1 /* $NetBSD: g42xxeb_machdep.c,v 1.28 2013/08/18 15:58:20 matt Exp $ */ 2 3 /* 4 * Copyright (c) 2002, 2003, 2004, 2005 Genetec Corporation. 5 * All rights reserved. 6 * 7 * Written by Hiroyuki Bessho for Genetec Corporation. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. The name of Genetec Corporation may not be used to endorse or 18 * promote products derived from this software without specific prior 19 * written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Machine dependent functions for kernel setup for Genetec G4250EBX 34 * evaluation board. 35 * 36 * Based on iq80310_machhdep.c 37 */ 38 /* 39 * Copyright (c) 2001 Wasabi Systems, Inc. 40 * All rights reserved. 41 * 42 * Written by Jason R. Thorpe for Wasabi Systems, Inc. 43 * 44 * Redistribution and use in source and binary forms, with or without 45 * modification, are permitted provided that the following conditions 46 * are met: 47 * 1. Redistributions of source code must retain the above copyright 48 * notice, this list of conditions and the following disclaimer. 49 * 2. Redistributions in binary form must reproduce the above copyright 50 * notice, this list of conditions and the following disclaimer in the 51 * documentation and/or other materials provided with the distribution. 52 * 3. All advertising materials mentioning features or use of this software 53 * must display the following acknowledgement: 54 * This product includes software developed for the NetBSD Project by 55 * Wasabi Systems, Inc. 56 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 57 * or promote products derived from this software without specific prior 58 * written permission. 59 * 60 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 61 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 62 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 63 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 64 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 65 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 66 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 67 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 68 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 69 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 70 * POSSIBILITY OF SUCH DAMAGE. 71 */ 72 73 /* 74 * Copyright (c) 1997,1998 Mark Brinicombe. 75 * Copyright (c) 1997,1998 Causality Limited. 76 * All rights reserved. 77 * 78 * Redistribution and use in source and binary forms, with or without 79 * modification, are permitted provided that the following conditions 80 * are met: 81 * 1. Redistributions of source code must retain the above copyright 82 * notice, this list of conditions and the following disclaimer. 83 * 2. Redistributions in binary form must reproduce the above copyright 84 * notice, this list of conditions and the following disclaimer in the 85 * documentation and/or other materials provided with the distribution. 86 * 3. All advertising materials mentioning features or use of this software 87 * must display the following acknowledgement: 88 * This product includes software developed by Mark Brinicombe 89 * for the NetBSD Project. 90 * 4. The name of the company nor the name of the author may be used to 91 * endorse or promote products derived from this software without specific 92 * prior written permission. 93 * 94 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 95 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 96 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 97 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 98 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 99 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 100 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 101 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 102 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 103 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 104 * SUCH DAMAGE. 105 * 106 * Machine dependent functions for kernel setup for Intel IQ80310 evaluation 107 * boards using RedBoot firmware. 108 */ 109 110 #include "opt_ddb.h" 111 #include "opt_kgdb.h" 112 #include "opt_pmap_debug.h" 113 #include "opt_md.h" 114 #include "opt_com.h" 115 #include "lcd.h" 116 117 #include <sys/param.h> 118 #include <sys/device.h> 119 #include <sys/systm.h> 120 #include <sys/kernel.h> 121 #include <sys/exec.h> 122 #include <sys/proc.h> 123 #include <sys/msgbuf.h> 124 #include <sys/reboot.h> 125 #include <sys/termios.h> 126 #include <sys/ksyms.h> 127 #include <sys/bus.h> 128 #include <sys/cpu.h> 129 130 #include <uvm/uvm_extern.h> 131 132 #include <sys/conf.h> 133 #include <dev/cons.h> 134 #include <dev/md.h> 135 136 #include <machine/db_machdep.h> 137 #include <ddb/db_sym.h> 138 #include <ddb/db_extern.h> 139 #ifdef KGDB 140 #include <sys/kgdb.h> 141 #endif 142 143 #include <machine/bootconfig.h> 144 #include <arm/locore.h> 145 #include <arm/undefined.h> 146 147 #include <arm/arm32/machdep.h> 148 149 #include <arm/xscale/pxa2x0reg.h> 150 #include <arm/xscale/pxa2x0var.h> 151 #include <arm/xscale/pxa2x0_gpio.h> 152 #include <evbarm/g42xxeb/g42xxeb_reg.h> 153 #include <evbarm/g42xxeb/g42xxeb_var.h> 154 155 /* Kernel text starts 2MB in from the bottom of the kernel address space. */ 156 #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000) 157 #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000) 158 159 /* 160 * The range 0xc1000000 - 0xccffffff is available for kernel VM space 161 * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff 162 */ 163 #define KERNEL_VM_SIZE 0x0C000000 164 165 BootConfig bootconfig; /* Boot config storage */ 166 char *boot_args = NULL; 167 char *boot_file = NULL; 168 169 vm_offset_t physical_start; 170 vm_offset_t physical_freestart; 171 vm_offset_t physical_freeend; 172 vm_offset_t physical_end; 173 u_int free_pages; 174 175 /*int debug_flags;*/ 176 #ifndef PMAP_STATIC_L1S 177 int max_processes = 64; /* Default number */ 178 #endif /* !PMAP_STATIC_L1S */ 179 180 /* Physical and virtual addresses for some global pages */ 181 pv_addr_t minidataclean; 182 183 vm_offset_t msgbufphys; 184 185 #ifdef PMAP_DEBUG 186 extern int pmap_debug_level; 187 #endif 188 189 #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */ 190 #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */ 191 #define KERNEL_PT_KERNEL_NUM 4 192 #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM) 193 /* Page tables for mapping kernel VM */ 194 #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */ 195 #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM) 196 197 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS]; 198 199 /* Prototypes */ 200 201 #if 0 202 void process_kernel_args(char *); 203 #endif 204 205 void consinit(void); 206 void kgdb_port_init(void); 207 void change_clock(uint32_t v); 208 209 bs_protos(bs_notimpl); 210 211 #include "com.h" 212 #if NCOM > 0 213 #include <dev/ic/comreg.h> 214 #include <dev/ic/comvar.h> 215 #endif 216 217 #ifndef CONSPEED 218 #define CONSPEED B115200 /* What RedBoot uses */ 219 #endif 220 #ifndef CONMODE 221 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ 222 #endif 223 224 int comcnspeed = CONSPEED; 225 int comcnmode = CONMODE; 226 227 static struct pxa2x0_gpioconf boarddep_gpioconf[] = { 228 { 44, GPIO_ALT_FN_1_IN }, /* BTCST */ 229 { 45, GPIO_ALT_FN_2_OUT }, /* BTRST */ 230 231 { -1 } 232 }; 233 static struct pxa2x0_gpioconf *g42xxeb_gpioconf[] = { 234 pxa25x_com_btuart_gpioconf, 235 pxa25x_com_ffuart_gpioconf, 236 #if 0 237 pxa25x_com_stuart_gpioconf, 238 pxa25x_pxaacu_gpioconf, 239 #endif 240 boarddep_gpioconf, 241 NULL 242 }; 243 244 /* 245 * void cpu_reboot(int howto, char *bootstr) 246 * 247 * Reboots the system 248 * 249 * Deal with any syncing, unmounting, dumping and shutdown hooks, 250 * then reset the CPU. 251 */ 252 void 253 cpu_reboot(int howto, char *bootstr) 254 { 255 #ifdef DIAGNOSTIC 256 /* info */ 257 printf("boot: howto=%08x curproc=%p\n", howto, curproc); 258 #endif 259 260 /* 261 * If we are still cold then hit the air brakes 262 * and crash to earth fast 263 */ 264 if (cold) { 265 doshutdownhooks(); 266 pmf_system_shutdown(boothowto); 267 printf("The operating system has halted.\n"); 268 printf("Please press any key to reboot.\n\n"); 269 cngetc(); 270 printf("rebooting...\n"); 271 cpu_reset(); 272 /*NOTREACHED*/ 273 } 274 275 /* Disable console buffering */ 276 /* cnpollc(1);*/ 277 278 /* 279 * If RB_NOSYNC was not specified sync the discs. 280 * Note: Unless cold is set to 1 here, syslogd will die during the 281 * unmount. It looks like syslogd is getting woken up only to find 282 * that it cannot page part of the binary in as the filesystem has 283 * been unmounted. 284 */ 285 if (!(howto & RB_NOSYNC)) 286 bootsync(); 287 288 /* Say NO to interrupts */ 289 splhigh(); 290 291 /* Do a dump if requested. */ 292 if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) 293 dumpsys(); 294 295 /* Run any shutdown hooks */ 296 doshutdownhooks(); 297 298 pmf_system_shutdown(boothowto); 299 300 /* Make sure IRQ's are disabled */ 301 IRQdisable; 302 303 if (howto & RB_HALT) { 304 printf("The operating system has halted.\n"); 305 printf("Please press any key to reboot.\n\n"); 306 cngetc(); 307 } 308 309 printf("rebooting...\n"); 310 cpu_reset(); 311 /*NOTREACHED*/ 312 } 313 314 static inline 315 pd_entry_t * 316 read_ttb(void) 317 { 318 long ttb; 319 320 __asm volatile("mrc p15, 0, %0, c2, c0, 0" : "=r" (ttb)); 321 322 323 return (pd_entry_t *)(ttb & ~((1<<14)-1)); 324 } 325 326 /* 327 * Static device mappings. These peripheral registers are mapped at 328 * fixed virtual addresses very early in initarm() so that we can use 329 * them while booting the kernel, and stay at the same address 330 * throughout whole kernel's life time. 331 * 332 * We use this table twice; once with bootstrap page table, and once 333 * with kernel's page table which we build up in initarm(). 334 * 335 * Since we map these registers into the bootstrap page table using 336 * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map 337 * registers segment-aligned and segment-rounded in order to avoid 338 * using the 2nd page tables. 339 */ 340 341 #define _A(a) ((a) & ~L1_S_OFFSET) 342 #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1)) 343 344 static const struct pmap_devmap g42xxeb_devmap[] = { 345 { 346 G42XXEB_PLDREG_VBASE, 347 _A(G42XXEB_PLDREG_BASE), 348 _S(G42XXEB_PLDREG_SIZE), 349 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 350 }, 351 { 352 G42XXEB_GPIO_VBASE, 353 _A(PXA2X0_GPIO_BASE), 354 _S(PXA250_GPIO_SIZE), 355 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 356 }, 357 { 358 G42XXEB_CLKMAN_VBASE, 359 _A(PXA2X0_CLKMAN_BASE), 360 _S(PXA2X0_CLKMAN_SIZE), 361 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 362 }, 363 { 364 G42XXEB_INTCTL_VBASE, 365 _A(PXA2X0_INTCTL_BASE), 366 _S(PXA2X0_INTCTL_SIZE), 367 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 368 }, 369 { 370 G42XXEB_FFUART_VBASE, 371 _A(PXA2X0_FFUART_BASE), 372 _S(4 * COM_NPORTS), 373 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 374 }, 375 { 376 G42XXEB_BTUART_VBASE, 377 _A(PXA2X0_BTUART_BASE), 378 _S(4 * COM_NPORTS), 379 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, 380 }, 381 {0, 0, 0, 0,} 382 }; 383 384 #undef _A 385 #undef _S 386 387 388 /* 389 * u_int initarm(...) 390 * 391 * Initial entry point on startup. This gets called before main() is 392 * entered. 393 * It should be responsible for setting up everything that must be 394 * in place when main is called. 395 * This includes 396 * Taking a copy of the boot configuration structure. 397 * Initialising the physical console so characters can be printed. 398 * Setting up page tables for the kernel 399 * Relocating the kernel to the bottom of physical memory 400 */ 401 u_int 402 initarm(void *arg) 403 { 404 extern vaddr_t xscale_cache_clean_addr; 405 int loop; 406 int loop1; 407 u_int l1pagetable; 408 paddr_t memstart; 409 psize_t memsize; 410 int led_data = 1; 411 #ifdef DIAGNOSTIC 412 extern vsize_t xscale_minidata_clean_size; /* used in KASSERT */ 413 #endif 414 415 #define LEDSTEP_P() ioreg8_write(G42XXEB_PLDREG_BASE+G42XXEB_LED, led_data++) 416 #define LEDSTEP() pldreg8_write(G42XXEB_LED, led_data++); 417 418 /* use physical address until pagetable is set */ 419 LEDSTEP_P(); 420 421 /* map some peripheral registers at static I/O area */ 422 pmap_devmap_bootstrap((vaddr_t)read_ttb(), g42xxeb_devmap); 423 424 LEDSTEP_P(); 425 426 /* start 32.768 kHz OSC */ 427 ioreg_write(G42XXEB_CLKMAN_VBASE + 0x08, 2); 428 /* Get ready for splfoo() */ 429 pxa2x0_intr_bootstrap(G42XXEB_INTCTL_VBASE); 430 431 LEDSTEP(); 432 433 /* 434 * Heads up ... Setup the CPU / MMU / TLB functions 435 */ 436 if (set_cpufuncs()) 437 panic("cpu not recognized!"); 438 439 LEDSTEP(); 440 441 /* 442 * Okay, RedBoot has provided us with the following memory map: 443 * 444 * Physical Address Range Description 445 * ----------------------- ---------------------------------- 446 * 0x00000000 - 0x01ffffff flash Memory (32MB) 447 * 0x04000000 - 0x05ffffff Application flash Memory (32MB) 448 * 0x08000000 - 0x080000ff I/O baseboard registers 449 * 0x0c000000 - 0x0c0fffff Ethernet Controller 450 * 0x14000000 - 0x17ffffff Expansion Card (64MB) 451 * 0x40000000 - 0x480fffff Processor Registers 452 * 0xa0000000 - 0xa3ffffff SDRAM Bank 0 (64MB) 453 * 454 * 455 * Virtual Address Range X C B Description 456 * ----------------------- - - - ---------------------------------- 457 * 0x00000000 - 0x00003fff N Y Y SDRAM 458 * 0x00004000 - 0x01ffffff N Y N ROM 459 * 0x08000000 - 0x080fffff N N N I/O baseboard registers 460 * 0x0a000000 - 0x0a0fffff N N N SRAM 461 * 0x40000000 - 0x480fffff N N N Processor Registers 462 * 0xa0000000 - 0xa000ffff N Y N RedBoot SDRAM 463 * 0xa0017000 - 0xa3ffffff Y Y Y SDRAM 464 * 0xc0000000 - 0xcfffffff Y Y Y Cache Flush Region 465 * (done by this routine) 466 * 0xfd000000 - 0xfd0000ff N N N I/O baseboard registers 467 * 0xfd100000 - 0xfd3fffff N N N Processor Registers. 468 * 0xfd400000 - 0xfd4fffff N N N FF-UART 469 * 0xfd500000 - 0xfd5fffff N N N BT-UART 470 * 471 * RedBoot's first level page table is at 0xa0004000. There 472 * are also 2 second-level tables at 0xa0008000 and 473 * 0xa0008400. We will continue to use them until we switch to 474 * our pagetable by cpu_setttb(). 475 */ 476 477 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); 478 479 LEDSTEP(); 480 481 /* setup GPIO for BTUART, in case bootloader doesn't take care of it */ 482 pxa2x0_gpio_bootstrap(G42XXEB_GPIO_VBASE); 483 pxa2x0_gpio_config(g42xxeb_gpioconf); 484 485 LEDSTEP(); 486 487 consinit(); 488 #ifdef KGDB 489 LEDSTEP(); 490 kgdb_port_init(); 491 #endif 492 493 LEDSTEP(); 494 495 /* Talk to the user */ 496 printf("\nNetBSD/evbarm (g42xxeb) booting ...\n"); 497 498 #if 0 499 /* 500 * Examine the boot args string for options we need to know about 501 * now. 502 */ 503 process_kernel_args((char *)nwbootinfo.bt_args); 504 #endif 505 506 memstart = 0xa0000000; 507 memsize = 0x04000000; /* 64MB */ 508 509 printf("initarm: Configuring system ...\n"); 510 511 /* Fake bootconfig structure for the benefit of pmap.c */ 512 /* XXX must make the memory description h/w independent */ 513 bootconfig.dramblocks = 1; 514 bootconfig.dram[0].address = memstart; 515 bootconfig.dram[0].pages = memsize / PAGE_SIZE; 516 517 /* 518 * Set up the variables that define the availablilty of 519 * physical memory. For now, we're going to set 520 * physical_freestart to 0xa0200000 (where the kernel 521 * was loaded), and allocate the memory we need downwards. 522 * If we get too close to the L1 table that we set up, we 523 * will panic. We will update physical_freestart and 524 * physical_freeend later to reflect what pmap_bootstrap() 525 * wants to see. 526 * 527 * XXX pmap_bootstrap() needs an enema. 528 */ 529 physical_start = bootconfig.dram[0].address; 530 physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE); 531 532 physical_freestart = 0xa0009000UL; 533 physical_freeend = 0xa0200000UL; 534 535 physmem = (physical_end - physical_start) / PAGE_SIZE; 536 537 #ifdef VERBOSE_INIT_ARM 538 /* Tell the user about the memory */ 539 printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem, 540 physical_start, physical_end - 1); 541 #endif 542 543 /* 544 * Okay, the kernel starts 2MB in from the bottom of physical 545 * memory. We are going to allocate our bootstrap pages downwards 546 * from there. 547 * 548 * We need to allocate some fixed page tables to get the kernel 549 * going. We allocate one page directory and a number of page 550 * tables and store the physical addresses in the kernel_pt_table 551 * array. 552 * 553 * The kernel page directory must be on a 16K boundary. The page 554 * tables must be on 4K bounaries. What we do is allocate the 555 * page directory on the first 16K boundary that we encounter, and 556 * the page tables on 4K boundaries otherwise. Since we allocate 557 * at least 3 L2 page tables, we are guaranteed to encounter at 558 * least one 16K aligned region. 559 */ 560 561 #ifdef VERBOSE_INIT_ARM 562 printf("Allocating page tables\n"); 563 #endif 564 565 free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; 566 567 #ifdef VERBOSE_INIT_ARM 568 printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n", 569 physical_freestart, free_pages, free_pages); 570 #endif 571 572 /* Define a macro to simplify memory allocation */ 573 #define valloc_pages(var, np) \ 574 alloc_pages((var).pv_pa, (np)); \ 575 (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start; 576 577 #define alloc_pages(var, np) \ 578 physical_freeend -= ((np) * PAGE_SIZE); \ 579 if (physical_freeend < physical_freestart) \ 580 panic("initarm: out of memory"); \ 581 (var) = physical_freeend; \ 582 free_pages -= (np); \ 583 memset((char *)(var), 0, ((np) * PAGE_SIZE)); 584 585 loop1 = 0; 586 for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { 587 /* Are we 16KB aligned for an L1 ? */ 588 if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0 589 && kernel_l1pt.pv_pa == 0) { 590 valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); 591 } else { 592 valloc_pages(kernel_pt_table[loop1], 593 L2_TABLE_SIZE / PAGE_SIZE); 594 ++loop1; 595 } 596 } 597 598 /* This should never be able to happen but better confirm that. */ 599 if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0) 600 panic("initarm: Failed to align the kernel page directory"); 601 602 LEDSTEP(); 603 604 /* 605 * Allocate a page for the system page mapped to V0x00000000 606 * This page will just contain the system vectors and can be 607 * shared by all processes. 608 */ 609 alloc_pages(systempage.pv_pa, 1); 610 611 /* Allocate stacks for all modes */ 612 valloc_pages(irqstack, IRQ_STACK_SIZE); 613 valloc_pages(abtstack, ABT_STACK_SIZE); 614 valloc_pages(undstack, UND_STACK_SIZE); 615 valloc_pages(kernelstack, UPAGES); 616 617 /* Allocate enough pages for cleaning the Mini-Data cache. */ 618 KASSERT(xscale_minidata_clean_size <= PAGE_SIZE); 619 valloc_pages(minidataclean, 1); 620 621 #ifdef VERBOSE_INIT_ARM 622 printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, 623 irqstack.pv_va); 624 printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, 625 abtstack.pv_va); 626 printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, 627 undstack.pv_va); 628 printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, 629 kernelstack.pv_va); 630 #endif 631 632 /* 633 * XXX Defer this to later so that we can reclaim the memory 634 * XXX used by the RedBoot page tables. 635 */ 636 alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); 637 638 /* 639 * Ok we have allocated physical pages for the primary kernel 640 * page tables 641 */ 642 643 #ifdef VERBOSE_INIT_ARM 644 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa); 645 #endif 646 647 /* 648 * Now we start construction of the L1 page table 649 * We start by mapping the L2 page tables into the L1. 650 * This means that we can replace L1 mappings later on if necessary 651 */ 652 l1pagetable = kernel_l1pt.pv_pa; 653 654 /* Map the L2 pages tables in the L1 page table */ 655 pmap_link_l2pt(l1pagetable, 0x00000000, 656 &kernel_pt_table[KERNEL_PT_SYS]); 657 for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) 658 pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000, 659 &kernel_pt_table[KERNEL_PT_KERNEL + loop]); 660 for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++) 661 pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, 662 &kernel_pt_table[KERNEL_PT_VMDATA + loop]); 663 664 /* update the top of the kernel VM */ 665 pmap_curmaxkvaddr = 666 KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); 667 668 #ifdef VERBOSE_INIT_ARM 669 printf("Mapping kernel\n"); 670 #endif 671 672 /* Now we fill in the L2 pagetable for the kernel static code/data */ 673 { 674 extern char etext[], _end[]; 675 size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE; 676 size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE; 677 u_int logical; 678 679 textsize = (textsize + PGOFSET) & ~PGOFSET; 680 totalsize = (totalsize + PGOFSET) & ~PGOFSET; 681 682 logical = 0x00200000; /* offset of kernel in RAM */ 683 684 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, 685 physical_start + logical, textsize, 686 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 687 logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, 688 physical_start + logical, totalsize - textsize, 689 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 690 } 691 692 #ifdef VERBOSE_INIT_ARM 693 printf("Constructing L2 page tables\n"); 694 #endif 695 696 /* Map the stack pages */ 697 pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, 698 IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 699 pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, 700 ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 701 pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, 702 UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 703 pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, 704 UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); 705 706 pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, 707 L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE); 708 709 for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { 710 pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, 711 kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, 712 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); 713 } 714 715 /* Map the Mini-Data cache clean area. */ 716 xscale_setup_minidata(l1pagetable, minidataclean.pv_va, 717 minidataclean.pv_pa); 718 719 /* Map the vector page. */ 720 #if 1 721 /* MULTI-ICE requires that page 0 is NC/NB so that it can download the 722 * cache-clean code there. */ 723 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, 724 VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE); 725 #else 726 pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, 727 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); 728 #endif 729 730 /* 731 * map integrated peripherals at same address in l1pagetable 732 * so that we can continue to use console. 733 */ 734 pmap_devmap_bootstrap(l1pagetable, g42xxeb_devmap); 735 736 /* 737 * Give the XScale global cache clean code an appropriately 738 * sized chunk of unmapped VA space starting at 0xff000000 739 * (our device mappings end before this address). 740 */ 741 xscale_cache_clean_addr = 0xff000000U; 742 743 /* 744 * Now we have the real page tables in place so we can switch to them. 745 * Once this is done we will be running with the REAL kernel page 746 * tables. 747 */ 748 749 /* 750 * Update the physical_freestart/physical_freeend/free_pages 751 * variables. 752 */ 753 { 754 extern char _end[]; 755 756 physical_freestart = physical_start + 757 (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) - 758 KERNEL_BASE); 759 physical_freeend = physical_end; 760 free_pages = 761 (physical_freeend - physical_freestart) / PAGE_SIZE; 762 } 763 764 /* Switch tables */ 765 #ifdef VERBOSE_INIT_ARM 766 printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n", 767 physical_freestart, free_pages, free_pages); 768 printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa); 769 #endif 770 LEDSTEP(); 771 772 cpu_setttb(kernel_l1pt.pv_pa, true); 773 cpu_tlb_flushID(); 774 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); 775 LEDSTEP(); 776 777 /* 778 * Moved from cpu_startup() as data_abort_handler() references 779 * this during uvm init 780 */ 781 uvm_lwp_setuarea(&lwp0, kernelstack.pv_va); 782 783 #ifdef VERBOSE_INIT_ARM 784 printf("bootstrap done.\n"); 785 #endif 786 787 arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL); 788 789 /* 790 * Pages were allocated during the secondary bootstrap for the 791 * stacks for different CPU modes. 792 * We must now set the r13 registers in the different CPU modes to 793 * point to these stacks. 794 * Since the ARM stacks use STMFD etc. we must set r13 to the top end 795 * of the stack memory. 796 */ 797 #ifdef VERBOSE_INIT_ARM 798 printf("init subsystems: stacks "); 799 #endif 800 801 set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); 802 set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); 803 set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); 804 805 /* 806 * Well we should set a data abort handler. 807 * Once things get going this will change as we will need a proper 808 * handler. 809 * Until then we will use a handler that just panics but tells us 810 * why. 811 * Initialisation of the vectors will just panic on a data abort. 812 * This just fills in a slighly better one. 813 */ 814 #ifdef VERBOSE_INIT_ARM 815 printf("vectors "); 816 #endif 817 data_abort_handler_address = (u_int)data_abort_handler; 818 prefetch_abort_handler_address = (u_int)prefetch_abort_handler; 819 undefined_handler_address = (u_int)undefinedinstruction_bounce; 820 821 /* Initialise the undefined instruction handlers */ 822 #ifdef VERBOSE_INIT_ARM 823 printf("undefined "); 824 #endif 825 undefined_init(); 826 827 /* Load memory into UVM. */ 828 #ifdef VERBOSE_INIT_ARM 829 printf("page "); 830 #endif 831 uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */ 832 uvm_page_physload(atop(physical_freestart), atop(physical_freeend), 833 atop(physical_freestart), atop(physical_freeend), 834 VM_FREELIST_DEFAULT); 835 836 /* Boot strap pmap telling it where the kernel page table is */ 837 #ifdef VERBOSE_INIT_ARM 838 printf("pmap "); 839 #endif 840 LEDSTEP(); 841 pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); 842 LEDSTEP(); 843 844 #ifdef __HAVE_MEMORY_DISK__ 845 md_root_setconf(memory_disk, sizeof memory_disk); 846 #endif 847 848 #ifdef BOOTHOWTO 849 boothowto |= BOOTHOWTO; 850 #endif 851 852 { 853 uint8_t sw = pldreg8_read(G42XXEB_DIPSW); 854 855 if (0 == (sw & (1<<0))) 856 boothowto ^= RB_KDB; 857 if (0 == (sw & (1<<1))) 858 boothowto ^= RB_SINGLE; 859 } 860 861 LEDSTEP(); 862 863 #ifdef KGDB 864 if (boothowto & RB_KDB) { 865 kgdb_debug_init = 1; 866 kgdb_connect(1); 867 } 868 #endif 869 870 #ifdef DDB 871 db_machine_init(); 872 873 /* Firmware doesn't load symbols. */ 874 ddb_init(0, NULL, NULL); 875 876 if (boothowto & RB_KDB) 877 Debugger(); 878 #endif 879 880 pldreg8_write(G42XXEB_LED, 0); 881 882 /* We return the new stack pointer address */ 883 return(kernelstack.pv_va + USPACE_SVC_STACK_TOP); 884 } 885 886 #if 0 887 void 888 process_kernel_args(char *args) 889 { 890 891 boothowto = 0; 892 893 /* Make a local copy of the bootargs */ 894 strncpy(bootargs, args, MAX_BOOT_STRING); 895 896 args = bootargs; 897 boot_file = bootargs; 898 899 /* Skip the kernel image filename */ 900 while (*args != ' ' && *args != 0) 901 ++args; 902 903 if (*args != 0) 904 *args++ = 0; 905 906 while (*args == ' ') 907 ++args; 908 909 boot_args = args; 910 911 printf("bootfile: %s\n", boot_file); 912 printf("bootargs: %s\n", boot_args); 913 914 parse_mi_bootargs(boot_args); 915 } 916 #endif 917 918 #ifdef KGDB 919 #ifndef KGDB_DEVNAME 920 #define KGDB_DEVNAME "ffuart" 921 #endif 922 const char kgdb_devname[] = KGDB_DEVNAME; 923 924 #if (NCOM > 0) 925 #ifndef KGDB_DEVMODE 926 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ 927 #endif 928 int comkgdbmode = KGDB_DEVMODE; 929 #endif /* NCOM */ 930 931 #endif /* KGDB */ 932 933 934 void 935 consinit(void) 936 { 937 static int consinit_called = 0; 938 uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN); 939 #if 0 940 char *console = CONSDEVNAME; 941 #endif 942 943 if (consinit_called != 0) 944 return; 945 946 consinit_called = 1; 947 948 #if NCOM > 0 949 950 #ifdef FFUARTCONSOLE 951 #ifdef KGDB 952 if (0 == strcmp(kgdb_devname, "ffuart")){ 953 /* port is reserved for kgdb */ 954 } else 955 #endif 956 if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_FFUART_BASE, 957 comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) { 958 #if 0 959 pxa2x0_clkman_config(CKEN_FFUART, 1); 960 #else 961 ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN, 962 ckenreg|CKEN_FFUART); 963 #endif 964 965 return; 966 } 967 #endif /* FFUARTCONSOLE */ 968 969 #ifdef BTUARTCONSOLE 970 #ifdef KGDB 971 if (0 == strcmp(kgdb_devname, "btuart")) { 972 /* port is reserved for kgdb */ 973 } else 974 #endif 975 if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_BTUART_BASE, 976 comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) { 977 ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN, 978 ckenreg|CKEN_BTUART); 979 return; 980 } 981 #endif /* BTUARTCONSOLE */ 982 983 984 #endif /* NCOM */ 985 986 } 987 988 #ifdef KGDB 989 void 990 kgdb_port_init(void) 991 { 992 #if (NCOM > 0) && defined(COM_PXA2X0) 993 paddr_t paddr = 0; 994 uint32_t ckenreg = ioreg_read(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN); 995 996 if (0 == strcmp(kgdb_devname, "ffuart")) { 997 paddr = PXA2X0_FFUART_BASE; 998 ckenreg |= CKEN_FFUART; 999 } 1000 else if (0 == strcmp(kgdb_devname, "btuart")) { 1001 paddr = PXA2X0_BTUART_BASE; 1002 ckenreg |= CKEN_BTUART; 1003 } 1004 1005 if (paddr && 1006 0 == com_kgdb_attach(&pxa2x0_a4x_bs_tag, paddr, 1007 kgdb_rate, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comkgdbmode)) { 1008 1009 ioreg_write(G42XXEB_CLKMAN_VBASE+CLKMAN_CKEN, ckenreg); 1010 1011 } 1012 1013 #endif 1014 } 1015 #endif 1016 1017