, 408 {0, 0, 0, 0,} 409 }; 410 411 #undef _A 412 #undef _S 413 414 415 /* 416 * u_int initarm(...) 417 * 418 * Initial entry point on startup. This gets called before main() is 419 * entered. 420 * It should be responsible for setting up everything that must be 421 * in place when main is called. 422 * This includes 423 * Taking a copy of the boot configuration structure. 424 * Initialising the physical console so characters can be printed. 425 * Setting up page tables for the kernel 426 * Relocating the kernel to the bottom of physical memory 427 */ 428 u_int 429 initarm(void *arg) 430 { 431 extern vaddr_t xscale_cache_clean_addr; 432 int loop; 433 int loop1; 434 u_int l1pagetable; 435 paddr_t memstart; 436 psize_t memsize; 437 int led_data = 1; 438 #ifdef DIAGNOSTIC 439 extern vsize_t xscale_minidata_clean_size; /* used in KASSERT */ 440 #endif 441 442 #define LEDSTEP_P() ioreg8_write(G42XXEB_PLDREG_BASE+G42XXEB_LED, led_data++) 443 #define LEDSTEP() pldreg8_write(G42XXEB_LED, led_data++); 444 445 /* use physical address until pagetable is set */ 446 LEDSTEP_P(); 447 448 /* map some peripheral registers at static I/O area */ 449 pmap_devmap_bootstrap((vaddr_t)read_ttb(), g42xxeb_devmap); 450 451 LEDSTEP_P(); 452 453 /* start 32.768 kHz OSC */ 454 ioreg_write(G42XXEB_CLKMAN_VBASE + 0x08, 2); 455 /* Get ready for splfoo() */ 456 pxa2x0_intr_bootstrap(G42XXEB_INTCTL_VBASE); 457 458 LEDSTEP(); 459 460 /* 461 * Heads up ... Setup the CPU / MMU / TLB functions 462 */ 463 if (set_cpufuncs()) 464 panic("cpu not recognized!"); 465 466 LEDSTEP(); 467 468 /* 469 * Okay, RedBoot has provided us with the following memory map: 470 * 471 * Physical Address Range Description 472 * ----------------------- ---------------------------------- 473 * 0x00000000 - 0x01ffffff flash Memory (32MB) 474 * 0x04000000 - 0x05ffffff Application flash Memory (32MB) 475 * 0x08000000 - 0x080000ff I/O baseboard registers 476 * 0x0c000000 - 0x0c0fffff Ethernet Controller 477 * 0x14000000 - 0x17ffffff Expansion Card (64MB) 478 * 0x40000000 - 0x480fffff Processor Registers 479 * 0xa0000000 - 0xa3ffffff SDRAM Bank 0 (64MB) 480 * 481 * 482 * Virtual Address Range X C B Description 483 * ----------------------- - - - ---------------------------------- 484 * 0x00000000 - 0x00003fff N Y Y SDRAM 485 * 0x00004000 - 0x01ffffff N Y N ROM 486 * 0x08000000 - 0x080fffff N N N I/O baseboard registers 487 * 0x0a000000 - 0x0a0fffff N N N SRAM 488 * 0x40000000 - 0x480fffff N N N Processor Registers 489 * 0xa0000000 - 0xa000ffff N Y N RedBoot SDRAM 490 * 0xa0017000 - 0xa3ffffff Y Y Y SDRAM 491 * 0xc0000000 - 0xcfffffff Y Y Y Cache Flush Region 492 * (done by this routine) 493 * 0xfd000000 - 0xfd0000ff N N N I/O baseboard registers 494 * 0xfd100000 - 0xfd3fffff N N N Processor Registers. 495 * 0xfd400000 - 0xfd4fffff N N N FF-UART 496 * 0xfd500000 - 0xfd5fffff N N N BT-UART 497 * 498 * RedBoot's first level page table is at 0xa0004000. There 499 * are also 2 second-level tables at 0xa0008000 and 500 * 0xa0008400. We will continue to use them until we switch to 501 * our pagetable by setttb(). 502 */ 503 504 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); 505 506 LEDSTEP(); 507 508 /* setup GPIO for BTUART, in case bootloader doesn't take care of it */ 509 pxa2x0_gpio_bootstrap(G42XXEB_GPIO_VBASE); 510 pxa2x0_gpio_config(g42xxeb_gpioconf); 511 512 LEDSTEP(); 513 514 consinit(); 515 #ifdef KGDB 516 LEDSTEP(); 517 kgdb_port_init(); 518 #endif 519 520 LEDSTEP(); 521 522 /* Talk to the user */ 523 printf("\nNetBSD/evbarm (g42xxeb) booting ...\n"); 524 525 #if 0 526 /* 527 * Examine the boot args string for options we need to know about 528 * now. 529 */ 530 process_kernel_args((char *)nwbootinfo.bt_args); 531 #endif 532 533 memstart = 0xa0000000; 534 memsize = 0x04000000; /* 64MB */ 535 536 printf("initarm: Configuring system ...\n"); 537 538 /* Fake bootconfig structure for the benefit of pmap.c */ 539 /* XXX must make the memory description h/w independent */ 540 bootconfig.dramblocks = 1; 541 bootconfig.dram[0].address = memstart; 542 bootconfig.dram[0].pages = memsize / PAGE_SIZE; 543 544 /* 545 * Set up the variables that define the availablilty of 546 * physical memory. For now, we're going to set 547 * physical_freestart to 0xa0200000 (where the kernel 548 * was loaded), and allocate the memory we need downwards. 549 * If we get too close to the L1 table that we set up, we 550 * will panic. We will update physical_freestart and 551 * physical_freeend later to reflect what pmap_bootstrap() 552 * wants to see. 553 * 554 * XXX pmap_bootstrap() needs an enema. 555 */ 556 physical_start = bootconfig.dram[0].address; 557 physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE); 558 559 physical_freestart = 0xa0009000UL; 560 physical_freeend = 0xa0200000UL; 561 562 physmem = (physical_end - physical_start) / PAGE_SIZE; 563 564 #ifdef VERBOSE_INIT_ARM 565 /* Tell the user about the memory */ 566 printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem, 567 physical_start, physical_end - 1); 568 #endif 569 570 /* 571 * Okay, the kernel starts 2MB in from the bottom of physical 572 * memory. We are going to allocate our bootstrap pages downwards 573 * from there. 574 * 575 * We need to allocate some fixed page tables to get the kernel 576 * going. We allocate one page directory and a number of page 577 * tables and store the physical addresses in the kernel_pt_table 578 * array. 579 * 580 * The kernel page directory must be on a 16K boundary. The page 581 * tables must be on 4K bounaries. What we do is allocate the 582 * page directory on the first 16K boundary that we encounter, and 583 * the page tables on 4K boundaries otherwise. Since we allocate 584 * at least 3 L2 page tables, we are guaranteed to encounter at 585 * least one 16K aligned region. 586 */ 587 588 #ifdef VERBOSE_INIT_ARM 589 printf("Allocating page tables\n"); 590 #endif 591 592 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; 593 594 #ifdef VERBOSE_INIT_ARM 595 printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n", 596 physical_freestart, free_pages, free_pages); 597 #endif 598 599 /* Define a macro to simplify memory allocation */ 600 #define valloc_pages(var, np) \ 601 alloc_pages((var).pv_pa, (np)); \ 602 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start; 603 604 #define alloc_pages(var, np) \ 605 physical_freeend -= ((np) * PAGE_SIZE); \ 606 if (physical_freeend < physical_freestart) \ 607 panic("initarm: out of memory"); \ 608 (var) = physical_freeend; \ 609 free_pages -= (np); \ 610 memset((char *)(var), 0, ((np) * PAGE_SIZE)); 611 612 loop1 = 0; 613 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { 614 /* Are we 16KB aligned for an L1 ? */ 615 if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0 616 && kernel_l1pt.pv_pa == 0) { 617 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); 618 } else { 619 valloc_pages(kernel_pt_table[loop1], 620 L2_TABLE_SIZE / PAGE_SIZE); 621 ++loop1; 622 } 623 } 624 625 /* This should never be able to happen but better confirm that. */ 626 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0) 627 panic("initarm: Failed to align the kernel page directory"); 628 629 LEDSTEP(); 630 631 /* 632 * Allocate a page for the system page mapped to V0x00000000 633 * This page will just contain the system vectors and can be 634 * shared by all processes. 635 */ 636 alloc_pages(systempage.pv_pa, 1); 637 638 /* Allocate stacks for all modes */ 639 valloc_pages(irqstack, IRQ_STACK_SIZE); 640 valloc_pages(abtstack, ABT_STACK_SIZE); 641 valloc_pages(undstack, UND_STACK_SIZE); 642 valloc_pages(kernelstack, UPAGES); 643 644 /* Allocate enough pages for cleaning the Mini-Data cache. */ 645 KASSERT(xscale_minidata_clean_size <= PAGE_SIZE); 646 valloc_pages(minidataclean, 1); 647 648 #ifdef VERBOSE_INIT_ARM 649 printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, 650 irqstack.pv_va); 651 printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, 652 abtstack.pv_va); 653 printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, 654 undstack.pv_va); 655 printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, 656 kernelstack.pv_va); 657 #endif 658 659 /* 660 * XXX Defer this to later so that we can reclaim the memory 661 * XXX used by the RedBoot page tables. 662 */ 663 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); 664 665 /* 666 * Ok we have allocated physical pages for the primary kernel 667 * page tables 668 */ 669 670 #ifdef VERBOSE_INIT_ARM 671 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa); 672 #endif 673 674 /* 675 * Now we start construction of the L1 page table 676 * We start by mapping the L2 page tables into the L1. 677 * This means that we can replace L1 mappings later on if necessary 678 */ 679 l1pagetable = kernel_l1pt.pv_pa; 680 681 /* Map the L2 pages tables in the L1 page table */ 682 pmap_link_l2pt(l1pagetable, 0x00000000, 683 &kernel_pt_table[KERNEL_PT_SYS]); 684 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) 685 pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000, 686 &kernel_pt_table[KERNEL_PT_KERNEL + loop]); 687 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++) 688 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, 689 &kernel_pt_table[KERNEL_PT_VMDATA + loop]); 690 691 /* update the top of the kernel VM */ 692 pmap_curmaxkvaddr = 693 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); 694 695 #ifdef VERBOSE_INIT_ARM 696 printf("Mapping kernel\n"); 697 #endif 698 699 /* Now we fill in the L2 pagetable for the kernel static code/data */ 700 { 701 extern char etext[], _end[]; 702 size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE; 703 size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE; 704 u_int logical; 705 706 textsize = (textsize + PGOFSET) & ~PGOFSET; 707 totalsize = (totalsize + PGOFSET) & ~PGOFSET; 708 709 logical = 0x00200000; /* offset of kernel in RAM */ 710 711 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, 712 physical_start + logical, textsize, 713 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 714 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, 715 physical_start + logical, totalsize - textsize, 716 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 717 } 718 719 #ifdef VERBOSE_INIT_ARM 720 printf("Constructing L2 page tables\n"); 721 #endif 722 723 /* Map the stack pages */ 724 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, 725 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 726 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, 727 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 728 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, 729 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 730 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, 731 UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); 732 733 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, 734 L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE); 735 736 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { 737 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, 738 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, 739 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); 740 } 741 742 /* Map the Mini-Data cache clean area. */ 743 xscale_setup_minidata(l1pagetable, minidataclean.pv_va, 744 minidataclean.pv_pa); 745 746 /* Map the vector page. */ 747 #if 1 748 /* MULTI-ICE requires that page 0 is NC/NB so that it can download the 749 * cache-clean code there. */ 750 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, 751 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE); 752 #else 753 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, 754 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 755 #endif 756 757 /* 758 * map integrated peripherals at same address in l1pagetable 759 * so that we can continue to use console. 760 */ 761 pmap_devmap_bootstrap(l1pagetable, g42xxeb_devmap); 762 763 /* 764 * Give the XScale global cache clean code an appropriately 765 * sized chunk of unmapped VA space starting at 0xff000000 766 * (our device mappings end before this address). 767 */ 768 xscale_cache_clean_addr = 0xff000000U; 769 770 /* 771 * Now we have the real page tables in place so we can switch to them. 772 * Once this is done we will be running with the REAL kernel page 773 * tables. 774 */ 775 776 /* 777 * Update the physical_freestart/physical_freeend/free_pages 778 * variables. 779 */ 780 { 781 extern char _end[]; 782 783 physical_freestart = physical_start + 784 (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) - 785 KERNEL_BASE); 786 physical_freeend = physical_end; 787 free_pages = 788 (physical_freeend - physical_freestart) / PAGE_SIZE; 789 } 790 791 /* Switch tables */ 792 #ifdef VERBOSE_INIT_ARM 793 printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n", 794 physical_freestart, free_pages, free_pages); 795 printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa); 796 #endif 797 LEDSTEP(); 798 799 setttb(kernel_l1pt.pv_pa); 800 cpu_tlb_flushID(); 801 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); 802 LEDSTEP(); 803 804 /* 805 * Moved from cpu_startup() as data_abort_handler() references 806 * this during uvm init 807 */ 808 proc0paddr = (struct user *)kernelstack.pv_va; 809 lwp0.l_addr = proc0paddr; 810 811 #ifdef VERBOSE_INIT_ARM 812 printf("bootstrap done.\n"); 813 #endif 814 815 arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL); 816 817 /* 818 * Pages were allocated during the secondary bootstrap for the 819 * stacks for different CPU modes. 820 * We must now set the r13 registers in the different CPU modes to 821 * point to these stacks. 822 * Since the ARM stacks use STMFD etc. we must set r13 to the top end 823 * of the stack memory. 824 */ 825 #ifdef VERBOSE_INIT_ARM 826 printf("init subsystems: stacks "); 827 #endif 828 829 set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); 830 set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); 831 set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); 832 833 /* 834 * Well we should set a data abort handler. 835 * Once things get going this will change as we will need a proper 836 * handler. 837 * Until then we will use a handler that just panics but tells us 838 * why. 839 * Initialisation of the vectors will just panic on a data abort. 840 * This just fills in a slighly better one. 841 */ 842 #ifdef VERBOSE_INIT_ARM 843 printf("vectors "); 844 #endif 845 data_abort_handler_address = (u_int)data_abort_handler; 846 prefetch_abort_handler_address = (u_int)prefetch_abort_handler; 847 undefined_handler_address = (u_int)undefinedinstruction_bounce; 848 849 /* Initialise the undefined instruction handlers */ 850 #ifdef VERBOSE_INIT_ARM 851 printf("undefined "); 852 #endif 853 undefined_init(); 854 855 /* Load memory into UVM. */ 856 #ifdef VERBOSE_INIT_ARM 857 printf("page "); 858 #endif 859 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */ 860 uvm_page_physload(atop(physical_freestart), atop(physical_freeend), 861 atop(physical_freestart), atop(physical_freeend), 862 VM_FREELIST_DEFAULT); 863 864 /* Boot strap pmap telling it where the kernel page table is */ 865 #ifdef VERBOSE_INIT_ARM 866 printf("pmap "); 867 #endif 868 LEDSTEP(); 869 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); 870 LEDSTEP(); 871 872 #ifdef __HAVE_MEMORY_DISK__ 873 md_root_setconf(memory_disk, sizeof memory_disk); 874 #endif 875 876 #ifdef BOOTHOWTO 877 boothowto |= BOOTHOWTO; 878 #endif 879 880 { 881 uint8_t sw = pldreg8_read(G42XXEB_DIPSW); 882 883 if (0 == (sw & (1<<0))) 884 boothowto ^= RB_KDB; 885 if (0 == (sw & (1<<1))) 886 boothowto ^= RB_SINGLE; 887 } 888 889 LEDSTEP(); 890 891 #ifdef KGDB 892 if (boothowto & RB_KDB) { 893 kgdb_debug_init = 1; 894 kgdb_connect(1); 895 } 896 #endif 897 898 #ifdef DDB 899 db_machine_init(); 900 901 /* Firmware doesn't load symbols. */ 902 ddb_init(0, NULL, NULL); 903 904 if (boothowto & RB_KDB) 905 Debugger(); 906 #endif 907 908 pldreg8_write(G42XXEB_LED, 0); 909 910 /* We return the new stack pointer address */ 911 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP); 912 } 913 914 #if 0 915 void 916 process_kernel_args(char *args) 917 { 918 919 boothowto = 0; 920 921 /* Make a local copy of the bootargs */ 922 strncpy(bootargs, args, MAX_BOOT_STRING); 923 924 args = bootargs; 925 boot_file = bootargs; 926 927 /* Skip the kernel image filename */ 928 while (*args != ' ' && *args != 0) 929 ++args; 930 931 if (*args != 0) 932 *args++ = 0; 933 934 while (*args == ' ') 935 ++args; 936 937 boot_args = args; 938 939 printf("bootfile: %s\n", boot_file); 940 printf("bootargs: %s\n", boot_args); 941 942 parse_mi_bootargs(boot_args); 943 } 944 #endif 945 946 #ifdef KGDB 947 #ifndef KGDB_DEVNAME 948 #define KGDB_DEVNAME "ffuart" 949 #endif 950 const char kgdb_devname[] = KGDB_DEVNAME; 951 952 #if (NCOM > 0) 953 #ifndef KGDB_DEVMODE 954 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ 955 #endif 956 int comkgdbmode = KGDB_DEVMODE; 957 #endif /* NCOM */ 958 959 #endif /* KGDB */ 960 961 962 void 963 consinit(void) 964 { 965 static int consinit_called = 0; 966 uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN); 967 #if 0 968 char *console = CONSDEVNAME; 969 #endif 970 971 if (consinit_called != 0) 972 return; 973 974 consinit_called = 1; 975 976 #if NCOM > 0 977 978 #ifdef FFUARTCONSOLE 979 #ifdef KGDB 980 if (0 == strcmp(kgdb_devname, "ffuart")){ 981 /* port is reserved for kgdb */ 982 } else 983 #endif 984 if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_FFUART_BASE, 985 comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) { 986 #if 0 987 pxa2x0_clkman_config(CKEN_FFUART, 1); 988 #else 989 ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN, 990 ckenreg|CKEN_FFUART); 991 #endif 992 993 return; 994 } 995 #endif /* FFUARTCONSOLE */ 996 997 #ifdef BTUARTCONSOLE 998 #ifdef KGDB 999 if (0 == strcmp(kgdb_devname, "btuart")) { 1000 /* port is reserved for kgdb */ 1001 } else 1002 #endif 1003 if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_BTUART_BASE, 1004 comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) { 1005 ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN, 1006 ckenreg|CKEN_BTUART); 1007 return; 1008 } 1009 #endif /* BTUARTCONSOLE */ 1010 1011 1012 #endif /* NCOM */ 1013 1014 } 1015 1016 #ifdef KGDB 1017 void 1018 kgdb_port_init(void) 1019 { 1020 #if (NCOM > 0) && defined(COM_PXA2X0) 1021 paddr_t paddr = 0; 1022 uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN); 1023 1024 if (0 == strcmp(kgdb_devname, "ffuart")) { 1025 paddr = PXA2X0_FFUART_BASE; 1026 ckenreg |= CKEN_FFUART; 1027 } 1028 else if (0 == strcmp(kgdb_devname, "btuart")) { 1029 paddr = PXA2X0_BTUART_BASE; 1030 ckenreg |= CKEN_BTUART; 1031 } 1032 1033 if (paddr && 1034 0 == com_kgdb_attach(&pxa2x0_a4x_bs_tag, paddr, 1035 kgdb_rate, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comkgdbmode)) { 1036 1037 ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN, ckenreg); 1038 1039 } 1040 1041 #endif 1042 } 1043 #endif 1044 1045