xref: /netbsd-src/sys/arch/evbarm/dev/plcom.c (revision d710132b4b8ce7f7cccaaf660cb16aa16b4077a0)
1 /*	$NetBSD: plcom.c,v 1.7 2003/06/23 11:01:13 martin Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 ARM Ltd
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the company may not be used to endorse or promote
16  *    products derived from this software without specific prior written
17  *    permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
23  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
32  * All rights reserved.
33  *
34  * This code is derived from software contributed to The NetBSD Foundation
35  * by Charles M. Hannum.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. All advertising materials mentioning features or use of this software
46  *    must display the following acknowledgement:
47  *        This product includes software developed by the NetBSD
48  *        Foundation, Inc. and its contributors.
49  * 4. Neither the name of The NetBSD Foundation nor the names of its
50  *    contributors may be used to endorse or promote products derived
51  *    from this software without specific prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
54  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
57  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63  * POSSIBILITY OF SUCH DAMAGE.
64  */
65 
66 /*
67  * Copyright (c) 1991 The Regents of the University of California.
68  * All rights reserved.
69  *
70  * Redistribution and use in source and binary forms, with or without
71  * modification, are permitted provided that the following conditions
72  * are met:
73  * 1. Redistributions of source code must retain the above copyright
74  *    notice, this list of conditions and the following disclaimer.
75  * 2. Redistributions in binary form must reproduce the above copyright
76  *    notice, this list of conditions and the following disclaimer in the
77  *    documentation and/or other materials provided with the distribution.
78  * 3. All advertising materials mentioning features or use of this software
79  *    must display the following acknowledgement:
80  *	This product includes software developed by the University of
81  *	California, Berkeley and its contributors.
82  * 4. Neither the name of the University nor the names of its contributors
83  *    may be used to endorse or promote products derived from this software
84  *    without specific prior written permission.
85  *
86  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
87  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
88  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
89  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
90  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
91  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
92  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
93  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
94  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
95  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
96  * SUCH DAMAGE.
97  *
98  *	@(#)com.c	7.5 (Berkeley) 5/16/91
99  */
100 
101 /*
102  * COM driver for the Prime Cell PL010 UART, which is similar to the 16C550,
103  * but has a completely different programmer's model.
104  * Derived from the NS16550AF com driver.
105  */
106 
107 #include "opt_plcom.h"
108 #include "opt_ddb.h"
109 #include "opt_kgdb.h"
110 #include "opt_lockdebug.h"
111 #include "opt_multiprocessor.h"
112 
113 #include "rnd.h"
114 #if NRND > 0 && defined(RND_COM)
115 #include <sys/rnd.h>
116 #endif
117 
118 /*
119  * Override cnmagic(9) macro before including <sys/systm.h>.
120  * We need to know if cn_check_magic triggered debugger, so set a flag.
121  * Callers of cn_check_magic must declare int cn_trapped = 0;
122  * XXX: this is *ugly*!
123  */
124 #define cn_trap()				\
125 	do {					\
126 		console_debugger();		\
127 		cn_trapped = 1;			\
128 	} while (/* CONSTCOND */ 0)
129 
130 #include <sys/param.h>
131 #include <sys/systm.h>
132 #include <sys/ioctl.h>
133 #include <sys/select.h>
134 #include <sys/tty.h>
135 #include <sys/proc.h>
136 #include <sys/user.h>
137 #include <sys/conf.h>
138 #include <sys/file.h>
139 #include <sys/uio.h>
140 #include <sys/kernel.h>
141 #include <sys/syslog.h>
142 #include <sys/types.h>
143 #include <sys/device.h>
144 #include <sys/malloc.h>
145 #include <sys/timepps.h>
146 #include <sys/vnode.h>
147 
148 #include <machine/intr.h>
149 #include <machine/bus.h>
150 
151 #include <evbarm/dev/plcomreg.h>
152 #include <evbarm/dev/plcomvar.h>
153 
154 #include <dev/cons.h>
155 
156 static void plcom_enable_debugport (struct plcom_softc *);
157 
158 void	plcom_config	(struct plcom_softc *);
159 void	plcom_shutdown	(struct plcom_softc *);
160 int	plcomspeed	(long, long);
161 static	u_char	cflag2lcr (tcflag_t);
162 int	plcomparam	(struct tty *, struct termios *);
163 void	plcomstart	(struct tty *);
164 int	plcomhwiflow	(struct tty *, int);
165 
166 void	plcom_loadchannelregs (struct plcom_softc *);
167 void	plcom_hwiflow	(struct plcom_softc *);
168 void	plcom_break	(struct plcom_softc *, int);
169 void	plcom_modem	(struct plcom_softc *, int);
170 void	tiocm_to_plcom	(struct plcom_softc *, u_long, int);
171 int	plcom_to_tiocm	(struct plcom_softc *);
172 void	plcom_iflush	(struct plcom_softc *);
173 
174 int	plcom_common_getc (dev_t, bus_space_tag_t, bus_space_handle_t);
175 void	plcom_common_putc (dev_t, bus_space_tag_t, bus_space_handle_t, int);
176 
177 int	plcominit	(bus_space_tag_t, bus_addr_t, int, int, tcflag_t,
178 			    bus_space_handle_t *);
179 
180 dev_type_open(plcomopen);
181 dev_type_close(plcomclose);
182 dev_type_read(plcomread);
183 dev_type_write(plcomwrite);
184 dev_type_ioctl(plcomioctl);
185 dev_type_stop(plcomstop);
186 dev_type_tty(plcomtty);
187 dev_type_poll(plcompoll);
188 
189 int	plcomcngetc	(dev_t);
190 void	plcomcnputc	(dev_t, int);
191 void	plcomcnpollc	(dev_t, int);
192 
193 #define	integrate	static inline
194 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
195 void 	plcomsoft	(void *);
196 #else
197 #ifndef __NO_SOFT_SERIAL_INTERRUPT
198 void 	plcomsoft	(void);
199 #else
200 void 	plcomsoft	(void *);
201 struct callout plcomsoft_callout = CALLOUT_INITIALIZER;
202 #endif
203 #endif
204 integrate void plcom_rxsoft	(struct plcom_softc *, struct tty *);
205 integrate void plcom_txsoft	(struct plcom_softc *, struct tty *);
206 integrate void plcom_stsoft	(struct plcom_softc *, struct tty *);
207 integrate void plcom_schedrx	(struct plcom_softc *);
208 void	plcomdiag		(void *);
209 
210 extern struct cfdriver plcom_cd;
211 
212 const struct cdevsw plcom_cdevsw = {
213 	plcomopen, plcomclose, plcomread, plcomwrite, plcomioctl,
214 	plcomstop, plcomtty, plcompoll, nommap, ttykqfilter, D_TTY
215 };
216 
217 /*
218  * Make this an option variable one can patch.
219  * But be warned:  this must be a power of 2!
220  */
221 u_int plcom_rbuf_size = PLCOM_RING_SIZE;
222 
223 /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */
224 u_int plcom_rbuf_hiwat = (PLCOM_RING_SIZE * 1) / 4;
225 u_int plcom_rbuf_lowat = (PLCOM_RING_SIZE * 3) / 4;
226 
227 static int	plcomconsunit = -1;
228 static bus_space_tag_t plcomconstag;
229 static bus_space_handle_t plcomconsioh;
230 static int	plcomconsattached;
231 static int plcomconsrate;
232 static tcflag_t plcomconscflag;
233 static struct cnm_state plcom_cnm_state;
234 
235 static int ppscap =
236 	PPS_TSFMT_TSPEC |
237 	PPS_CAPTUREASSERT |
238 	PPS_CAPTURECLEAR |
239 #ifdef  PPS_SYNC
240 	PPS_HARDPPSONASSERT | PPS_HARDPPSONCLEAR |
241 #endif	/* PPS_SYNC */
242 	PPS_OFFSETASSERT | PPS_OFFSETCLEAR;
243 
244 #ifndef __HAVE_GENERIC_SOFT_INTERRUPTS
245 #ifdef __NO_SOFT_SERIAL_INTERRUPT
246 volatile int	plcom_softintr_scheduled;
247 #endif
248 #endif
249 
250 #ifdef KGDB
251 #include <sys/kgdb.h>
252 
253 static int plcom_kgdb_unit;
254 static bus_space_tag_t plcom_kgdb_iot;
255 static bus_space_handle_t plcom_kgdb_ioh;
256 static int plcom_kgdb_attached;
257 
258 int	plcom_kgdb_getc (void *);
259 void	plcom_kgdb_putc (void *, int);
260 #endif /* KGDB */
261 
262 #define	PLCOMUNIT_MASK	0x7ffff
263 #define	PLCOMDIALOUT_MASK	0x80000
264 
265 #define	PLCOMUNIT(x)	(minor(x) & PLCOMUNIT_MASK)
266 #define	PLCOMDIALOUT(x)	(minor(x) & PLCOMDIALOUT_MASK)
267 
268 #define	PLCOM_ISALIVE(sc)	((sc)->enabled != 0 && \
269 			 ISSET((sc)->sc_dev.dv_flags, DVF_ACTIVE))
270 
271 #define	BR	BUS_SPACE_BARRIER_READ
272 #define	BW	BUS_SPACE_BARRIER_WRITE
273 #define PLCOM_BARRIER(t, h, f) bus_space_barrier((t), (h), 0, PLCOM_UART_SIZE, (f))
274 
275 #if (defined(MULTIPROCESSOR) || defined(LOCKDEBUG)) && defined(PLCOM_MPLOCK)
276 
277 #define PLCOM_LOCK(sc) simple_lock(&(sc)->sc_lock)
278 #define PLCOM_UNLOCK(sc) simple_unlock(&(sc)->sc_lock)
279 
280 #else
281 
282 #define PLCOM_LOCK(sc)
283 #define PLCOM_UNLOCK(sc)
284 
285 #endif
286 
287 int
288 plcomspeed(long speed, long frequency)
289 {
290 #define	divrnd(n, q)	(((n)*2/(q)+1)/2)	/* divide and round off */
291 
292 	int x, err;
293 
294 #if 0
295 	if (speed == 0)
296 		return 0;
297 #endif
298 	if (speed <= 0)
299 		return -1;
300 	x = divrnd(frequency / 16, speed);
301 	if (x <= 0)
302 		return -1;
303 	err = divrnd(((quad_t)frequency) * 1000 / 16, speed * x) - 1000;
304 	if (err < 0)
305 		err = -err;
306 	if (err > PLCOM_TOLERANCE)
307 		return -1;
308 	return x;
309 
310 #undef	divrnd
311 }
312 
313 #ifdef PLCOM_DEBUG
314 int	plcom_debug = 0;
315 
316 void plcomstatus (struct plcom_softc *, char *);
317 void
318 plcomstatus(struct plcom_softc *sc, char *str)
319 {
320 	struct tty *tp = sc->sc_tty;
321 
322 	printf("%s: %s %sclocal  %sdcd %sts_carr_on %sdtr %stx_stopped\n",
323 	    sc->sc_dev.dv_xname, str,
324 	    ISSET(tp->t_cflag, CLOCAL) ? "+" : "-",
325 	    ISSET(sc->sc_msr, MSR_DCD) ? "+" : "-",
326 	    ISSET(tp->t_state, TS_CARR_ON) ? "+" : "-",
327 	    ISSET(sc->sc_mcr, MCR_DTR) ? "+" : "-",
328 	    sc->sc_tx_stopped ? "+" : "-");
329 
330 	printf("%s: %s %scrtscts %scts %sts_ttstop  %srts %xrx_flags\n",
331 	    sc->sc_dev.dv_xname, str,
332 	    ISSET(tp->t_cflag, CRTSCTS) ? "+" : "-",
333 	    ISSET(sc->sc_msr, MSR_CTS) ? "+" : "-",
334 	    ISSET(tp->t_state, TS_TTSTOP) ? "+" : "-",
335 	    ISSET(sc->sc_mcr, MCR_RTS) ? "+" : "-",
336 	    sc->sc_rx_flags);
337 }
338 #endif
339 
340 int
341 plcomprobe1(bus_space_tag_t iot, bus_space_handle_t ioh)
342 {
343 	int data;
344 
345 	/* Disable the UART.  */
346 	bus_space_write_1(iot, ioh, plcom_cr, 0);
347 	/* Make sure the FIFO is off.  */
348 	bus_space_write_1(iot, ioh, plcom_lcr, LCR_8BITS);
349 	/* Disable interrupts.  */
350 	bus_space_write_1(iot, ioh, plcom_iir, 0);
351 
352 	/* Make sure we swallow anything in the receiving register.  */
353 	data = bus_space_read_1(iot, ioh, plcom_dr);
354 
355 	if (bus_space_read_1(iot, ioh, plcom_lcr) != LCR_8BITS)
356 		return 0;
357 
358 	data = bus_space_read_1(iot, ioh, plcom_fr) & (FR_RXFF | FR_RXFE);
359 
360 	if (data != FR_RXFE)
361 		return 0;
362 
363 	return 1;
364 }
365 
366 static void
367 plcom_enable_debugport(struct plcom_softc *sc)
368 {
369 	int s;
370 
371 	/* Turn on line break interrupt, set carrier. */
372 	s = splserial();
373 	PLCOM_LOCK(sc);
374 	sc->sc_cr = CR_RIE | CR_RTIE | CR_UARTEN;
375 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr);
376 	SET(sc->sc_mcr, MCR_DTR | MCR_RTS);
377 	sc->sc_set_mcr(sc->sc_set_mcr_arg, sc->sc_dev.dv_unit, sc->sc_mcr);
378 	PLCOM_UNLOCK(sc);
379 	splx(s);
380 }
381 
382 void
383 plcom_attach_subr(struct plcom_softc *sc)
384 {
385 	int unit = sc->sc_iounit;
386 	bus_space_tag_t iot = sc->sc_iot;
387 	bus_space_handle_t ioh = sc->sc_ioh;
388 	struct tty *tp;
389 
390 	callout_init(&sc->sc_diag_callout);
391 #if (defined(MULTIPROCESSOR) || defined(LOCKDEBUG)) && defined(PLCOM_MPLOCK)
392 	simple_lock_init(&sc->sc_lock);
393 #endif
394 
395 	/* Disable interrupts before configuring the device. */
396 	sc->sc_cr = 0;
397 
398 	if (plcomconstag && unit == plcomconsunit) {
399 		plcomconsattached = 1;
400 
401 		plcomconstag = iot;
402 		plcomconsioh = ioh;
403 
404 		/* Make sure the console is always "hardwired". */
405 		delay(1000);			/* wait for output to finish */
406 		SET(sc->sc_hwflags, PLCOM_HW_CONSOLE);
407 		SET(sc->sc_swflags, TIOCFLAG_SOFTCAR);
408 		/* Must re-enable the console immediately, or we will
409 		   hang when trying to print.  */
410 		sc->sc_cr = CR_UARTEN;
411 	}
412 
413 	bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr);
414 
415 	/* The PL010 has a 16-byte fifo, but the tx interrupt triggers when
416 	   there is space for 8 more bytes.  */
417 	sc->sc_fifolen = 8;
418 	printf("\n");
419 
420 	if (ISSET(sc->sc_hwflags, PLCOM_HW_TXFIFO_DISABLE)) {
421 		sc->sc_fifolen = 1;
422 		printf("%s: txfifo disabled\n", sc->sc_dev.dv_xname);
423 	}
424 
425 	if (sc->sc_fifolen > 1)
426 		SET(sc->sc_hwflags, PLCOM_HW_FIFO);
427 
428 	tp = ttymalloc();
429 	tp->t_oproc = plcomstart;
430 	tp->t_param = plcomparam;
431 	tp->t_hwiflow = plcomhwiflow;
432 
433 	sc->sc_tty = tp;
434 	sc->sc_rbuf = malloc(plcom_rbuf_size << 1, M_DEVBUF, M_NOWAIT);
435 	sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf;
436 	sc->sc_rbavail = plcom_rbuf_size;
437 	if (sc->sc_rbuf == NULL) {
438 		printf("%s: unable to allocate ring buffer\n",
439 		    sc->sc_dev.dv_xname);
440 		return;
441 	}
442 	sc->sc_ebuf = sc->sc_rbuf + (plcom_rbuf_size << 1);
443 
444 	tty_attach(tp);
445 
446 	if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
447 		int maj;
448 
449 		/* locate the major number */
450 		maj = cdevsw_lookup_major(&plcom_cdevsw);
451 
452 		cn_tab->cn_dev = makedev(maj, sc->sc_dev.dv_unit);
453 
454 		printf("%s: console\n", sc->sc_dev.dv_xname);
455 	}
456 
457 #ifdef KGDB
458 	/*
459 	 * Allow kgdb to "take over" this port.  If this is
460 	 * the kgdb device, it has exclusive use.
461 	 */
462 	if (iot == plcom_kgdb_iot && unit == plcom_kgdb_unit) {
463 		plcom_kgdb_attached = 1;
464 
465 		SET(sc->sc_hwflags, PLCOM_HW_KGDB);
466 		printf("%s: kgdb\n", sc->sc_dev.dv_xname);
467 	}
468 #endif
469 
470 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
471 	sc->sc_si = softintr_establish(IPL_SOFTSERIAL, plcomsoft, sc);
472 #endif
473 
474 #if NRND > 0 && defined(RND_COM)
475 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
476 			  RND_TYPE_TTY, 0);
477 #endif
478 
479 	/* if there are no enable/disable functions, assume the device
480 	   is always enabled */
481 	if (!sc->enable)
482 		sc->enabled = 1;
483 
484 	plcom_config(sc);
485 
486 	SET(sc->sc_hwflags, PLCOM_HW_DEV_OK);
487 }
488 
489 void
490 plcom_config(struct plcom_softc *sc)
491 {
492 	bus_space_tag_t iot = sc->sc_iot;
493 	bus_space_handle_t ioh = sc->sc_ioh;
494 
495 	/* Disable interrupts before configuring the device. */
496 	sc->sc_cr = 0;
497 	bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr);
498 
499 	if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE|PLCOM_HW_KGDB))
500 		plcom_enable_debugport(sc);
501 }
502 
503 int
504 plcom_detach(self, flags)
505 	struct device *self;
506 	int flags;
507 {
508 	struct plcom_softc *sc = (struct plcom_softc *)self;
509 	int maj, mn;
510 
511 	/* locate the major number */
512 	maj = cdevsw_lookup_major(&plcom_cdevsw);
513 
514 	/* Nuke the vnodes for any open instances. */
515 	mn = self->dv_unit;
516 	vdevgone(maj, mn, mn, VCHR);
517 
518 	mn |= PLCOMDIALOUT_MASK;
519 	vdevgone(maj, mn, mn, VCHR);
520 
521 	/* Free the receive buffer. */
522 	free(sc->sc_rbuf, M_DEVBUF);
523 
524 	/* Detach and free the tty. */
525 	tty_detach(sc->sc_tty);
526 	ttyfree(sc->sc_tty);
527 
528 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
529 	/* Unhook the soft interrupt handler. */
530 	softintr_disestablish(sc->sc_si);
531 #endif
532 
533 #if NRND > 0 && defined(RND_COM)
534 	/* Unhook the entropy source. */
535 	rnd_detach_source(&sc->rnd_source);
536 #endif
537 
538 	return 0;
539 }
540 
541 int
542 plcom_activate(struct device *self, enum devact act)
543 {
544 	struct plcom_softc *sc = (struct plcom_softc *)self;
545 	int s, rv = 0;
546 
547 	s = splserial();
548 	PLCOM_LOCK(sc);
549 	switch (act) {
550 	case DVACT_ACTIVATE:
551 		rv = EOPNOTSUPP;
552 		break;
553 
554 	case DVACT_DEACTIVATE:
555 		if (sc->sc_hwflags & (PLCOM_HW_CONSOLE|PLCOM_HW_KGDB)) {
556 			rv = EBUSY;
557 			break;
558 		}
559 
560 		if (sc->disable != NULL && sc->enabled != 0) {
561 			(*sc->disable)(sc);
562 			sc->enabled = 0;
563 		}
564 		break;
565 	}
566 
567 	PLCOM_UNLOCK(sc);
568 	splx(s);
569 	return rv;
570 }
571 
572 void
573 plcom_shutdown(struct plcom_softc *sc)
574 {
575 	struct tty *tp = sc->sc_tty;
576 	int s;
577 
578 	s = splserial();
579 	PLCOM_LOCK(sc);
580 
581 	/* If we were asserting flow control, then deassert it. */
582 	SET(sc->sc_rx_flags, RX_IBUF_BLOCKED);
583 	plcom_hwiflow(sc);
584 
585 	/* Clear any break condition set with TIOCSBRK. */
586 	plcom_break(sc, 0);
587 
588 	/* Turn off PPS capture on last close. */
589 	sc->sc_ppsmask = 0;
590 	sc->ppsparam.mode = 0;
591 
592 	/*
593 	 * Hang up if necessary.  Wait a bit, so the other side has time to
594 	 * notice even if we immediately open the port again.
595 	 * Avoid tsleeping above splhigh().
596 	 */
597 	if (ISSET(tp->t_cflag, HUPCL)) {
598 		plcom_modem(sc, 0);
599 		PLCOM_UNLOCK(sc);
600 		splx(s);
601 		/* XXX tsleep will only timeout */
602 		(void) tsleep(sc, TTIPRI, ttclos, hz);
603 		s = splserial();
604 		PLCOM_LOCK(sc);
605 	}
606 
607 	/* Turn off interrupts. */
608 	if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE))
609 		/* interrupt on break */
610 		sc->sc_cr = CR_RIE | CR_RTIE | CR_UARTEN;
611 	else
612 		sc->sc_cr = 0;
613 	bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr);
614 
615 	if (sc->disable) {
616 #ifdef DIAGNOSTIC
617 		if (!sc->enabled)
618 			panic("plcom_shutdown: not enabled?");
619 #endif
620 		(*sc->disable)(sc);
621 		sc->enabled = 0;
622 	}
623 	PLCOM_UNLOCK(sc);
624 	splx(s);
625 }
626 
627 int
628 plcomopen(dev_t dev, int flag, int mode, struct proc *p)
629 {
630 	struct plcom_softc *sc;
631 	struct tty *tp;
632 	int s, s2;
633 	int error;
634 
635 	sc = device_lookup(&plcom_cd, PLCOMUNIT(dev));
636 	if (sc == NULL || !ISSET(sc->sc_hwflags, PLCOM_HW_DEV_OK) ||
637 		sc->sc_rbuf == NULL)
638 		return ENXIO;
639 
640 	if (ISSET(sc->sc_dev.dv_flags, DVF_ACTIVE) == 0)
641 		return ENXIO;
642 
643 #ifdef KGDB
644 	/*
645 	 * If this is the kgdb port, no other use is permitted.
646 	 */
647 	if (ISSET(sc->sc_hwflags, PLCOM_HW_KGDB))
648 		return EBUSY;
649 #endif
650 
651 	tp = sc->sc_tty;
652 
653 	if (ISSET(tp->t_state, TS_ISOPEN) &&
654 	    ISSET(tp->t_state, TS_XCLUDE) &&
655 		p->p_ucred->cr_uid != 0)
656 		return EBUSY;
657 
658 	s = spltty();
659 
660 	/*
661 	 * Do the following iff this is a first open.
662 	 */
663 	if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
664 		struct termios t;
665 
666 		tp->t_dev = dev;
667 
668 		s2 = splserial();
669 		PLCOM_LOCK(sc);
670 
671 		if (sc->enable) {
672 			if ((*sc->enable)(sc)) {
673 				PLCOM_UNLOCK(sc);
674 				splx(s2);
675 				splx(s);
676 				printf("%s: device enable failed\n",
677 				       sc->sc_dev.dv_xname);
678 				return EIO;
679 			}
680 			sc->enabled = 1;
681 			plcom_config(sc);
682 		}
683 
684 		/* Turn on interrupts. */
685 		/* IER_ERXRDY | IER_ERLS | IER_EMSC;  */
686 		sc->sc_cr = CR_RIE | CR_RTIE | CR_MSIE | CR_UARTEN;
687 		bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr);
688 
689 		/* Fetch the current modem control status, needed later. */
690 		sc->sc_msr = bus_space_read_1(sc->sc_iot, sc->sc_ioh, plcom_fr);
691 
692 		/* Clear PPS capture state on first open. */
693 		sc->sc_ppsmask = 0;
694 		sc->ppsparam.mode = 0;
695 
696 		PLCOM_UNLOCK(sc);
697 		splx(s2);
698 
699 		/*
700 		 * Initialize the termios status to the defaults.  Add in the
701 		 * sticky bits from TIOCSFLAGS.
702 		 */
703 		t.c_ispeed = 0;
704 		if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
705 			t.c_ospeed = plcomconsrate;
706 			t.c_cflag = plcomconscflag;
707 		} else {
708 			t.c_ospeed = TTYDEF_SPEED;
709 			t.c_cflag = TTYDEF_CFLAG;
710 		}
711 		if (ISSET(sc->sc_swflags, TIOCFLAG_CLOCAL))
712 			SET(t.c_cflag, CLOCAL);
713 		if (ISSET(sc->sc_swflags, TIOCFLAG_CRTSCTS))
714 			SET(t.c_cflag, CRTSCTS);
715 		if (ISSET(sc->sc_swflags, TIOCFLAG_MDMBUF))
716 			SET(t.c_cflag, MDMBUF);
717 		/* Make sure plcomparam() will do something. */
718 		tp->t_ospeed = 0;
719 		(void) plcomparam(tp, &t);
720 		tp->t_iflag = TTYDEF_IFLAG;
721 		tp->t_oflag = TTYDEF_OFLAG;
722 		tp->t_lflag = TTYDEF_LFLAG;
723 		ttychars(tp);
724 		ttsetwater(tp);
725 
726 		s2 = splserial();
727 		PLCOM_LOCK(sc);
728 
729 		/*
730 		 * Turn on DTR.  We must always do this, even if carrier is not
731 		 * present, because otherwise we'd have to use TIOCSDTR
732 		 * immediately after setting CLOCAL, which applications do not
733 		 * expect.  We always assert DTR while the device is open
734 		 * unless explicitly requested to deassert it.
735 		 */
736 		plcom_modem(sc, 1);
737 
738 		/* Clear the input ring, and unblock. */
739 		sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf;
740 		sc->sc_rbavail = plcom_rbuf_size;
741 		plcom_iflush(sc);
742 		CLR(sc->sc_rx_flags, RX_ANY_BLOCK);
743 		plcom_hwiflow(sc);
744 
745 #ifdef PLCOM_DEBUG
746 		if (plcom_debug)
747 			plcomstatus(sc, "plcomopen  ");
748 #endif
749 
750 		PLCOM_UNLOCK(sc);
751 		splx(s2);
752 	}
753 
754 	splx(s);
755 
756 	error = ttyopen(tp, PLCOMDIALOUT(dev), ISSET(flag, O_NONBLOCK));
757 	if (error)
758 		goto bad;
759 
760 	error = (*tp->t_linesw->l_open)(dev, tp);
761 	if (error)
762 		goto bad;
763 
764 	return 0;
765 
766 bad:
767 	if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
768 		/*
769 		 * We failed to open the device, and nobody else had it opened.
770 		 * Clean up the state as appropriate.
771 		 */
772 		plcom_shutdown(sc);
773 	}
774 
775 	return error;
776 }
777 
778 int
779 plcomclose(dev_t dev, int flag, int mode, struct proc *p)
780 {
781 	struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev));
782 	struct tty *tp = sc->sc_tty;
783 
784 	/* XXX This is for cons.c. */
785 	if (!ISSET(tp->t_state, TS_ISOPEN))
786 		return 0;
787 
788 	(*tp->t_linesw->l_close)(tp, flag);
789 	ttyclose(tp);
790 
791 	if (PLCOM_ISALIVE(sc) == 0)
792 		return 0;
793 
794 	if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
795 		/*
796 		 * Although we got a last close, the device may still be in
797 		 * use; e.g. if this was the dialout node, and there are still
798 		 * processes waiting for carrier on the non-dialout node.
799 		 */
800 		plcom_shutdown(sc);
801 	}
802 
803 	return 0;
804 }
805 
806 int
807 plcomread(dev_t dev, struct uio *uio, int flag)
808 {
809 	struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev));
810 	struct tty *tp = sc->sc_tty;
811 
812 	if (PLCOM_ISALIVE(sc) == 0)
813 		return EIO;
814 
815 	return (*tp->t_linesw->l_read)(tp, uio, flag);
816 }
817 
818 int
819 plcomwrite(dev_t dev, struct uio *uio, int flag)
820 {
821 	struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev));
822 	struct tty *tp = sc->sc_tty;
823 
824 	if (PLCOM_ISALIVE(sc) == 0)
825 		return EIO;
826 
827 	return (*tp->t_linesw->l_write)(tp, uio, flag);
828 }
829 
830 int
831 plcompoll(dev_t dev, int events, struct proc *p)
832 {
833 	struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev));
834 	struct tty *tp = sc->sc_tty;
835 
836 	if (PLCOM_ISALIVE(sc) == 0)
837 		return EIO;
838 
839 	return (*tp->t_linesw->l_poll)(tp, events, p);
840 }
841 
842 struct tty *
843 plcomtty(dev_t dev)
844 {
845 	struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev));
846 	struct tty *tp = sc->sc_tty;
847 
848 	return tp;
849 }
850 
851 int
852 plcomioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
853 {
854 	struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev));
855 	struct tty *tp = sc->sc_tty;
856 	int error;
857 	int s;
858 
859 	if (PLCOM_ISALIVE(sc) == 0)
860 		return EIO;
861 
862 	error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, p);
863 	if (error != EPASSTHROUGH)
864 		return error;
865 
866 	error = ttioctl(tp, cmd, data, flag, p);
867 	if (error != EPASSTHROUGH)
868 		return error;
869 
870 	error = 0;
871 
872 	s = splserial();
873 	PLCOM_LOCK(sc);
874 
875 	switch (cmd) {
876 	case TIOCSBRK:
877 		plcom_break(sc, 1);
878 		break;
879 
880 	case TIOCCBRK:
881 		plcom_break(sc, 0);
882 		break;
883 
884 	case TIOCSDTR:
885 		plcom_modem(sc, 1);
886 		break;
887 
888 	case TIOCCDTR:
889 		plcom_modem(sc, 0);
890 		break;
891 
892 	case TIOCGFLAGS:
893 		*(int *)data = sc->sc_swflags;
894 		break;
895 
896 	case TIOCSFLAGS:
897 		error = suser(p->p_ucred, &p->p_acflag);
898 		if (error)
899 			break;
900 		sc->sc_swflags = *(int *)data;
901 		break;
902 
903 	case TIOCMSET:
904 	case TIOCMBIS:
905 	case TIOCMBIC:
906 		tiocm_to_plcom(sc, cmd, *(int *)data);
907 		break;
908 
909 	case TIOCMGET:
910 		*(int *)data = plcom_to_tiocm(sc);
911 		break;
912 
913 	case PPS_IOC_CREATE:
914 		break;
915 
916 	case PPS_IOC_DESTROY:
917 		break;
918 
919 	case PPS_IOC_GETPARAMS: {
920 		pps_params_t *pp;
921 		pp = (pps_params_t *)data;
922 		*pp = sc->ppsparam;
923 		break;
924 	}
925 
926 	case PPS_IOC_SETPARAMS: {
927 	  	pps_params_t *pp;
928 		int mode;
929 		pp = (pps_params_t *)data;
930 		if (pp->mode & ~ppscap) {
931 			error = EINVAL;
932 			break;
933 		}
934 		sc->ppsparam = *pp;
935 	 	/*
936 		 * Compute msr masks from user-specified timestamp state.
937 		 */
938 		mode = sc->ppsparam.mode;
939 #ifdef	PPS_SYNC
940 		if (mode & PPS_HARDPPSONASSERT) {
941 			mode |= PPS_CAPTUREASSERT;
942 			/* XXX revoke any previous HARDPPS source */
943 		}
944 		if (mode & PPS_HARDPPSONCLEAR) {
945 			mode |= PPS_CAPTURECLEAR;
946 			/* XXX revoke any previous HARDPPS source */
947 		}
948 #endif	/* PPS_SYNC */
949 		switch (mode & PPS_CAPTUREBOTH) {
950 		case 0:
951 			sc->sc_ppsmask = 0;
952 			break;
953 
954 		case PPS_CAPTUREASSERT:
955 			sc->sc_ppsmask = MSR_DCD;
956 			sc->sc_ppsassert = MSR_DCD;
957 			sc->sc_ppsclear = -1;
958 			break;
959 
960 		case PPS_CAPTURECLEAR:
961 			sc->sc_ppsmask = MSR_DCD;
962 			sc->sc_ppsassert = -1;
963 			sc->sc_ppsclear = 0;
964 			break;
965 
966 		case PPS_CAPTUREBOTH:
967 			sc->sc_ppsmask = MSR_DCD;
968 			sc->sc_ppsassert = MSR_DCD;
969 			sc->sc_ppsclear = 0;
970 			break;
971 
972 		default:
973 			error = EINVAL;
974 			break;
975 		}
976 		break;
977 	}
978 
979 	case PPS_IOC_GETCAP:
980 		*(int*)data = ppscap;
981 		break;
982 
983 	case PPS_IOC_FETCH: {
984 		pps_info_t *pi;
985 		pi = (pps_info_t *)data;
986 		*pi = sc->ppsinfo;
987 		break;
988 	}
989 
990 	case TIOCDCDTIMESTAMP:	/* XXX old, overloaded  API used by xntpd v3 */
991 		/*
992 		 * Some GPS clocks models use the falling rather than
993 		 * rising edge as the on-the-second signal.
994 		 * The old API has no way to specify PPS polarity.
995 		 */
996 		sc->sc_ppsmask = MSR_DCD;
997 #ifndef PPS_TRAILING_EDGE
998 		sc->sc_ppsassert = MSR_DCD;
999 		sc->sc_ppsclear = -1;
1000 		TIMESPEC_TO_TIMEVAL((struct timeval *)data,
1001 		    &sc->ppsinfo.assert_timestamp);
1002 #else
1003 		sc->sc_ppsassert = -1
1004 		sc->sc_ppsclear = 0;
1005 		TIMESPEC_TO_TIMEVAL((struct timeval *)data,
1006 		    &sc->ppsinfo.clear_timestamp);
1007 #endif
1008 		break;
1009 
1010 	default:
1011 		error = EPASSTHROUGH;
1012 		break;
1013 	}
1014 
1015 	PLCOM_UNLOCK(sc);
1016 	splx(s);
1017 
1018 #ifdef PLCOM_DEBUG
1019 	if (plcom_debug)
1020 		plcomstatus(sc, "plcomioctl ");
1021 #endif
1022 
1023 	return error;
1024 }
1025 
1026 integrate void
1027 plcom_schedrx(struct plcom_softc *sc)
1028 {
1029 
1030 	sc->sc_rx_ready = 1;
1031 
1032 	/* Wake up the poller. */
1033 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
1034 	softintr_schedule(sc->sc_si);
1035 #else
1036 #ifndef __NO_SOFT_SERIAL_INTERRUPT
1037 	setsoftserial();
1038 #else
1039 	if (!plcom_softintr_scheduled) {
1040 		plcom_softintr_scheduled = 1;
1041 		callout_reset(&plcomsoft_callout, 1, plcomsoft, NULL);
1042 	}
1043 #endif
1044 #endif
1045 }
1046 
1047 void
1048 plcom_break(struct plcom_softc *sc, int onoff)
1049 {
1050 
1051 	if (onoff)
1052 		SET(sc->sc_lcr, LCR_BRK);
1053 	else
1054 		CLR(sc->sc_lcr, LCR_BRK);
1055 
1056 	if (!sc->sc_heldchange) {
1057 		if (sc->sc_tx_busy) {
1058 			sc->sc_heldtbc = sc->sc_tbc;
1059 			sc->sc_tbc = 0;
1060 			sc->sc_heldchange = 1;
1061 		} else
1062 			plcom_loadchannelregs(sc);
1063 	}
1064 }
1065 
1066 void
1067 plcom_modem(struct plcom_softc *sc, int onoff)
1068 {
1069 
1070 	if (sc->sc_mcr_dtr == 0)
1071 		return;
1072 
1073 	if (onoff)
1074 		SET(sc->sc_mcr, sc->sc_mcr_dtr);
1075 	else
1076 		CLR(sc->sc_mcr, sc->sc_mcr_dtr);
1077 
1078 	if (!sc->sc_heldchange) {
1079 		if (sc->sc_tx_busy) {
1080 			sc->sc_heldtbc = sc->sc_tbc;
1081 			sc->sc_tbc = 0;
1082 			sc->sc_heldchange = 1;
1083 		} else
1084 			plcom_loadchannelregs(sc);
1085 	}
1086 }
1087 
1088 void
1089 tiocm_to_plcom(struct plcom_softc *sc, u_long how, int ttybits)
1090 {
1091 	u_char plcombits;
1092 
1093 	plcombits = 0;
1094 	if (ISSET(ttybits, TIOCM_DTR))
1095 		SET(plcombits, MCR_DTR);
1096 	if (ISSET(ttybits, TIOCM_RTS))
1097 		SET(plcombits, MCR_RTS);
1098 
1099 	switch (how) {
1100 	case TIOCMBIC:
1101 		CLR(sc->sc_mcr, plcombits);
1102 		break;
1103 
1104 	case TIOCMBIS:
1105 		SET(sc->sc_mcr, plcombits);
1106 		break;
1107 
1108 	case TIOCMSET:
1109 		CLR(sc->sc_mcr, MCR_DTR | MCR_RTS);
1110 		SET(sc->sc_mcr, plcombits);
1111 		break;
1112 	}
1113 
1114 	if (!sc->sc_heldchange) {
1115 		if (sc->sc_tx_busy) {
1116 			sc->sc_heldtbc = sc->sc_tbc;
1117 			sc->sc_tbc = 0;
1118 			sc->sc_heldchange = 1;
1119 		} else
1120 			plcom_loadchannelregs(sc);
1121 	}
1122 }
1123 
1124 int
1125 plcom_to_tiocm(struct plcom_softc *sc)
1126 {
1127 	u_char plcombits;
1128 	int ttybits = 0;
1129 
1130 	plcombits = sc->sc_mcr;
1131 	if (ISSET(plcombits, MCR_DTR))
1132 		SET(ttybits, TIOCM_DTR);
1133 	if (ISSET(plcombits, MCR_RTS))
1134 		SET(ttybits, TIOCM_RTS);
1135 
1136 	plcombits = sc->sc_msr;
1137 	if (ISSET(plcombits, MSR_DCD))
1138 		SET(ttybits, TIOCM_CD);
1139 	if (ISSET(plcombits, MSR_CTS))
1140 		SET(ttybits, TIOCM_CTS);
1141 	if (ISSET(plcombits, MSR_DSR))
1142 		SET(ttybits, TIOCM_DSR);
1143 
1144 	if (sc->sc_cr != 0)
1145 		SET(ttybits, TIOCM_LE);
1146 
1147 	return ttybits;
1148 }
1149 
1150 static u_char
1151 cflag2lcr(tcflag_t cflag)
1152 {
1153 	u_char lcr = 0;
1154 
1155 	switch (ISSET(cflag, CSIZE)) {
1156 	case CS5:
1157 		SET(lcr, LCR_5BITS);
1158 		break;
1159 	case CS6:
1160 		SET(lcr, LCR_6BITS);
1161 		break;
1162 	case CS7:
1163 		SET(lcr, LCR_7BITS);
1164 		break;
1165 	case CS8:
1166 		SET(lcr, LCR_8BITS);
1167 		break;
1168 	}
1169 	if (ISSET(cflag, PARENB)) {
1170 		SET(lcr, LCR_PEN);
1171 		if (!ISSET(cflag, PARODD))
1172 			SET(lcr, LCR_EPS);
1173 	}
1174 	if (ISSET(cflag, CSTOPB))
1175 		SET(lcr, LCR_STP2);
1176 
1177 	return lcr;
1178 }
1179 
1180 int
1181 plcomparam(struct tty *tp, struct termios *t)
1182 {
1183 	struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(tp->t_dev));
1184 	int ospeed;
1185 	u_char lcr;
1186 	int s;
1187 
1188 	if (PLCOM_ISALIVE(sc) == 0)
1189 		return EIO;
1190 
1191 	ospeed = plcomspeed(t->c_ospeed, sc->sc_frequency);
1192 
1193 	/* Check requested parameters. */
1194 	if (ospeed < 0)
1195 		return EINVAL;
1196 	if (t->c_ispeed && t->c_ispeed != t->c_ospeed)
1197 		return EINVAL;
1198 
1199 	/*
1200 	 * For the console, always force CLOCAL and !HUPCL, so that the port
1201 	 * is always active.
1202 	 */
1203 	if (ISSET(sc->sc_swflags, TIOCFLAG_SOFTCAR) ||
1204 	    ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
1205 		SET(t->c_cflag, CLOCAL);
1206 		CLR(t->c_cflag, HUPCL);
1207 	}
1208 
1209 	/*
1210 	 * If there were no changes, don't do anything.  This avoids dropping
1211 	 * input and improves performance when all we did was frob things like
1212 	 * VMIN and VTIME.
1213 	 */
1214 	if (tp->t_ospeed == t->c_ospeed &&
1215 	    tp->t_cflag == t->c_cflag)
1216 		return 0;
1217 
1218 	lcr = ISSET(sc->sc_lcr, LCR_BRK) | cflag2lcr(t->c_cflag);
1219 
1220 	s = splserial();
1221 	PLCOM_LOCK(sc);
1222 
1223 	sc->sc_lcr = lcr;
1224 
1225 	/*
1226 	 * PL010 has a fixed-length FIFO trigger point.
1227 	 */
1228 	if (ISSET(sc->sc_hwflags, PLCOM_HW_FIFO))
1229 		sc->sc_fifo = 1;
1230 	else
1231 		sc->sc_fifo = 0;
1232 
1233 	if (sc->sc_fifo)
1234 		SET(sc->sc_lcr, LCR_FEN);
1235 
1236 	/*
1237 	 * If we're not in a mode that assumes a connection is present, then
1238 	 * ignore carrier changes.
1239 	 */
1240 	if (ISSET(t->c_cflag, CLOCAL | MDMBUF))
1241 		sc->sc_msr_dcd = 0;
1242 	else
1243 		sc->sc_msr_dcd = MSR_DCD;
1244 	/*
1245 	 * Set the flow control pins depending on the current flow control
1246 	 * mode.
1247 	 */
1248 	if (ISSET(t->c_cflag, CRTSCTS)) {
1249 		sc->sc_mcr_dtr = MCR_DTR;
1250 		sc->sc_mcr_rts = MCR_RTS;
1251 		sc->sc_msr_cts = MSR_CTS;
1252 	} else if (ISSET(t->c_cflag, MDMBUF)) {
1253 		/*
1254 		 * For DTR/DCD flow control, make sure we don't toggle DTR for
1255 		 * carrier detection.
1256 		 */
1257 		sc->sc_mcr_dtr = 0;
1258 		sc->sc_mcr_rts = MCR_DTR;
1259 		sc->sc_msr_cts = MSR_DCD;
1260 	} else {
1261 		/*
1262 		 * If no flow control, then always set RTS.  This will make
1263 		 * the other side happy if it mistakenly thinks we're doing
1264 		 * RTS/CTS flow control.
1265 		 */
1266 		sc->sc_mcr_dtr = MCR_DTR | MCR_RTS;
1267 		sc->sc_mcr_rts = 0;
1268 		sc->sc_msr_cts = 0;
1269 		if (ISSET(sc->sc_mcr, MCR_DTR))
1270 			SET(sc->sc_mcr, MCR_RTS);
1271 		else
1272 			CLR(sc->sc_mcr, MCR_RTS);
1273 	}
1274 	sc->sc_msr_mask = sc->sc_msr_cts | sc->sc_msr_dcd;
1275 
1276 #if 0
1277 	if (ospeed == 0)
1278 		CLR(sc->sc_mcr, sc->sc_mcr_dtr);
1279 	else
1280 		SET(sc->sc_mcr, sc->sc_mcr_dtr);
1281 #endif
1282 
1283 	sc->sc_dlbl = ospeed;
1284 	sc->sc_dlbh = ospeed >> 8;
1285 
1286 	/* And copy to tty. */
1287 	tp->t_ispeed = 0;
1288 	tp->t_ospeed = t->c_ospeed;
1289 	tp->t_cflag = t->c_cflag;
1290 
1291 	if (!sc->sc_heldchange) {
1292 		if (sc->sc_tx_busy) {
1293 			sc->sc_heldtbc = sc->sc_tbc;
1294 			sc->sc_tbc = 0;
1295 			sc->sc_heldchange = 1;
1296 		} else
1297 			plcom_loadchannelregs(sc);
1298 	}
1299 
1300 	if (!ISSET(t->c_cflag, CHWFLOW)) {
1301 		/* Disable the high water mark. */
1302 		sc->sc_r_hiwat = 0;
1303 		sc->sc_r_lowat = 0;
1304 		if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) {
1305 			CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1306 			plcom_schedrx(sc);
1307 		}
1308 		if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) {
1309 			CLR(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED);
1310 			plcom_hwiflow(sc);
1311 		}
1312 	} else {
1313 		sc->sc_r_hiwat = plcom_rbuf_hiwat;
1314 		sc->sc_r_lowat = plcom_rbuf_lowat;
1315 	}
1316 
1317 	PLCOM_UNLOCK(sc);
1318 	splx(s);
1319 
1320 	/*
1321 	 * Update the tty layer's idea of the carrier bit, in case we changed
1322 	 * CLOCAL or MDMBUF.  We don't hang up here; we only do that by
1323 	 * explicit request.
1324 	 */
1325 	(void) (*tp->t_linesw->l_modem)(tp, ISSET(sc->sc_msr, MSR_DCD));
1326 
1327 #ifdef PLCOM_DEBUG
1328 	if (plcom_debug)
1329 		plcomstatus(sc, "plcomparam ");
1330 #endif
1331 
1332 	if (!ISSET(t->c_cflag, CHWFLOW)) {
1333 		if (sc->sc_tx_stopped) {
1334 			sc->sc_tx_stopped = 0;
1335 			plcomstart(tp);
1336 		}
1337 	}
1338 
1339 	return 0;
1340 }
1341 
1342 void
1343 plcom_iflush(struct plcom_softc *sc)
1344 {
1345 	bus_space_tag_t iot = sc->sc_iot;
1346 	bus_space_handle_t ioh = sc->sc_ioh;
1347 #ifdef DIAGNOSTIC
1348 	int reg;
1349 #endif
1350 	int timo;
1351 
1352 #ifdef DIAGNOSTIC
1353 	reg = 0xffff;
1354 #endif
1355 	timo = 50000;
1356 	/* flush any pending I/O */
1357 	while (! ISSET(bus_space_read_1(iot, ioh, plcom_fr), FR_RXFE)
1358 	    && --timo)
1359 #ifdef DIAGNOSTIC
1360 		reg =
1361 #else
1362 		    (void)
1363 #endif
1364 		    bus_space_read_1(iot, ioh, plcom_dr);
1365 #ifdef DIAGNOSTIC
1366 	if (!timo)
1367 		printf("%s: plcom_iflush timeout %02x\n", sc->sc_dev.dv_xname,
1368 		       reg);
1369 #endif
1370 }
1371 
1372 void
1373 plcom_loadchannelregs(struct plcom_softc *sc)
1374 {
1375 	bus_space_tag_t iot = sc->sc_iot;
1376 	bus_space_handle_t ioh = sc->sc_ioh;
1377 
1378 	/* XXXXX necessary? */
1379 	plcom_iflush(sc);
1380 
1381 	bus_space_write_1(iot, ioh, plcom_cr, 0);
1382 
1383 	bus_space_write_1(iot, ioh, plcom_dlbl, sc->sc_dlbl);
1384 	bus_space_write_1(iot, ioh, plcom_dlbh, sc->sc_dlbh);
1385 	bus_space_write_1(iot, ioh, plcom_lcr, sc->sc_lcr);
1386 	sc->sc_set_mcr(sc->sc_set_mcr_arg, sc->sc_dev.dv_unit,
1387 	    sc->sc_mcr_active = sc->sc_mcr);
1388 
1389 	bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr);
1390 }
1391 
1392 int
1393 plcomhwiflow(struct tty *tp, int block)
1394 {
1395 	struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(tp->t_dev));
1396 	int s;
1397 
1398 	if (PLCOM_ISALIVE(sc) == 0)
1399 		return 0;
1400 
1401 	if (sc->sc_mcr_rts == 0)
1402 		return 0;
1403 
1404 	s = splserial();
1405 	PLCOM_LOCK(sc);
1406 
1407 	if (block) {
1408 		if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1409 			SET(sc->sc_rx_flags, RX_TTY_BLOCKED);
1410 			plcom_hwiflow(sc);
1411 		}
1412 	} else {
1413 		if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) {
1414 			CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1415 			plcom_schedrx(sc);
1416 		}
1417 		if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1418 			CLR(sc->sc_rx_flags, RX_TTY_BLOCKED);
1419 			plcom_hwiflow(sc);
1420 		}
1421 	}
1422 
1423 	PLCOM_UNLOCK(sc);
1424 	splx(s);
1425 	return 1;
1426 }
1427 
1428 /*
1429  * (un)block input via hw flowcontrol
1430  */
1431 void
1432 plcom_hwiflow(struct plcom_softc *sc)
1433 {
1434 	if (sc->sc_mcr_rts == 0)
1435 		return;
1436 
1437 	if (ISSET(sc->sc_rx_flags, RX_ANY_BLOCK)) {
1438 		CLR(sc->sc_mcr, sc->sc_mcr_rts);
1439 		CLR(sc->sc_mcr_active, sc->sc_mcr_rts);
1440 	} else {
1441 		SET(sc->sc_mcr, sc->sc_mcr_rts);
1442 		SET(sc->sc_mcr_active, sc->sc_mcr_rts);
1443 	}
1444 	sc->sc_set_mcr(sc->sc_set_mcr_arg, sc->sc_dev.dv_unit,
1445 	    sc->sc_mcr_active);
1446 }
1447 
1448 
1449 void
1450 plcomstart(struct tty *tp)
1451 {
1452 	struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(tp->t_dev));
1453 	bus_space_tag_t iot = sc->sc_iot;
1454 	bus_space_handle_t ioh = sc->sc_ioh;
1455 	int s;
1456 
1457 	if (PLCOM_ISALIVE(sc) == 0)
1458 		return;
1459 
1460 	s = spltty();
1461 	if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
1462 		goto out;
1463 	if (sc->sc_tx_stopped)
1464 		goto out;
1465 
1466 	if (tp->t_outq.c_cc <= tp->t_lowat) {
1467 		if (ISSET(tp->t_state, TS_ASLEEP)) {
1468 			CLR(tp->t_state, TS_ASLEEP);
1469 			wakeup(&tp->t_outq);
1470 		}
1471 		selwakeup(&tp->t_wsel);
1472 		if (tp->t_outq.c_cc == 0)
1473 			goto out;
1474 	}
1475 
1476 	/* Grab the first contiguous region of buffer space. */
1477 	{
1478 		u_char *tba;
1479 		int tbc;
1480 
1481 		tba = tp->t_outq.c_cf;
1482 		tbc = ndqb(&tp->t_outq, 0);
1483 
1484 		(void)splserial();
1485 		PLCOM_LOCK(sc);
1486 
1487 		sc->sc_tba = tba;
1488 		sc->sc_tbc = tbc;
1489 	}
1490 
1491 	SET(tp->t_state, TS_BUSY);
1492 	sc->sc_tx_busy = 1;
1493 
1494 	/* Enable transmit completion interrupts if necessary. */
1495 	if (!ISSET(sc->sc_cr, CR_TIE)) {
1496 		SET(sc->sc_cr, CR_TIE);
1497 		bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr);
1498 	}
1499 
1500 	/* Output the first chunk of the contiguous buffer. */
1501 	{
1502 		int n;
1503 
1504 		n = sc->sc_tbc;
1505 		if (n > sc->sc_fifolen)
1506 			n = sc->sc_fifolen;
1507 		bus_space_write_multi_1(iot, ioh, plcom_dr, sc->sc_tba, n);
1508 		sc->sc_tbc -= n;
1509 		sc->sc_tba += n;
1510 	}
1511 	PLCOM_UNLOCK(sc);
1512 out:
1513 	splx(s);
1514 	return;
1515 }
1516 
1517 /*
1518  * Stop output on a line.
1519  */
1520 void
1521 plcomstop(struct tty *tp, int flag)
1522 {
1523 	struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(tp->t_dev));
1524 	int s;
1525 
1526 	s = splserial();
1527 	PLCOM_LOCK(sc);
1528 	if (ISSET(tp->t_state, TS_BUSY)) {
1529 		/* Stop transmitting at the next chunk. */
1530 		sc->sc_tbc = 0;
1531 		sc->sc_heldtbc = 0;
1532 		if (!ISSET(tp->t_state, TS_TTSTOP))
1533 			SET(tp->t_state, TS_FLUSH);
1534 	}
1535 	PLCOM_UNLOCK(sc);
1536 	splx(s);
1537 }
1538 
1539 void
1540 plcomdiag(void *arg)
1541 {
1542 	struct plcom_softc *sc = arg;
1543 	int overflows, floods;
1544 	int s;
1545 
1546 	s = splserial();
1547 	PLCOM_LOCK(sc);
1548 	overflows = sc->sc_overflows;
1549 	sc->sc_overflows = 0;
1550 	floods = sc->sc_floods;
1551 	sc->sc_floods = 0;
1552 	sc->sc_errors = 0;
1553 	PLCOM_UNLOCK(sc);
1554 	splx(s);
1555 
1556 	log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n",
1557 	    sc->sc_dev.dv_xname,
1558 	    overflows, overflows == 1 ? "" : "s",
1559 	    floods, floods == 1 ? "" : "s");
1560 }
1561 
1562 integrate void
1563 plcom_rxsoft(struct plcom_softc *sc, struct tty *tp)
1564 {
1565 	int (*rint) (int, struct tty *) = tp->t_linesw->l_rint;
1566 	u_char *get, *end;
1567 	u_int cc, scc;
1568 	u_char rsr;
1569 	int code;
1570 	int s;
1571 
1572 	end = sc->sc_ebuf;
1573 	get = sc->sc_rbget;
1574 	scc = cc = plcom_rbuf_size - sc->sc_rbavail;
1575 
1576 	if (cc == plcom_rbuf_size) {
1577 		sc->sc_floods++;
1578 		if (sc->sc_errors++ == 0)
1579 			callout_reset(&sc->sc_diag_callout, 60 * hz,
1580 			    plcomdiag, sc);
1581 	}
1582 
1583 	while (cc) {
1584 		code = get[0];
1585 		rsr = get[1];
1586 		if (ISSET(rsr, RSR_OE | RSR_BE | RSR_FE | RSR_PE)) {
1587 			if (ISSET(rsr, RSR_OE)) {
1588 				sc->sc_overflows++;
1589 				if (sc->sc_errors++ == 0)
1590 					callout_reset(&sc->sc_diag_callout,
1591 					    60 * hz, plcomdiag, sc);
1592 			}
1593 			if (ISSET(rsr, RSR_BE | RSR_FE))
1594 				SET(code, TTY_FE);
1595 			if (ISSET(rsr, RSR_PE))
1596 				SET(code, TTY_PE);
1597 		}
1598 		if ((*rint)(code, tp) == -1) {
1599 			/*
1600 			 * The line discipline's buffer is out of space.
1601 			 */
1602 			if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1603 				/*
1604 				 * We're either not using flow control, or the
1605 				 * line discipline didn't tell us to block for
1606 				 * some reason.  Either way, we have no way to
1607 				 * know when there's more space available, so
1608 				 * just drop the rest of the data.
1609 				 */
1610 				get += cc << 1;
1611 				if (get >= end)
1612 					get -= plcom_rbuf_size << 1;
1613 				cc = 0;
1614 			} else {
1615 				/*
1616 				 * Don't schedule any more receive processing
1617 				 * until the line discipline tells us there's
1618 				 * space available (through plcomhwiflow()).
1619 				 * Leave the rest of the data in the input
1620 				 * buffer.
1621 				 */
1622 				SET(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1623 			}
1624 			break;
1625 		}
1626 		get += 2;
1627 		if (get >= end)
1628 			get = sc->sc_rbuf;
1629 		cc--;
1630 	}
1631 
1632 	if (cc != scc) {
1633 		sc->sc_rbget = get;
1634 		s = splserial();
1635 		PLCOM_LOCK(sc);
1636 
1637 		cc = sc->sc_rbavail += scc - cc;
1638 		/* Buffers should be ok again, release possible block. */
1639 		if (cc >= sc->sc_r_lowat) {
1640 			if (ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) {
1641 				CLR(sc->sc_rx_flags, RX_IBUF_OVERFLOWED);
1642 				SET(sc->sc_cr, CR_RIE | CR_RTIE);
1643 				bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr);
1644 			}
1645 			if (ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED)) {
1646 				CLR(sc->sc_rx_flags, RX_IBUF_BLOCKED);
1647 				plcom_hwiflow(sc);
1648 			}
1649 		}
1650 		PLCOM_UNLOCK(sc);
1651 		splx(s);
1652 	}
1653 }
1654 
1655 integrate void
1656 plcom_txsoft(struct plcom_softc *sc, struct tty *tp)
1657 {
1658 
1659 	CLR(tp->t_state, TS_BUSY);
1660 	if (ISSET(tp->t_state, TS_FLUSH))
1661 		CLR(tp->t_state, TS_FLUSH);
1662 	else
1663 		ndflush(&tp->t_outq, (int)(sc->sc_tba - tp->t_outq.c_cf));
1664 	(*tp->t_linesw->l_start)(tp);
1665 }
1666 
1667 integrate void
1668 plcom_stsoft(struct plcom_softc *sc, struct tty *tp)
1669 {
1670 	u_char msr, delta;
1671 	int s;
1672 
1673 	s = splserial();
1674 	PLCOM_LOCK(sc);
1675 	msr = sc->sc_msr;
1676 	delta = sc->sc_msr_delta;
1677 	sc->sc_msr_delta = 0;
1678 	PLCOM_UNLOCK(sc);
1679 	splx(s);
1680 
1681 	if (ISSET(delta, sc->sc_msr_dcd)) {
1682 		/*
1683 		 * Inform the tty layer that carrier detect changed.
1684 		 */
1685 		(void) (*tp->t_linesw->l_modem)(tp, ISSET(msr, MSR_DCD));
1686 	}
1687 
1688 	if (ISSET(delta, sc->sc_msr_cts)) {
1689 		/* Block or unblock output according to flow control. */
1690 		if (ISSET(msr, sc->sc_msr_cts)) {
1691 			sc->sc_tx_stopped = 0;
1692 			(*tp->t_linesw->l_start)(tp);
1693 		} else {
1694 			sc->sc_tx_stopped = 1;
1695 		}
1696 	}
1697 
1698 #ifdef PLCOM_DEBUG
1699 	if (plcom_debug)
1700 		plcomstatus(sc, "plcom_stsoft");
1701 #endif
1702 }
1703 
1704 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
1705 void
1706 plcomsoft(void *arg)
1707 {
1708 	struct plcom_softc *sc = arg;
1709 	struct tty *tp;
1710 
1711 	if (PLCOM_ISALIVE(sc) == 0)
1712 		return;
1713 
1714 	{
1715 #else
1716 void
1717 #ifndef __NO_SOFT_SERIAL_INTERRUPT
1718 plcomsoft(void)
1719 #else
1720 plcomsoft(void *arg)
1721 #endif
1722 {
1723 	struct plcom_softc	*sc;
1724 	struct tty	*tp;
1725 	int	unit;
1726 #ifdef __NO_SOFT_SERIAL_INTERRUPT
1727 	int s;
1728 
1729 	s = splsoftserial();
1730 	plcom_softintr_scheduled = 0;
1731 #endif
1732 
1733 	for (unit = 0; unit < plcom_cd.cd_ndevs; unit++) {
1734 		sc = device_lookup(&plcom_cd, unit);
1735 		if (sc == NULL || !ISSET(sc->sc_hwflags, PLCOM_HW_DEV_OK))
1736 			continue;
1737 
1738 		if (PLCOM_ISALIVE(sc) == 0)
1739 			continue;
1740 
1741 		tp = sc->sc_tty;
1742 		if (tp == NULL)
1743 			continue;
1744 		if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0)
1745 			continue;
1746 #endif
1747 		tp = sc->sc_tty;
1748 
1749 		if (sc->sc_rx_ready) {
1750 			sc->sc_rx_ready = 0;
1751 			plcom_rxsoft(sc, tp);
1752 		}
1753 
1754 		if (sc->sc_st_check) {
1755 			sc->sc_st_check = 0;
1756 			plcom_stsoft(sc, tp);
1757 		}
1758 
1759 		if (sc->sc_tx_done) {
1760 			sc->sc_tx_done = 0;
1761 			plcom_txsoft(sc, tp);
1762 		}
1763 	}
1764 
1765 #ifndef __HAVE_GENERIC_SOFT_INTERRUPTS
1766 #ifdef __NO_SOFT_SERIAL_INTERRUPT
1767 	splx(s);
1768 #endif
1769 #endif
1770 }
1771 
1772 #ifdef __ALIGN_BRACKET_LEVEL_FOR_CTAGS
1773 	/* there has got to be a better way to do plcomsoft() */
1774 }}
1775 #endif
1776 
1777 int
1778 plcomintr(void *arg)
1779 {
1780 	struct plcom_softc *sc = arg;
1781 	bus_space_tag_t iot = sc->sc_iot;
1782 	bus_space_handle_t ioh = sc->sc_ioh;
1783 	u_char *put, *end;
1784 	u_int cc;
1785 	u_char rsr, iir;
1786 
1787 	if (PLCOM_ISALIVE(sc) == 0)
1788 		return 0;
1789 
1790 	PLCOM_LOCK(sc);
1791 	iir = bus_space_read_1(iot, ioh, plcom_iir);
1792 	if (! ISSET(iir, IIR_IMASK)) {
1793 		PLCOM_UNLOCK(sc);
1794 		return 0;
1795 	}
1796 
1797 	end = sc->sc_ebuf;
1798 	put = sc->sc_rbput;
1799 	cc = sc->sc_rbavail;
1800 
1801 	do {
1802 		u_char	msr, delta, fr;
1803 
1804 		fr = bus_space_read_1(iot, ioh, plcom_fr);
1805 
1806 		if (!ISSET(fr, FR_RXFE) &&
1807 		    !ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) {
1808 			while (cc > 0) {
1809 				int cn_trapped = 0;
1810 				put[0] = bus_space_read_1(iot, ioh,
1811 				    plcom_dr);
1812 				rsr = bus_space_read_1(iot, ioh, plcom_rsr);
1813 				/* Clear any error status.  */
1814 				if (ISSET(rsr,
1815 				    (RSR_BE | RSR_OE | RSR_PE | RSR_FE)))
1816 					bus_space_write_1(iot, ioh, plcom_ecr,
1817 					    0);
1818 				if (ISSET(rsr, RSR_BE)) {
1819 					int cn_trapped = 0;
1820 					cn_check_magic(sc->sc_tty->t_dev,
1821 					    CNC_BREAK, plcom_cnm_state);
1822 					if (cn_trapped)
1823 						continue;
1824 #if defined(KGDB)
1825 					if (ISSET(sc->sc_hwflags,
1826 					    PLCOM_HW_KGDB)) {
1827 						kgdb_connect(1);
1828 						continue;
1829 					}
1830 #endif
1831 				}
1832 
1833 				put[1] = rsr;
1834 				cn_check_magic(sc->sc_tty->t_dev,
1835 					       put[0], plcom_cnm_state);
1836 				if (cn_trapped) {
1837 					fr = bus_space_read_1(iot, ioh,
1838 					    plcom_fr);
1839 					if (ISSET(fr, FR_RXFE))
1840 						break;
1841 
1842 					continue;
1843 				}
1844 				put += 2;
1845 				if (put >= end)
1846 					put = sc->sc_rbuf;
1847 				cc--;
1848 
1849 				fr = bus_space_read_1(iot, ioh, plcom_fr);
1850 				if (ISSET(fr, FR_RXFE))
1851 					break;
1852 			}
1853 
1854 			/*
1855 			 * Current string of incoming characters ended because
1856 			 * no more data was available or we ran out of space.
1857 			 * Schedule a receive event if any data was received.
1858 			 * If we're out of space, turn off receive interrupts.
1859 			 */
1860 			sc->sc_rbput = put;
1861 			sc->sc_rbavail = cc;
1862 			if (!ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED))
1863 				sc->sc_rx_ready = 1;
1864 
1865 			/*
1866 			 * See if we are in danger of overflowing a buffer. If
1867 			 * so, use hardware flow control to ease the pressure.
1868 			 */
1869 			if (!ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED) &&
1870 			    cc < sc->sc_r_hiwat) {
1871 				SET(sc->sc_rx_flags, RX_IBUF_BLOCKED);
1872 				plcom_hwiflow(sc);
1873 			}
1874 
1875 			/*
1876 			 * If we're out of space, disable receive interrupts
1877 			 * until the queue has drained a bit.
1878 			 */
1879 			if (!cc) {
1880 				SET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED);
1881 				CLR(sc->sc_cr, CR_RIE | CR_RTIE);
1882 				bus_space_write_1(iot, ioh, plcom_cr,
1883 				    sc->sc_cr);
1884 			}
1885 		} else {
1886 			if (ISSET(iir, IIR_RIS)) {
1887 				bus_space_write_1(iot, ioh, plcom_cr, 0);
1888 				delay(10);
1889 				bus_space_write_1(iot, ioh, plcom_cr,
1890 				    sc->sc_cr);
1891 				continue;
1892 			}
1893 		}
1894 
1895 		msr = bus_space_read_1(iot, ioh, plcom_fr);
1896 		delta = msr ^ sc->sc_msr;
1897 		sc->sc_msr = msr;
1898 		/* Clear any pending modem status interrupt.  */
1899 		if (iir & IIR_MIS)
1900 			bus_space_write_1(iot, ioh, plcom_icr, 0);
1901 		/*
1902 		 * Pulse-per-second (PSS) signals on edge of DCD?
1903 		 * Process these even if line discipline is ignoring DCD.
1904 		 */
1905 		if (delta & sc->sc_ppsmask) {
1906 			struct timeval tv;
1907 		    	if ((msr & sc->sc_ppsmask) == sc->sc_ppsassert) {
1908 				/* XXX nanotime() */
1909 				microtime(&tv);
1910 				TIMEVAL_TO_TIMESPEC(&tv,
1911 				    &sc->ppsinfo.assert_timestamp);
1912 				if (sc->ppsparam.mode & PPS_OFFSETASSERT) {
1913 					timespecadd(&sc->ppsinfo.assert_timestamp,
1914 					    &sc->ppsparam.assert_offset,
1915 						    &sc->ppsinfo.assert_timestamp);
1916 				}
1917 
1918 #ifdef PPS_SYNC
1919 				if (sc->ppsparam.mode & PPS_HARDPPSONASSERT)
1920 					hardpps(&tv, tv.tv_usec);
1921 #endif
1922 				sc->ppsinfo.assert_sequence++;
1923 				sc->ppsinfo.current_mode = sc->ppsparam.mode;
1924 
1925 			} else if ((msr & sc->sc_ppsmask) == sc->sc_ppsclear) {
1926 				/* XXX nanotime() */
1927 				microtime(&tv);
1928 				TIMEVAL_TO_TIMESPEC(&tv,
1929 				    &sc->ppsinfo.clear_timestamp);
1930 				if (sc->ppsparam.mode & PPS_OFFSETCLEAR) {
1931 					timespecadd(&sc->ppsinfo.clear_timestamp,
1932 					    &sc->ppsparam.clear_offset,
1933 					    &sc->ppsinfo.clear_timestamp);
1934 				}
1935 
1936 #ifdef PPS_SYNC
1937 				if (sc->ppsparam.mode & PPS_HARDPPSONCLEAR)
1938 					hardpps(&tv, tv.tv_usec);
1939 #endif
1940 				sc->ppsinfo.clear_sequence++;
1941 				sc->ppsinfo.current_mode = sc->ppsparam.mode;
1942 			}
1943 		}
1944 
1945 		/*
1946 		 * Process normal status changes
1947 		 */
1948 		if (ISSET(delta, sc->sc_msr_mask)) {
1949 			SET(sc->sc_msr_delta, delta);
1950 
1951 			/*
1952 			 * Stop output immediately if we lose the output
1953 			 * flow control signal or carrier detect.
1954 			 */
1955 			if (ISSET(~msr, sc->sc_msr_mask)) {
1956 				sc->sc_tbc = 0;
1957 				sc->sc_heldtbc = 0;
1958 #ifdef PLCOM_DEBUG
1959 				if (plcom_debug)
1960 					plcomstatus(sc, "plcomintr  ");
1961 #endif
1962 			}
1963 
1964 			sc->sc_st_check = 1;
1965 		}
1966 
1967 		/*
1968 		 * Done handling any receive interrupts. See if data
1969 		 * can be * transmitted as well. Schedule tx done
1970 		 * event if no data left * and tty was marked busy.
1971 		 */
1972 		if (ISSET(iir, IIR_TIS)) {
1973 			/*
1974 			 * If we've delayed a parameter change, do it
1975 			 * now, and restart * output.
1976 			 */
1977 			if (sc->sc_heldchange) {
1978 				plcom_loadchannelregs(sc);
1979 				sc->sc_heldchange = 0;
1980 				sc->sc_tbc = sc->sc_heldtbc;
1981 				sc->sc_heldtbc = 0;
1982 			}
1983 
1984 			/*
1985 			 * Output the next chunk of the contiguous
1986 			 * buffer, if any.
1987 			 */
1988 			if (sc->sc_tbc > 0) {
1989 				int n;
1990 
1991 				n = sc->sc_tbc;
1992 				if (n > sc->sc_fifolen)
1993 					n = sc->sc_fifolen;
1994 				bus_space_write_multi_1(iot, ioh, plcom_dr,
1995 				    sc->sc_tba, n);
1996 				sc->sc_tbc -= n;
1997 				sc->sc_tba += n;
1998 			} else {
1999 				/*
2000 				 * Disable transmit plcompletion
2001 				 * interrupts if necessary.
2002 				 */
2003 				if (ISSET(sc->sc_cr, CR_TIE)) {
2004 					CLR(sc->sc_cr, CR_TIE);
2005 					bus_space_write_1(iot, ioh, plcom_cr,
2006 					    sc->sc_cr);
2007 				}
2008 				if (sc->sc_tx_busy) {
2009 					sc->sc_tx_busy = 0;
2010 					sc->sc_tx_done = 1;
2011 				}
2012 			}
2013 		}
2014 	} while (ISSET((iir = bus_space_read_1(iot, ioh, plcom_iir)),
2015 	    IIR_IMASK));
2016 
2017 	PLCOM_UNLOCK(sc);
2018 
2019 	/* Wake up the poller. */
2020 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
2021 	softintr_schedule(sc->sc_si);
2022 #else
2023 #ifndef __NO_SOFT_SERIAL_INTERRUPT
2024 	setsoftserial();
2025 #else
2026 	if (!plcom_softintr_scheduled) {
2027 		plcom_softintr_scheduled = 1;
2028 		callout_reset(&plcomsoft_callout, 1, plcomsoft, NULL);
2029 	}
2030 #endif
2031 #endif
2032 
2033 #if NRND > 0 && defined(RND_COM)
2034 	rnd_add_uint32(&sc->rnd_source, iir | rsr);
2035 #endif
2036 
2037 	return 1;
2038 }
2039 
2040 /*
2041  * The following functions are polled getc and putc routines, shared
2042  * by the console and kgdb glue.
2043  *
2044  * The read-ahead code is so that you can detect pending in-band
2045  * cn_magic in polled mode while doing output rather than having to
2046  * wait until the kernel decides it needs input.
2047  */
2048 
2049 #define MAX_READAHEAD	20
2050 static int plcom_readahead[MAX_READAHEAD];
2051 static int plcom_readaheadcount = 0;
2052 
2053 int
2054 plcom_common_getc(dev_t dev, bus_space_tag_t iot, bus_space_handle_t ioh)
2055 {
2056 	int s = splserial();
2057 	u_char stat, c;
2058 
2059 	/* got a character from reading things earlier */
2060 	if (plcom_readaheadcount > 0) {
2061 		int i;
2062 
2063 		c = plcom_readahead[0];
2064 		for (i = 1; i < plcom_readaheadcount; i++) {
2065 			plcom_readahead[i-1] = plcom_readahead[i];
2066 		}
2067 		plcom_readaheadcount--;
2068 		splx(s);
2069 		return c;
2070 	}
2071 
2072 	/* block until a character becomes available */
2073 	while (ISSET(stat = bus_space_read_1(iot, ioh, plcom_fr), FR_RXFE))
2074 		;
2075 
2076 	c = bus_space_read_1(iot, ioh, plcom_dr);
2077 	stat = bus_space_read_1(iot, ioh, plcom_iir);
2078 	{
2079 		int cn_trapped = 0; /* unused */
2080 #ifdef DDB
2081 		extern int db_active;
2082 		if (!db_active)
2083 #endif
2084 			cn_check_magic(dev, c, plcom_cnm_state);
2085 	}
2086 	splx(s);
2087 	return c;
2088 }
2089 
2090 void
2091 plcom_common_putc(dev_t dev, bus_space_tag_t iot, bus_space_handle_t ioh,
2092     int c)
2093 {
2094 	int s = splserial();
2095 	int timo;
2096 
2097 	int cin, stat;
2098 	if (plcom_readaheadcount < MAX_READAHEAD
2099 	     && !ISSET(stat = bus_space_read_1(iot, ioh, plcom_fr), FR_RXFE)) {
2100 		int cn_trapped = 0;
2101 		cin = bus_space_read_1(iot, ioh, plcom_dr);
2102 		stat = bus_space_read_1(iot, ioh, plcom_iir);
2103 		cn_check_magic(dev, cin, plcom_cnm_state);
2104 		plcom_readahead[plcom_readaheadcount++] = cin;
2105 	}
2106 
2107 	/* wait for any pending transmission to finish */
2108 	timo = 150000;
2109 	while (!ISSET(bus_space_read_1(iot, ioh, plcom_fr), FR_TXFE) && --timo)
2110 		continue;
2111 
2112 	bus_space_write_1(iot, ioh, plcom_dr, c);
2113 	PLCOM_BARRIER(iot, ioh, BR | BW);
2114 
2115 	/* wait for this transmission to complete */
2116 	timo = 1500000;
2117 	while (!ISSET(bus_space_read_1(iot, ioh, plcom_fr), FR_TXFE) && --timo)
2118 		continue;
2119 
2120 	splx(s);
2121 }
2122 
2123 /*
2124  * Initialize UART for use as console or KGDB line.
2125  */
2126 int
2127 plcominit(bus_space_tag_t iot, bus_addr_t iobase, int rate, int frequency,
2128     tcflag_t cflag, bus_space_handle_t *iohp)
2129 {
2130 	bus_space_handle_t ioh;
2131 
2132 	if (bus_space_map(iot, iobase, PLCOM_UART_SIZE, 0, &ioh))
2133 		return ENOMEM; /* ??? */
2134 
2135 	rate = plcomspeed(rate, frequency);
2136 	bus_space_write_1(iot, ioh, plcom_cr, 0);
2137 	bus_space_write_1(iot, ioh, plcom_dlbl, rate);
2138 	bus_space_write_1(iot, ioh, plcom_dlbh, rate >> 8);
2139 	bus_space_write_1(iot, ioh, plcom_lcr, cflag2lcr(cflag) | LCR_FEN);
2140 	bus_space_write_1(iot, ioh, plcom_cr, CR_UARTEN);
2141 
2142 #if 0
2143 	/* Ought to do something like this, but we have no sc to
2144 	   dereference. */
2145 	sc->sc_set_mcr(sc->sc_set_mcr_arg, sc->sc_dev.dv_unit,
2146 	    MCR_DTR | MCR_RTS);
2147 #endif
2148 
2149 	*iohp = ioh;
2150 	return 0;
2151 }
2152 
2153 /*
2154  * Following are all routines needed for PLCOM to act as console
2155  */
2156 struct consdev plcomcons = {
2157 	NULL, NULL, plcomcngetc, plcomcnputc, plcomcnpollc, NULL,
2158 	NULL, NULL, NODEV, CN_NORMAL
2159 };
2160 
2161 
2162 int
2163 plcomcnattach(bus_space_tag_t iot, bus_addr_t iobase, int rate, int frequency,
2164     tcflag_t cflag, int unit)
2165 {
2166 	int res;
2167 
2168 	res = plcominit(iot, iobase, rate, frequency, cflag, &plcomconsioh);
2169 	if (res)
2170 		return res;
2171 
2172 	cn_tab = &plcomcons;
2173 	cn_init_magic(&plcom_cnm_state);
2174 	cn_set_magic("\047\001"); /* default magic is BREAK */
2175 
2176 	plcomconstag = iot;
2177 	plcomconsunit = unit;
2178 	plcomconsrate = rate;
2179 	plcomconscflag = cflag;
2180 
2181 	return 0;
2182 }
2183 
2184 void
2185 plcomcndetach(void)
2186 {
2187 	bus_space_unmap(plcomconstag, plcomconsioh, PLCOM_UART_SIZE);
2188 	plcomconstag = NULL;
2189 
2190 	cn_tab = NULL;
2191 }
2192 
2193 int
2194 plcomcngetc(dev_t dev)
2195 {
2196 	return plcom_common_getc(dev, plcomconstag, plcomconsioh);
2197 }
2198 
2199 /*
2200  * Console kernel output character routine.
2201  */
2202 void
2203 plcomcnputc(dev_t dev, int c)
2204 {
2205 	plcom_common_putc(dev, plcomconstag, plcomconsioh, c);
2206 }
2207 
2208 void
2209 plcomcnpollc(dev_t dev, int on)
2210 {
2211 
2212 }
2213 
2214 #ifdef KGDB
2215 int
2216 plcom_kgdb_attach(bus_space_tag_t iot, bus_addr_t iobase, int rate,
2217    int frequency, tcflag_t cflag, int unit)
2218 {
2219 	int res;
2220 
2221 	if (iot == plcomconstag && iobase == plcomconsunit)
2222 		return EBUSY; /* cannot share with console */
2223 
2224 	res = plcominit(iot, iobase, rate, frequency, cflag, &plcom_kgdb_ioh);
2225 	if (res)
2226 		return res;
2227 
2228 	kgdb_attach(plcom_kgdb_getc, plcom_kgdb_putc, NULL);
2229 	kgdb_dev = 123; /* unneeded, only to satisfy some tests */
2230 
2231 	plcom_kgdb_iot = iot;
2232 	plcom_kgdb_unit = unit;
2233 
2234 	return 0;
2235 }
2236 
2237 /* ARGSUSED */
2238 int
2239 plcom_kgdb_getc(void *arg)
2240 {
2241 	return plcom_common_getc(NODEV, plcom_kgdb_iot, plcom_kgdb_ioh);
2242 }
2243 
2244 /* ARGSUSED */
2245 void
2246 plcom_kgdb_putc(void *arg, int c)
2247 {
2248 	plcom_common_putc(NODEV, plcom_kgdb_iot, plcom_kgdb_ioh, c);
2249 }
2250 #endif /* KGDB */
2251 
2252 /* helper function to identify the plcom ports used by
2253  console or KGDB (and not yet autoconf attached) */
2254 int
2255 plcom_is_console(bus_space_tag_t iot, int unit,
2256     bus_space_handle_t *ioh)
2257 {
2258 	bus_space_handle_t help;
2259 
2260 	if (!plcomconsattached &&
2261 	    iot == plcomconstag && unit == plcomconsunit)
2262 		help = plcomconsioh;
2263 #ifdef KGDB
2264 	else if (!plcom_kgdb_attached &&
2265 	    iot == plcom_kgdb_iot && unit == plcom_kgdb_unit)
2266 		help = plcom_kgdb_ioh;
2267 #endif
2268 	else
2269 		return 0;
2270 
2271 	if (ioh)
2272 		*ioh = help;
2273 	return 1;
2274 }
2275