1 /* $NetBSD: plcom.c,v 1.13 2005/12/27 00:46:38 chs Exp $ */ 2 3 /*- 4 * Copyright (c) 2001 ARM Ltd 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. The name of the company may not be used to endorse or promote 16 * products derived from this software without specific prior written 17 * permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 20 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 23 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc. 32 * All rights reserved. 33 * 34 * This code is derived from software contributed to The NetBSD Foundation 35 * by Charles M. Hannum. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the NetBSD 48 * Foundation, Inc. and its contributors. 49 * 4. Neither the name of The NetBSD Foundation nor the names of its 50 * contributors may be used to endorse or promote products derived 51 * from this software without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 54 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 56 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 57 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 58 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 59 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 60 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 61 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 62 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 63 * POSSIBILITY OF SUCH DAMAGE. 64 */ 65 66 /* 67 * Copyright (c) 1991 The Regents of the University of California. 68 * All rights reserved. 69 * 70 * Redistribution and use in source and binary forms, with or without 71 * modification, are permitted provided that the following conditions 72 * are met: 73 * 1. Redistributions of source code must retain the above copyright 74 * notice, this list of conditions and the following disclaimer. 75 * 2. Redistributions in binary form must reproduce the above copyright 76 * notice, this list of conditions and the following disclaimer in the 77 * documentation and/or other materials provided with the distribution. 78 * 3. Neither the name of the University nor the names of its contributors 79 * may be used to endorse or promote products derived from this software 80 * without specific prior written permission. 81 * 82 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 83 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 84 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 85 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 86 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 87 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 88 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 89 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 90 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 91 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 92 * SUCH DAMAGE. 93 * 94 * @(#)com.c 7.5 (Berkeley) 5/16/91 95 */ 96 97 /* 98 * COM driver for the Prime Cell PL010 UART, which is similar to the 16C550, 99 * but has a completely different programmer's model. 100 * Derived from the NS16550AF com driver. 101 */ 102 103 #include <sys/cdefs.h> 104 __KERNEL_RCSID(0, "$NetBSD: plcom.c,v 1.13 2005/12/27 00:46:38 chs Exp $"); 105 106 #include "opt_plcom.h" 107 #include "opt_ddb.h" 108 #include "opt_kgdb.h" 109 #include "opt_lockdebug.h" 110 #include "opt_multiprocessor.h" 111 112 #include "rnd.h" 113 #if NRND > 0 && defined(RND_COM) 114 #include <sys/rnd.h> 115 #endif 116 117 /* 118 * Override cnmagic(9) macro before including <sys/systm.h>. 119 * We need to know if cn_check_magic triggered debugger, so set a flag. 120 * Callers of cn_check_magic must declare int cn_trapped = 0; 121 * XXX: this is *ugly*! 122 */ 123 #define cn_trap() \ 124 do { \ 125 console_debugger(); \ 126 cn_trapped = 1; \ 127 } while (/* CONSTCOND */ 0) 128 129 #include <sys/param.h> 130 #include <sys/systm.h> 131 #include <sys/ioctl.h> 132 #include <sys/select.h> 133 #include <sys/tty.h> 134 #include <sys/proc.h> 135 #include <sys/user.h> 136 #include <sys/conf.h> 137 #include <sys/file.h> 138 #include <sys/uio.h> 139 #include <sys/kernel.h> 140 #include <sys/syslog.h> 141 #include <sys/types.h> 142 #include <sys/device.h> 143 #include <sys/malloc.h> 144 #include <sys/timepps.h> 145 #include <sys/vnode.h> 146 147 #include <machine/intr.h> 148 #include <machine/bus.h> 149 150 #include <evbarm/dev/plcomreg.h> 151 #include <evbarm/dev/plcomvar.h> 152 153 #include <dev/cons.h> 154 155 static void plcom_enable_debugport (struct plcom_softc *); 156 157 void plcom_config (struct plcom_softc *); 158 void plcom_shutdown (struct plcom_softc *); 159 int plcomspeed (long, long); 160 static u_char cflag2lcr (tcflag_t); 161 int plcomparam (struct tty *, struct termios *); 162 void plcomstart (struct tty *); 163 int plcomhwiflow (struct tty *, int); 164 165 void plcom_loadchannelregs (struct plcom_softc *); 166 void plcom_hwiflow (struct plcom_softc *); 167 void plcom_break (struct plcom_softc *, int); 168 void plcom_modem (struct plcom_softc *, int); 169 void tiocm_to_plcom (struct plcom_softc *, u_long, int); 170 int plcom_to_tiocm (struct plcom_softc *); 171 void plcom_iflush (struct plcom_softc *); 172 173 int plcom_common_getc (dev_t, bus_space_tag_t, bus_space_handle_t); 174 void plcom_common_putc (dev_t, bus_space_tag_t, bus_space_handle_t, int); 175 176 int plcominit (bus_space_tag_t, bus_addr_t, int, int, tcflag_t, 177 bus_space_handle_t *); 178 179 dev_type_open(plcomopen); 180 dev_type_close(plcomclose); 181 dev_type_read(plcomread); 182 dev_type_write(plcomwrite); 183 dev_type_ioctl(plcomioctl); 184 dev_type_stop(plcomstop); 185 dev_type_tty(plcomtty); 186 dev_type_poll(plcompoll); 187 188 int plcomcngetc (dev_t); 189 void plcomcnputc (dev_t, int); 190 void plcomcnpollc (dev_t, int); 191 192 #define integrate static inline 193 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS 194 void plcomsoft (void *); 195 #else 196 #ifndef __NO_SOFT_SERIAL_INTERRUPT 197 void plcomsoft (void); 198 #else 199 void plcomsoft (void *); 200 struct callout plcomsoft_callout = CALLOUT_INITIALIZER; 201 #endif 202 #endif 203 integrate void plcom_rxsoft (struct plcom_softc *, struct tty *); 204 integrate void plcom_txsoft (struct plcom_softc *, struct tty *); 205 integrate void plcom_stsoft (struct plcom_softc *, struct tty *); 206 integrate void plcom_schedrx (struct plcom_softc *); 207 void plcomdiag (void *); 208 209 extern struct cfdriver plcom_cd; 210 211 const struct cdevsw plcom_cdevsw = { 212 plcomopen, plcomclose, plcomread, plcomwrite, plcomioctl, 213 plcomstop, plcomtty, plcompoll, nommap, ttykqfilter, D_TTY 214 }; 215 216 /* 217 * Make this an option variable one can patch. 218 * But be warned: this must be a power of 2! 219 */ 220 u_int plcom_rbuf_size = PLCOM_RING_SIZE; 221 222 /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */ 223 u_int plcom_rbuf_hiwat = (PLCOM_RING_SIZE * 1) / 4; 224 u_int plcom_rbuf_lowat = (PLCOM_RING_SIZE * 3) / 4; 225 226 static int plcomconsunit = -1; 227 static bus_space_tag_t plcomconstag; 228 static bus_space_handle_t plcomconsioh; 229 static int plcomconsattached; 230 static int plcomconsrate; 231 static tcflag_t plcomconscflag; 232 static struct cnm_state plcom_cnm_state; 233 234 static int ppscap = 235 PPS_TSFMT_TSPEC | 236 PPS_CAPTUREASSERT | 237 PPS_CAPTURECLEAR | 238 #ifdef PPS_SYNC 239 PPS_HARDPPSONASSERT | PPS_HARDPPSONCLEAR | 240 #endif /* PPS_SYNC */ 241 PPS_OFFSETASSERT | PPS_OFFSETCLEAR; 242 243 #ifndef __HAVE_GENERIC_SOFT_INTERRUPTS 244 #ifdef __NO_SOFT_SERIAL_INTERRUPT 245 volatile int plcom_softintr_scheduled; 246 #endif 247 #endif 248 249 #ifdef KGDB 250 #include <sys/kgdb.h> 251 252 static int plcom_kgdb_unit; 253 static bus_space_tag_t plcom_kgdb_iot; 254 static bus_space_handle_t plcom_kgdb_ioh; 255 static int plcom_kgdb_attached; 256 257 int plcom_kgdb_getc (void *); 258 void plcom_kgdb_putc (void *, int); 259 #endif /* KGDB */ 260 261 #define PLCOMUNIT_MASK 0x7ffff 262 #define PLCOMDIALOUT_MASK 0x80000 263 264 #define PLCOMUNIT(x) (minor(x) & PLCOMUNIT_MASK) 265 #define PLCOMDIALOUT(x) (minor(x) & PLCOMDIALOUT_MASK) 266 267 #define PLCOM_ISALIVE(sc) ((sc)->enabled != 0 && \ 268 ISSET((sc)->sc_dev.dv_flags, DVF_ACTIVE)) 269 270 #define BR BUS_SPACE_BARRIER_READ 271 #define BW BUS_SPACE_BARRIER_WRITE 272 #define PLCOM_BARRIER(t, h, f) bus_space_barrier((t), (h), 0, PLCOM_UART_SIZE, (f)) 273 274 #define PLCOM_LOCK(sc) simple_lock(&(sc)->sc_lock) 275 #define PLCOM_UNLOCK(sc) simple_unlock(&(sc)->sc_lock) 276 277 int 278 plcomspeed(long speed, long frequency) 279 { 280 #define divrnd(n, q) (((n)*2/(q)+1)/2) /* divide and round off */ 281 282 int x, err; 283 284 #if 0 285 if (speed == 0) 286 return 0; 287 #endif 288 if (speed <= 0) 289 return -1; 290 x = divrnd(frequency / 16, speed); 291 if (x <= 0) 292 return -1; 293 err = divrnd(((quad_t)frequency) * 1000 / 16, speed * x) - 1000; 294 if (err < 0) 295 err = -err; 296 if (err > PLCOM_TOLERANCE) 297 return -1; 298 return x; 299 300 #undef divrnd 301 } 302 303 #ifdef PLCOM_DEBUG 304 int plcom_debug = 0; 305 306 void plcomstatus (struct plcom_softc *, char *); 307 void 308 plcomstatus(struct plcom_softc *sc, char *str) 309 { 310 struct tty *tp = sc->sc_tty; 311 312 printf("%s: %s %sclocal %sdcd %sts_carr_on %sdtr %stx_stopped\n", 313 sc->sc_dev.dv_xname, str, 314 ISSET(tp->t_cflag, CLOCAL) ? "+" : "-", 315 ISSET(sc->sc_msr, MSR_DCD) ? "+" : "-", 316 ISSET(tp->t_state, TS_CARR_ON) ? "+" : "-", 317 ISSET(sc->sc_mcr, MCR_DTR) ? "+" : "-", 318 sc->sc_tx_stopped ? "+" : "-"); 319 320 printf("%s: %s %scrtscts %scts %sts_ttstop %srts %xrx_flags\n", 321 sc->sc_dev.dv_xname, str, 322 ISSET(tp->t_cflag, CRTSCTS) ? "+" : "-", 323 ISSET(sc->sc_msr, MSR_CTS) ? "+" : "-", 324 ISSET(tp->t_state, TS_TTSTOP) ? "+" : "-", 325 ISSET(sc->sc_mcr, MCR_RTS) ? "+" : "-", 326 sc->sc_rx_flags); 327 } 328 #endif 329 330 int 331 plcomprobe1(bus_space_tag_t iot, bus_space_handle_t ioh) 332 { 333 int data; 334 335 /* Disable the UART. */ 336 bus_space_write_1(iot, ioh, plcom_cr, 0); 337 /* Make sure the FIFO is off. */ 338 bus_space_write_1(iot, ioh, plcom_lcr, LCR_8BITS); 339 /* Disable interrupts. */ 340 bus_space_write_1(iot, ioh, plcom_iir, 0); 341 342 /* Make sure we swallow anything in the receiving register. */ 343 data = bus_space_read_1(iot, ioh, plcom_dr); 344 345 if (bus_space_read_1(iot, ioh, plcom_lcr) != LCR_8BITS) 346 return 0; 347 348 data = bus_space_read_1(iot, ioh, plcom_fr) & (FR_RXFF | FR_RXFE); 349 350 if (data != FR_RXFE) 351 return 0; 352 353 return 1; 354 } 355 356 static void 357 plcom_enable_debugport(struct plcom_softc *sc) 358 { 359 int s; 360 361 /* Turn on line break interrupt, set carrier. */ 362 s = splserial(); 363 PLCOM_LOCK(sc); 364 sc->sc_cr = CR_RIE | CR_RTIE | CR_UARTEN; 365 bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr); 366 SET(sc->sc_mcr, MCR_DTR | MCR_RTS); 367 sc->sc_set_mcr(sc->sc_set_mcr_arg, sc->sc_dev.dv_unit, sc->sc_mcr); 368 PLCOM_UNLOCK(sc); 369 splx(s); 370 } 371 372 void 373 plcom_attach_subr(struct plcom_softc *sc) 374 { 375 int unit = sc->sc_iounit; 376 bus_space_tag_t iot = sc->sc_iot; 377 bus_space_handle_t ioh = sc->sc_ioh; 378 struct tty *tp; 379 380 callout_init(&sc->sc_diag_callout); 381 simple_lock_init(&sc->sc_lock); 382 383 /* Disable interrupts before configuring the device. */ 384 sc->sc_cr = 0; 385 386 if (plcomconstag && unit == plcomconsunit) { 387 plcomconsattached = 1; 388 389 plcomconstag = iot; 390 plcomconsioh = ioh; 391 392 /* Make sure the console is always "hardwired". */ 393 delay(1000); /* wait for output to finish */ 394 SET(sc->sc_hwflags, PLCOM_HW_CONSOLE); 395 SET(sc->sc_swflags, TIOCFLAG_SOFTCAR); 396 /* Must re-enable the console immediately, or we will 397 hang when trying to print. */ 398 sc->sc_cr = CR_UARTEN; 399 } 400 401 bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr); 402 403 /* The PL010 has a 16-byte fifo, but the tx interrupt triggers when 404 there is space for 8 more bytes. */ 405 sc->sc_fifolen = 8; 406 printf("\n"); 407 408 if (ISSET(sc->sc_hwflags, PLCOM_HW_TXFIFO_DISABLE)) { 409 sc->sc_fifolen = 1; 410 printf("%s: txfifo disabled\n", sc->sc_dev.dv_xname); 411 } 412 413 if (sc->sc_fifolen > 1) 414 SET(sc->sc_hwflags, PLCOM_HW_FIFO); 415 416 tp = ttymalloc(); 417 tp->t_oproc = plcomstart; 418 tp->t_param = plcomparam; 419 tp->t_hwiflow = plcomhwiflow; 420 421 sc->sc_tty = tp; 422 sc->sc_rbuf = malloc(plcom_rbuf_size << 1, M_DEVBUF, M_NOWAIT); 423 sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf; 424 sc->sc_rbavail = plcom_rbuf_size; 425 if (sc->sc_rbuf == NULL) { 426 printf("%s: unable to allocate ring buffer\n", 427 sc->sc_dev.dv_xname); 428 return; 429 } 430 sc->sc_ebuf = sc->sc_rbuf + (plcom_rbuf_size << 1); 431 432 tty_attach(tp); 433 434 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) { 435 int maj; 436 437 /* locate the major number */ 438 maj = cdevsw_lookup_major(&plcom_cdevsw); 439 440 cn_tab->cn_dev = makedev(maj, sc->sc_dev.dv_unit); 441 442 printf("%s: console\n", sc->sc_dev.dv_xname); 443 } 444 445 #ifdef KGDB 446 /* 447 * Allow kgdb to "take over" this port. If this is 448 * the kgdb device, it has exclusive use. 449 */ 450 if (iot == plcom_kgdb_iot && unit == plcom_kgdb_unit) { 451 plcom_kgdb_attached = 1; 452 453 SET(sc->sc_hwflags, PLCOM_HW_KGDB); 454 printf("%s: kgdb\n", sc->sc_dev.dv_xname); 455 } 456 #endif 457 458 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS 459 sc->sc_si = softintr_establish(IPL_SOFTSERIAL, plcomsoft, sc); 460 #endif 461 462 #if NRND > 0 && defined(RND_COM) 463 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname, 464 RND_TYPE_TTY, 0); 465 #endif 466 467 /* if there are no enable/disable functions, assume the device 468 is always enabled */ 469 if (!sc->enable) 470 sc->enabled = 1; 471 472 plcom_config(sc); 473 474 SET(sc->sc_hwflags, PLCOM_HW_DEV_OK); 475 } 476 477 void 478 plcom_config(struct plcom_softc *sc) 479 { 480 bus_space_tag_t iot = sc->sc_iot; 481 bus_space_handle_t ioh = sc->sc_ioh; 482 483 /* Disable interrupts before configuring the device. */ 484 sc->sc_cr = 0; 485 bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr); 486 487 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE|PLCOM_HW_KGDB)) 488 plcom_enable_debugport(sc); 489 } 490 491 int 492 plcom_detach(self, flags) 493 struct device *self; 494 int flags; 495 { 496 struct plcom_softc *sc = (struct plcom_softc *)self; 497 int maj, mn; 498 499 /* locate the major number */ 500 maj = cdevsw_lookup_major(&plcom_cdevsw); 501 502 /* Nuke the vnodes for any open instances. */ 503 mn = self->dv_unit; 504 vdevgone(maj, mn, mn, VCHR); 505 506 mn |= PLCOMDIALOUT_MASK; 507 vdevgone(maj, mn, mn, VCHR); 508 509 /* Free the receive buffer. */ 510 free(sc->sc_rbuf, M_DEVBUF); 511 512 /* Detach and free the tty. */ 513 tty_detach(sc->sc_tty); 514 ttyfree(sc->sc_tty); 515 516 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS 517 /* Unhook the soft interrupt handler. */ 518 softintr_disestablish(sc->sc_si); 519 #endif 520 521 #if NRND > 0 && defined(RND_COM) 522 /* Unhook the entropy source. */ 523 rnd_detach_source(&sc->rnd_source); 524 #endif 525 526 return 0; 527 } 528 529 int 530 plcom_activate(struct device *self, enum devact act) 531 { 532 struct plcom_softc *sc = (struct plcom_softc *)self; 533 int s, rv = 0; 534 535 s = splserial(); 536 PLCOM_LOCK(sc); 537 switch (act) { 538 case DVACT_ACTIVATE: 539 rv = EOPNOTSUPP; 540 break; 541 542 case DVACT_DEACTIVATE: 543 if (sc->sc_hwflags & (PLCOM_HW_CONSOLE|PLCOM_HW_KGDB)) { 544 rv = EBUSY; 545 break; 546 } 547 548 if (sc->disable != NULL && sc->enabled != 0) { 549 (*sc->disable)(sc); 550 sc->enabled = 0; 551 } 552 break; 553 } 554 555 PLCOM_UNLOCK(sc); 556 splx(s); 557 return rv; 558 } 559 560 void 561 plcom_shutdown(struct plcom_softc *sc) 562 { 563 struct tty *tp = sc->sc_tty; 564 int s; 565 566 s = splserial(); 567 PLCOM_LOCK(sc); 568 569 /* If we were asserting flow control, then deassert it. */ 570 SET(sc->sc_rx_flags, RX_IBUF_BLOCKED); 571 plcom_hwiflow(sc); 572 573 /* Clear any break condition set with TIOCSBRK. */ 574 plcom_break(sc, 0); 575 576 /* Turn off PPS capture on last close. */ 577 sc->sc_ppsmask = 0; 578 sc->ppsparam.mode = 0; 579 580 /* 581 * Hang up if necessary. Wait a bit, so the other side has time to 582 * notice even if we immediately open the port again. 583 * Avoid tsleeping above splhigh(). 584 */ 585 if (ISSET(tp->t_cflag, HUPCL)) { 586 plcom_modem(sc, 0); 587 PLCOM_UNLOCK(sc); 588 splx(s); 589 /* XXX tsleep will only timeout */ 590 (void) tsleep(sc, TTIPRI, ttclos, hz); 591 s = splserial(); 592 PLCOM_LOCK(sc); 593 } 594 595 /* Turn off interrupts. */ 596 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) 597 /* interrupt on break */ 598 sc->sc_cr = CR_RIE | CR_RTIE | CR_UARTEN; 599 else 600 sc->sc_cr = 0; 601 bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr); 602 603 if (sc->disable) { 604 #ifdef DIAGNOSTIC 605 if (!sc->enabled) 606 panic("plcom_shutdown: not enabled?"); 607 #endif 608 (*sc->disable)(sc); 609 sc->enabled = 0; 610 } 611 PLCOM_UNLOCK(sc); 612 splx(s); 613 } 614 615 int 616 plcomopen(dev_t dev, int flag, int mode, struct lwp *l) 617 { 618 struct plcom_softc *sc; 619 struct tty *tp; 620 int s, s2; 621 int error; 622 623 sc = device_lookup(&plcom_cd, PLCOMUNIT(dev)); 624 if (sc == NULL || !ISSET(sc->sc_hwflags, PLCOM_HW_DEV_OK) || 625 sc->sc_rbuf == NULL) 626 return ENXIO; 627 628 if (ISSET(sc->sc_dev.dv_flags, DVF_ACTIVE) == 0) 629 return ENXIO; 630 631 #ifdef KGDB 632 /* 633 * If this is the kgdb port, no other use is permitted. 634 */ 635 if (ISSET(sc->sc_hwflags, PLCOM_HW_KGDB)) 636 return EBUSY; 637 #endif 638 639 tp = sc->sc_tty; 640 641 if (ISSET(tp->t_state, TS_ISOPEN) && 642 ISSET(tp->t_state, TS_XCLUDE) && 643 suser(l->l_proc->p_ucred, &l->l_proc->p_acflag) != 0) 644 return EBUSY; 645 646 s = spltty(); 647 648 /* 649 * Do the following iff this is a first open. 650 */ 651 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) { 652 struct termios t; 653 654 tp->t_dev = dev; 655 656 s2 = splserial(); 657 PLCOM_LOCK(sc); 658 659 if (sc->enable) { 660 if ((*sc->enable)(sc)) { 661 PLCOM_UNLOCK(sc); 662 splx(s2); 663 splx(s); 664 printf("%s: device enable failed\n", 665 sc->sc_dev.dv_xname); 666 return EIO; 667 } 668 sc->enabled = 1; 669 plcom_config(sc); 670 } 671 672 /* Turn on interrupts. */ 673 /* IER_ERXRDY | IER_ERLS | IER_EMSC; */ 674 sc->sc_cr = CR_RIE | CR_RTIE | CR_MSIE | CR_UARTEN; 675 bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr); 676 677 /* Fetch the current modem control status, needed later. */ 678 sc->sc_msr = bus_space_read_1(sc->sc_iot, sc->sc_ioh, plcom_fr); 679 680 /* Clear PPS capture state on first open. */ 681 sc->sc_ppsmask = 0; 682 sc->ppsparam.mode = 0; 683 684 PLCOM_UNLOCK(sc); 685 splx(s2); 686 687 /* 688 * Initialize the termios status to the defaults. Add in the 689 * sticky bits from TIOCSFLAGS. 690 */ 691 t.c_ispeed = 0; 692 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) { 693 t.c_ospeed = plcomconsrate; 694 t.c_cflag = plcomconscflag; 695 } else { 696 t.c_ospeed = TTYDEF_SPEED; 697 t.c_cflag = TTYDEF_CFLAG; 698 } 699 if (ISSET(sc->sc_swflags, TIOCFLAG_CLOCAL)) 700 SET(t.c_cflag, CLOCAL); 701 if (ISSET(sc->sc_swflags, TIOCFLAG_CRTSCTS)) 702 SET(t.c_cflag, CRTSCTS); 703 if (ISSET(sc->sc_swflags, TIOCFLAG_MDMBUF)) 704 SET(t.c_cflag, MDMBUF); 705 /* Make sure plcomparam() will do something. */ 706 tp->t_ospeed = 0; 707 (void) plcomparam(tp, &t); 708 tp->t_iflag = TTYDEF_IFLAG; 709 tp->t_oflag = TTYDEF_OFLAG; 710 tp->t_lflag = TTYDEF_LFLAG; 711 ttychars(tp); 712 ttsetwater(tp); 713 714 s2 = splserial(); 715 PLCOM_LOCK(sc); 716 717 /* 718 * Turn on DTR. We must always do this, even if carrier is not 719 * present, because otherwise we'd have to use TIOCSDTR 720 * immediately after setting CLOCAL, which applications do not 721 * expect. We always assert DTR while the device is open 722 * unless explicitly requested to deassert it. 723 */ 724 plcom_modem(sc, 1); 725 726 /* Clear the input ring, and unblock. */ 727 sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf; 728 sc->sc_rbavail = plcom_rbuf_size; 729 plcom_iflush(sc); 730 CLR(sc->sc_rx_flags, RX_ANY_BLOCK); 731 plcom_hwiflow(sc); 732 733 #ifdef PLCOM_DEBUG 734 if (plcom_debug) 735 plcomstatus(sc, "plcomopen "); 736 #endif 737 738 PLCOM_UNLOCK(sc); 739 splx(s2); 740 } 741 742 splx(s); 743 744 error = ttyopen(tp, PLCOMDIALOUT(dev), ISSET(flag, O_NONBLOCK)); 745 if (error) 746 goto bad; 747 748 error = (*tp->t_linesw->l_open)(dev, tp); 749 if (error) 750 goto bad; 751 752 return 0; 753 754 bad: 755 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) { 756 /* 757 * We failed to open the device, and nobody else had it opened. 758 * Clean up the state as appropriate. 759 */ 760 plcom_shutdown(sc); 761 } 762 763 return error; 764 } 765 766 int 767 plcomclose(dev_t dev, int flag, int mode, struct lwp *l) 768 { 769 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev)); 770 struct tty *tp = sc->sc_tty; 771 772 /* XXX This is for cons.c. */ 773 if (!ISSET(tp->t_state, TS_ISOPEN)) 774 return 0; 775 776 (*tp->t_linesw->l_close)(tp, flag); 777 ttyclose(tp); 778 779 if (PLCOM_ISALIVE(sc) == 0) 780 return 0; 781 782 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) { 783 /* 784 * Although we got a last close, the device may still be in 785 * use; e.g. if this was the dialout node, and there are still 786 * processes waiting for carrier on the non-dialout node. 787 */ 788 plcom_shutdown(sc); 789 } 790 791 return 0; 792 } 793 794 int 795 plcomread(dev_t dev, struct uio *uio, int flag) 796 { 797 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev)); 798 struct tty *tp = sc->sc_tty; 799 800 if (PLCOM_ISALIVE(sc) == 0) 801 return EIO; 802 803 return (*tp->t_linesw->l_read)(tp, uio, flag); 804 } 805 806 int 807 plcomwrite(dev_t dev, struct uio *uio, int flag) 808 { 809 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev)); 810 struct tty *tp = sc->sc_tty; 811 812 if (PLCOM_ISALIVE(sc) == 0) 813 return EIO; 814 815 return (*tp->t_linesw->l_write)(tp, uio, flag); 816 } 817 818 int 819 plcompoll(dev_t dev, int events, struct lwp *l) 820 { 821 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev)); 822 struct tty *tp = sc->sc_tty; 823 824 if (PLCOM_ISALIVE(sc) == 0) 825 return EIO; 826 827 return (*tp->t_linesw->l_poll)(tp, events, l); 828 } 829 830 struct tty * 831 plcomtty(dev_t dev) 832 { 833 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev)); 834 struct tty *tp = sc->sc_tty; 835 836 return tp; 837 } 838 839 int 840 plcomioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct lwp *l) 841 { 842 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev)); 843 struct tty *tp = sc->sc_tty; 844 int error; 845 int s; 846 847 if (PLCOM_ISALIVE(sc) == 0) 848 return EIO; 849 850 error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l); 851 if (error != EPASSTHROUGH) 852 return error; 853 854 error = ttioctl(tp, cmd, data, flag, l); 855 if (error != EPASSTHROUGH) 856 return error; 857 858 error = 0; 859 860 s = splserial(); 861 PLCOM_LOCK(sc); 862 863 switch (cmd) { 864 case TIOCSBRK: 865 plcom_break(sc, 1); 866 break; 867 868 case TIOCCBRK: 869 plcom_break(sc, 0); 870 break; 871 872 case TIOCSDTR: 873 plcom_modem(sc, 1); 874 break; 875 876 case TIOCCDTR: 877 plcom_modem(sc, 0); 878 break; 879 880 case TIOCGFLAGS: 881 *(int *)data = sc->sc_swflags; 882 break; 883 884 case TIOCSFLAGS: 885 error = suser(l->l_proc->p_ucred, &l->l_proc->p_acflag); 886 if (error) 887 break; 888 sc->sc_swflags = *(int *)data; 889 break; 890 891 case TIOCMSET: 892 case TIOCMBIS: 893 case TIOCMBIC: 894 tiocm_to_plcom(sc, cmd, *(int *)data); 895 break; 896 897 case TIOCMGET: 898 *(int *)data = plcom_to_tiocm(sc); 899 break; 900 901 case PPS_IOC_CREATE: 902 break; 903 904 case PPS_IOC_DESTROY: 905 break; 906 907 case PPS_IOC_GETPARAMS: { 908 pps_params_t *pp; 909 pp = (pps_params_t *)data; 910 *pp = sc->ppsparam; 911 break; 912 } 913 914 case PPS_IOC_SETPARAMS: { 915 pps_params_t *pp; 916 int mode; 917 pp = (pps_params_t *)data; 918 if (pp->mode & ~ppscap) { 919 error = EINVAL; 920 break; 921 } 922 sc->ppsparam = *pp; 923 /* 924 * Compute msr masks from user-specified timestamp state. 925 */ 926 mode = sc->ppsparam.mode; 927 #ifdef PPS_SYNC 928 if (mode & PPS_HARDPPSONASSERT) { 929 mode |= PPS_CAPTUREASSERT; 930 /* XXX revoke any previous HARDPPS source */ 931 } 932 if (mode & PPS_HARDPPSONCLEAR) { 933 mode |= PPS_CAPTURECLEAR; 934 /* XXX revoke any previous HARDPPS source */ 935 } 936 #endif /* PPS_SYNC */ 937 switch (mode & PPS_CAPTUREBOTH) { 938 case 0: 939 sc->sc_ppsmask = 0; 940 break; 941 942 case PPS_CAPTUREASSERT: 943 sc->sc_ppsmask = MSR_DCD; 944 sc->sc_ppsassert = MSR_DCD; 945 sc->sc_ppsclear = -1; 946 break; 947 948 case PPS_CAPTURECLEAR: 949 sc->sc_ppsmask = MSR_DCD; 950 sc->sc_ppsassert = -1; 951 sc->sc_ppsclear = 0; 952 break; 953 954 case PPS_CAPTUREBOTH: 955 sc->sc_ppsmask = MSR_DCD; 956 sc->sc_ppsassert = MSR_DCD; 957 sc->sc_ppsclear = 0; 958 break; 959 960 default: 961 error = EINVAL; 962 break; 963 } 964 break; 965 } 966 967 case PPS_IOC_GETCAP: 968 *(int*)data = ppscap; 969 break; 970 971 case PPS_IOC_FETCH: { 972 pps_info_t *pi; 973 pi = (pps_info_t *)data; 974 *pi = sc->ppsinfo; 975 break; 976 } 977 978 case TIOCDCDTIMESTAMP: /* XXX old, overloaded API used by xntpd v3 */ 979 /* 980 * Some GPS clocks models use the falling rather than 981 * rising edge as the on-the-second signal. 982 * The old API has no way to specify PPS polarity. 983 */ 984 sc->sc_ppsmask = MSR_DCD; 985 #ifndef PPS_TRAILING_EDGE 986 sc->sc_ppsassert = MSR_DCD; 987 sc->sc_ppsclear = -1; 988 TIMESPEC_TO_TIMEVAL((struct timeval *)data, 989 &sc->ppsinfo.assert_timestamp); 990 #else 991 sc->sc_ppsassert = -1 992 sc->sc_ppsclear = 0; 993 TIMESPEC_TO_TIMEVAL((struct timeval *)data, 994 &sc->ppsinfo.clear_timestamp); 995 #endif 996 break; 997 998 default: 999 error = EPASSTHROUGH; 1000 break; 1001 } 1002 1003 PLCOM_UNLOCK(sc); 1004 splx(s); 1005 1006 #ifdef PLCOM_DEBUG 1007 if (plcom_debug) 1008 plcomstatus(sc, "plcomioctl "); 1009 #endif 1010 1011 return error; 1012 } 1013 1014 integrate void 1015 plcom_schedrx(struct plcom_softc *sc) 1016 { 1017 1018 sc->sc_rx_ready = 1; 1019 1020 /* Wake up the poller. */ 1021 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS 1022 softintr_schedule(sc->sc_si); 1023 #else 1024 #ifndef __NO_SOFT_SERIAL_INTERRUPT 1025 setsoftserial(); 1026 #else 1027 if (!plcom_softintr_scheduled) { 1028 plcom_softintr_scheduled = 1; 1029 callout_reset(&plcomsoft_callout, 1, plcomsoft, NULL); 1030 } 1031 #endif 1032 #endif 1033 } 1034 1035 void 1036 plcom_break(struct plcom_softc *sc, int onoff) 1037 { 1038 1039 if (onoff) 1040 SET(sc->sc_lcr, LCR_BRK); 1041 else 1042 CLR(sc->sc_lcr, LCR_BRK); 1043 1044 if (!sc->sc_heldchange) { 1045 if (sc->sc_tx_busy) { 1046 sc->sc_heldtbc = sc->sc_tbc; 1047 sc->sc_tbc = 0; 1048 sc->sc_heldchange = 1; 1049 } else 1050 plcom_loadchannelregs(sc); 1051 } 1052 } 1053 1054 void 1055 plcom_modem(struct plcom_softc *sc, int onoff) 1056 { 1057 1058 if (sc->sc_mcr_dtr == 0) 1059 return; 1060 1061 if (onoff) 1062 SET(sc->sc_mcr, sc->sc_mcr_dtr); 1063 else 1064 CLR(sc->sc_mcr, sc->sc_mcr_dtr); 1065 1066 if (!sc->sc_heldchange) { 1067 if (sc->sc_tx_busy) { 1068 sc->sc_heldtbc = sc->sc_tbc; 1069 sc->sc_tbc = 0; 1070 sc->sc_heldchange = 1; 1071 } else 1072 plcom_loadchannelregs(sc); 1073 } 1074 } 1075 1076 void 1077 tiocm_to_plcom(struct plcom_softc *sc, u_long how, int ttybits) 1078 { 1079 u_char plcombits; 1080 1081 plcombits = 0; 1082 if (ISSET(ttybits, TIOCM_DTR)) 1083 SET(plcombits, MCR_DTR); 1084 if (ISSET(ttybits, TIOCM_RTS)) 1085 SET(plcombits, MCR_RTS); 1086 1087 switch (how) { 1088 case TIOCMBIC: 1089 CLR(sc->sc_mcr, plcombits); 1090 break; 1091 1092 case TIOCMBIS: 1093 SET(sc->sc_mcr, plcombits); 1094 break; 1095 1096 case TIOCMSET: 1097 CLR(sc->sc_mcr, MCR_DTR | MCR_RTS); 1098 SET(sc->sc_mcr, plcombits); 1099 break; 1100 } 1101 1102 if (!sc->sc_heldchange) { 1103 if (sc->sc_tx_busy) { 1104 sc->sc_heldtbc = sc->sc_tbc; 1105 sc->sc_tbc = 0; 1106 sc->sc_heldchange = 1; 1107 } else 1108 plcom_loadchannelregs(sc); 1109 } 1110 } 1111 1112 int 1113 plcom_to_tiocm(struct plcom_softc *sc) 1114 { 1115 u_char plcombits; 1116 int ttybits = 0; 1117 1118 plcombits = sc->sc_mcr; 1119 if (ISSET(plcombits, MCR_DTR)) 1120 SET(ttybits, TIOCM_DTR); 1121 if (ISSET(plcombits, MCR_RTS)) 1122 SET(ttybits, TIOCM_RTS); 1123 1124 plcombits = sc->sc_msr; 1125 if (ISSET(plcombits, MSR_DCD)) 1126 SET(ttybits, TIOCM_CD); 1127 if (ISSET(plcombits, MSR_CTS)) 1128 SET(ttybits, TIOCM_CTS); 1129 if (ISSET(plcombits, MSR_DSR)) 1130 SET(ttybits, TIOCM_DSR); 1131 1132 if (sc->sc_cr != 0) 1133 SET(ttybits, TIOCM_LE); 1134 1135 return ttybits; 1136 } 1137 1138 static u_char 1139 cflag2lcr(tcflag_t cflag) 1140 { 1141 u_char lcr = 0; 1142 1143 switch (ISSET(cflag, CSIZE)) { 1144 case CS5: 1145 SET(lcr, LCR_5BITS); 1146 break; 1147 case CS6: 1148 SET(lcr, LCR_6BITS); 1149 break; 1150 case CS7: 1151 SET(lcr, LCR_7BITS); 1152 break; 1153 case CS8: 1154 SET(lcr, LCR_8BITS); 1155 break; 1156 } 1157 if (ISSET(cflag, PARENB)) { 1158 SET(lcr, LCR_PEN); 1159 if (!ISSET(cflag, PARODD)) 1160 SET(lcr, LCR_EPS); 1161 } 1162 if (ISSET(cflag, CSTOPB)) 1163 SET(lcr, LCR_STP2); 1164 1165 return lcr; 1166 } 1167 1168 int 1169 plcomparam(struct tty *tp, struct termios *t) 1170 { 1171 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(tp->t_dev)); 1172 int ospeed; 1173 u_char lcr; 1174 int s; 1175 1176 if (PLCOM_ISALIVE(sc) == 0) 1177 return EIO; 1178 1179 ospeed = plcomspeed(t->c_ospeed, sc->sc_frequency); 1180 1181 /* Check requested parameters. */ 1182 if (ospeed < 0) 1183 return EINVAL; 1184 if (t->c_ispeed && t->c_ispeed != t->c_ospeed) 1185 return EINVAL; 1186 1187 /* 1188 * For the console, always force CLOCAL and !HUPCL, so that the port 1189 * is always active. 1190 */ 1191 if (ISSET(sc->sc_swflags, TIOCFLAG_SOFTCAR) || 1192 ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) { 1193 SET(t->c_cflag, CLOCAL); 1194 CLR(t->c_cflag, HUPCL); 1195 } 1196 1197 /* 1198 * If there were no changes, don't do anything. This avoids dropping 1199 * input and improves performance when all we did was frob things like 1200 * VMIN and VTIME. 1201 */ 1202 if (tp->t_ospeed == t->c_ospeed && 1203 tp->t_cflag == t->c_cflag) 1204 return 0; 1205 1206 lcr = ISSET(sc->sc_lcr, LCR_BRK) | cflag2lcr(t->c_cflag); 1207 1208 s = splserial(); 1209 PLCOM_LOCK(sc); 1210 1211 sc->sc_lcr = lcr; 1212 1213 /* 1214 * PL010 has a fixed-length FIFO trigger point. 1215 */ 1216 if (ISSET(sc->sc_hwflags, PLCOM_HW_FIFO)) 1217 sc->sc_fifo = 1; 1218 else 1219 sc->sc_fifo = 0; 1220 1221 if (sc->sc_fifo) 1222 SET(sc->sc_lcr, LCR_FEN); 1223 1224 /* 1225 * If we're not in a mode that assumes a connection is present, then 1226 * ignore carrier changes. 1227 */ 1228 if (ISSET(t->c_cflag, CLOCAL | MDMBUF)) 1229 sc->sc_msr_dcd = 0; 1230 else 1231 sc->sc_msr_dcd = MSR_DCD; 1232 /* 1233 * Set the flow control pins depending on the current flow control 1234 * mode. 1235 */ 1236 if (ISSET(t->c_cflag, CRTSCTS)) { 1237 sc->sc_mcr_dtr = MCR_DTR; 1238 sc->sc_mcr_rts = MCR_RTS; 1239 sc->sc_msr_cts = MSR_CTS; 1240 } else if (ISSET(t->c_cflag, MDMBUF)) { 1241 /* 1242 * For DTR/DCD flow control, make sure we don't toggle DTR for 1243 * carrier detection. 1244 */ 1245 sc->sc_mcr_dtr = 0; 1246 sc->sc_mcr_rts = MCR_DTR; 1247 sc->sc_msr_cts = MSR_DCD; 1248 } else { 1249 /* 1250 * If no flow control, then always set RTS. This will make 1251 * the other side happy if it mistakenly thinks we're doing 1252 * RTS/CTS flow control. 1253 */ 1254 sc->sc_mcr_dtr = MCR_DTR | MCR_RTS; 1255 sc->sc_mcr_rts = 0; 1256 sc->sc_msr_cts = 0; 1257 if (ISSET(sc->sc_mcr, MCR_DTR)) 1258 SET(sc->sc_mcr, MCR_RTS); 1259 else 1260 CLR(sc->sc_mcr, MCR_RTS); 1261 } 1262 sc->sc_msr_mask = sc->sc_msr_cts | sc->sc_msr_dcd; 1263 1264 #if 0 1265 if (ospeed == 0) 1266 CLR(sc->sc_mcr, sc->sc_mcr_dtr); 1267 else 1268 SET(sc->sc_mcr, sc->sc_mcr_dtr); 1269 #endif 1270 1271 sc->sc_dlbl = ospeed; 1272 sc->sc_dlbh = ospeed >> 8; 1273 1274 /* And copy to tty. */ 1275 tp->t_ispeed = 0; 1276 tp->t_ospeed = t->c_ospeed; 1277 tp->t_cflag = t->c_cflag; 1278 1279 if (!sc->sc_heldchange) { 1280 if (sc->sc_tx_busy) { 1281 sc->sc_heldtbc = sc->sc_tbc; 1282 sc->sc_tbc = 0; 1283 sc->sc_heldchange = 1; 1284 } else 1285 plcom_loadchannelregs(sc); 1286 } 1287 1288 if (!ISSET(t->c_cflag, CHWFLOW)) { 1289 /* Disable the high water mark. */ 1290 sc->sc_r_hiwat = 0; 1291 sc->sc_r_lowat = 0; 1292 if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) { 1293 CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED); 1294 plcom_schedrx(sc); 1295 } 1296 if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) { 1297 CLR(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED); 1298 plcom_hwiflow(sc); 1299 } 1300 } else { 1301 sc->sc_r_hiwat = plcom_rbuf_hiwat; 1302 sc->sc_r_lowat = plcom_rbuf_lowat; 1303 } 1304 1305 PLCOM_UNLOCK(sc); 1306 splx(s); 1307 1308 /* 1309 * Update the tty layer's idea of the carrier bit, in case we changed 1310 * CLOCAL or MDMBUF. We don't hang up here; we only do that by 1311 * explicit request. 1312 */ 1313 (void) (*tp->t_linesw->l_modem)(tp, ISSET(sc->sc_msr, MSR_DCD)); 1314 1315 #ifdef PLCOM_DEBUG 1316 if (plcom_debug) 1317 plcomstatus(sc, "plcomparam "); 1318 #endif 1319 1320 if (!ISSET(t->c_cflag, CHWFLOW)) { 1321 if (sc->sc_tx_stopped) { 1322 sc->sc_tx_stopped = 0; 1323 plcomstart(tp); 1324 } 1325 } 1326 1327 return 0; 1328 } 1329 1330 void 1331 plcom_iflush(struct plcom_softc *sc) 1332 { 1333 bus_space_tag_t iot = sc->sc_iot; 1334 bus_space_handle_t ioh = sc->sc_ioh; 1335 #ifdef DIAGNOSTIC 1336 int reg; 1337 #endif 1338 int timo; 1339 1340 #ifdef DIAGNOSTIC 1341 reg = 0xffff; 1342 #endif 1343 timo = 50000; 1344 /* flush any pending I/O */ 1345 while (! ISSET(bus_space_read_1(iot, ioh, plcom_fr), FR_RXFE) 1346 && --timo) 1347 #ifdef DIAGNOSTIC 1348 reg = 1349 #else 1350 (void) 1351 #endif 1352 bus_space_read_1(iot, ioh, plcom_dr); 1353 #ifdef DIAGNOSTIC 1354 if (!timo) 1355 printf("%s: plcom_iflush timeout %02x\n", sc->sc_dev.dv_xname, 1356 reg); 1357 #endif 1358 } 1359 1360 void 1361 plcom_loadchannelregs(struct plcom_softc *sc) 1362 { 1363 bus_space_tag_t iot = sc->sc_iot; 1364 bus_space_handle_t ioh = sc->sc_ioh; 1365 1366 /* XXXXX necessary? */ 1367 plcom_iflush(sc); 1368 1369 bus_space_write_1(iot, ioh, plcom_cr, 0); 1370 1371 bus_space_write_1(iot, ioh, plcom_dlbl, sc->sc_dlbl); 1372 bus_space_write_1(iot, ioh, plcom_dlbh, sc->sc_dlbh); 1373 bus_space_write_1(iot, ioh, plcom_lcr, sc->sc_lcr); 1374 sc->sc_set_mcr(sc->sc_set_mcr_arg, sc->sc_dev.dv_unit, 1375 sc->sc_mcr_active = sc->sc_mcr); 1376 1377 bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr); 1378 } 1379 1380 int 1381 plcomhwiflow(struct tty *tp, int block) 1382 { 1383 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(tp->t_dev)); 1384 int s; 1385 1386 if (PLCOM_ISALIVE(sc) == 0) 1387 return 0; 1388 1389 if (sc->sc_mcr_rts == 0) 1390 return 0; 1391 1392 s = splserial(); 1393 PLCOM_LOCK(sc); 1394 1395 if (block) { 1396 if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) { 1397 SET(sc->sc_rx_flags, RX_TTY_BLOCKED); 1398 plcom_hwiflow(sc); 1399 } 1400 } else { 1401 if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) { 1402 CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED); 1403 plcom_schedrx(sc); 1404 } 1405 if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) { 1406 CLR(sc->sc_rx_flags, RX_TTY_BLOCKED); 1407 plcom_hwiflow(sc); 1408 } 1409 } 1410 1411 PLCOM_UNLOCK(sc); 1412 splx(s); 1413 return 1; 1414 } 1415 1416 /* 1417 * (un)block input via hw flowcontrol 1418 */ 1419 void 1420 plcom_hwiflow(struct plcom_softc *sc) 1421 { 1422 if (sc->sc_mcr_rts == 0) 1423 return; 1424 1425 if (ISSET(sc->sc_rx_flags, RX_ANY_BLOCK)) { 1426 CLR(sc->sc_mcr, sc->sc_mcr_rts); 1427 CLR(sc->sc_mcr_active, sc->sc_mcr_rts); 1428 } else { 1429 SET(sc->sc_mcr, sc->sc_mcr_rts); 1430 SET(sc->sc_mcr_active, sc->sc_mcr_rts); 1431 } 1432 sc->sc_set_mcr(sc->sc_set_mcr_arg, sc->sc_dev.dv_unit, 1433 sc->sc_mcr_active); 1434 } 1435 1436 1437 void 1438 plcomstart(struct tty *tp) 1439 { 1440 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(tp->t_dev)); 1441 bus_space_tag_t iot = sc->sc_iot; 1442 bus_space_handle_t ioh = sc->sc_ioh; 1443 int s; 1444 1445 if (PLCOM_ISALIVE(sc) == 0) 1446 return; 1447 1448 s = spltty(); 1449 if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP)) 1450 goto out; 1451 if (sc->sc_tx_stopped) 1452 goto out; 1453 1454 if (tp->t_outq.c_cc <= tp->t_lowat) { 1455 if (ISSET(tp->t_state, TS_ASLEEP)) { 1456 CLR(tp->t_state, TS_ASLEEP); 1457 wakeup(&tp->t_outq); 1458 } 1459 selwakeup(&tp->t_wsel); 1460 if (tp->t_outq.c_cc == 0) 1461 goto out; 1462 } 1463 1464 /* Grab the first contiguous region of buffer space. */ 1465 { 1466 u_char *tba; 1467 int tbc; 1468 1469 tba = tp->t_outq.c_cf; 1470 tbc = ndqb(&tp->t_outq, 0); 1471 1472 (void)splserial(); 1473 PLCOM_LOCK(sc); 1474 1475 sc->sc_tba = tba; 1476 sc->sc_tbc = tbc; 1477 } 1478 1479 SET(tp->t_state, TS_BUSY); 1480 sc->sc_tx_busy = 1; 1481 1482 /* Enable transmit completion interrupts if necessary. */ 1483 if (!ISSET(sc->sc_cr, CR_TIE)) { 1484 SET(sc->sc_cr, CR_TIE); 1485 bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr); 1486 } 1487 1488 /* Output the first chunk of the contiguous buffer. */ 1489 { 1490 int n; 1491 1492 n = sc->sc_tbc; 1493 if (n > sc->sc_fifolen) 1494 n = sc->sc_fifolen; 1495 bus_space_write_multi_1(iot, ioh, plcom_dr, sc->sc_tba, n); 1496 sc->sc_tbc -= n; 1497 sc->sc_tba += n; 1498 } 1499 PLCOM_UNLOCK(sc); 1500 out: 1501 splx(s); 1502 return; 1503 } 1504 1505 /* 1506 * Stop output on a line. 1507 */ 1508 void 1509 plcomstop(struct tty *tp, int flag) 1510 { 1511 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(tp->t_dev)); 1512 int s; 1513 1514 s = splserial(); 1515 PLCOM_LOCK(sc); 1516 if (ISSET(tp->t_state, TS_BUSY)) { 1517 /* Stop transmitting at the next chunk. */ 1518 sc->sc_tbc = 0; 1519 sc->sc_heldtbc = 0; 1520 if (!ISSET(tp->t_state, TS_TTSTOP)) 1521 SET(tp->t_state, TS_FLUSH); 1522 } 1523 PLCOM_UNLOCK(sc); 1524 splx(s); 1525 } 1526 1527 void 1528 plcomdiag(void *arg) 1529 { 1530 struct plcom_softc *sc = arg; 1531 int overflows, floods; 1532 int s; 1533 1534 s = splserial(); 1535 PLCOM_LOCK(sc); 1536 overflows = sc->sc_overflows; 1537 sc->sc_overflows = 0; 1538 floods = sc->sc_floods; 1539 sc->sc_floods = 0; 1540 sc->sc_errors = 0; 1541 PLCOM_UNLOCK(sc); 1542 splx(s); 1543 1544 log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n", 1545 sc->sc_dev.dv_xname, 1546 overflows, overflows == 1 ? "" : "s", 1547 floods, floods == 1 ? "" : "s"); 1548 } 1549 1550 integrate void 1551 plcom_rxsoft(struct plcom_softc *sc, struct tty *tp) 1552 { 1553 int (*rint) (int, struct tty *) = tp->t_linesw->l_rint; 1554 u_char *get, *end; 1555 u_int cc, scc; 1556 u_char rsr; 1557 int code; 1558 int s; 1559 1560 end = sc->sc_ebuf; 1561 get = sc->sc_rbget; 1562 scc = cc = plcom_rbuf_size - sc->sc_rbavail; 1563 1564 if (cc == plcom_rbuf_size) { 1565 sc->sc_floods++; 1566 if (sc->sc_errors++ == 0) 1567 callout_reset(&sc->sc_diag_callout, 60 * hz, 1568 plcomdiag, sc); 1569 } 1570 1571 while (cc) { 1572 code = get[0]; 1573 rsr = get[1]; 1574 if (ISSET(rsr, RSR_OE | RSR_BE | RSR_FE | RSR_PE)) { 1575 if (ISSET(rsr, RSR_OE)) { 1576 sc->sc_overflows++; 1577 if (sc->sc_errors++ == 0) 1578 callout_reset(&sc->sc_diag_callout, 1579 60 * hz, plcomdiag, sc); 1580 } 1581 if (ISSET(rsr, RSR_BE | RSR_FE)) 1582 SET(code, TTY_FE); 1583 if (ISSET(rsr, RSR_PE)) 1584 SET(code, TTY_PE); 1585 } 1586 if ((*rint)(code, tp) == -1) { 1587 /* 1588 * The line discipline's buffer is out of space. 1589 */ 1590 if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) { 1591 /* 1592 * We're either not using flow control, or the 1593 * line discipline didn't tell us to block for 1594 * some reason. Either way, we have no way to 1595 * know when there's more space available, so 1596 * just drop the rest of the data. 1597 */ 1598 get += cc << 1; 1599 if (get >= end) 1600 get -= plcom_rbuf_size << 1; 1601 cc = 0; 1602 } else { 1603 /* 1604 * Don't schedule any more receive processing 1605 * until the line discipline tells us there's 1606 * space available (through plcomhwiflow()). 1607 * Leave the rest of the data in the input 1608 * buffer. 1609 */ 1610 SET(sc->sc_rx_flags, RX_TTY_OVERFLOWED); 1611 } 1612 break; 1613 } 1614 get += 2; 1615 if (get >= end) 1616 get = sc->sc_rbuf; 1617 cc--; 1618 } 1619 1620 if (cc != scc) { 1621 sc->sc_rbget = get; 1622 s = splserial(); 1623 PLCOM_LOCK(sc); 1624 1625 cc = sc->sc_rbavail += scc - cc; 1626 /* Buffers should be ok again, release possible block. */ 1627 if (cc >= sc->sc_r_lowat) { 1628 if (ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) { 1629 CLR(sc->sc_rx_flags, RX_IBUF_OVERFLOWED); 1630 SET(sc->sc_cr, CR_RIE | CR_RTIE); 1631 bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr); 1632 } 1633 if (ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED)) { 1634 CLR(sc->sc_rx_flags, RX_IBUF_BLOCKED); 1635 plcom_hwiflow(sc); 1636 } 1637 } 1638 PLCOM_UNLOCK(sc); 1639 splx(s); 1640 } 1641 } 1642 1643 integrate void 1644 plcom_txsoft(struct plcom_softc *sc, struct tty *tp) 1645 { 1646 1647 CLR(tp->t_state, TS_BUSY); 1648 if (ISSET(tp->t_state, TS_FLUSH)) 1649 CLR(tp->t_state, TS_FLUSH); 1650 else 1651 ndflush(&tp->t_outq, (int)(sc->sc_tba - tp->t_outq.c_cf)); 1652 (*tp->t_linesw->l_start)(tp); 1653 } 1654 1655 integrate void 1656 plcom_stsoft(struct plcom_softc *sc, struct tty *tp) 1657 { 1658 u_char msr, delta; 1659 int s; 1660 1661 s = splserial(); 1662 PLCOM_LOCK(sc); 1663 msr = sc->sc_msr; 1664 delta = sc->sc_msr_delta; 1665 sc->sc_msr_delta = 0; 1666 PLCOM_UNLOCK(sc); 1667 splx(s); 1668 1669 if (ISSET(delta, sc->sc_msr_dcd)) { 1670 /* 1671 * Inform the tty layer that carrier detect changed. 1672 */ 1673 (void) (*tp->t_linesw->l_modem)(tp, ISSET(msr, MSR_DCD)); 1674 } 1675 1676 if (ISSET(delta, sc->sc_msr_cts)) { 1677 /* Block or unblock output according to flow control. */ 1678 if (ISSET(msr, sc->sc_msr_cts)) { 1679 sc->sc_tx_stopped = 0; 1680 (*tp->t_linesw->l_start)(tp); 1681 } else { 1682 sc->sc_tx_stopped = 1; 1683 } 1684 } 1685 1686 #ifdef PLCOM_DEBUG 1687 if (plcom_debug) 1688 plcomstatus(sc, "plcom_stsoft"); 1689 #endif 1690 } 1691 1692 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS 1693 void 1694 plcomsoft(void *arg) 1695 { 1696 struct plcom_softc *sc = arg; 1697 struct tty *tp; 1698 1699 if (PLCOM_ISALIVE(sc) == 0) 1700 return; 1701 1702 { 1703 #else 1704 void 1705 #ifndef __NO_SOFT_SERIAL_INTERRUPT 1706 plcomsoft(void) 1707 #else 1708 plcomsoft(void *arg) 1709 #endif 1710 { 1711 struct plcom_softc *sc; 1712 struct tty *tp; 1713 int unit; 1714 #ifdef __NO_SOFT_SERIAL_INTERRUPT 1715 int s; 1716 1717 s = splsoftserial(); 1718 plcom_softintr_scheduled = 0; 1719 #endif 1720 1721 for (unit = 0; unit < plcom_cd.cd_ndevs; unit++) { 1722 sc = device_lookup(&plcom_cd, unit); 1723 if (sc == NULL || !ISSET(sc->sc_hwflags, PLCOM_HW_DEV_OK)) 1724 continue; 1725 1726 if (PLCOM_ISALIVE(sc) == 0) 1727 continue; 1728 1729 tp = sc->sc_tty; 1730 if (tp == NULL) 1731 continue; 1732 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) 1733 continue; 1734 #endif 1735 tp = sc->sc_tty; 1736 1737 if (sc->sc_rx_ready) { 1738 sc->sc_rx_ready = 0; 1739 plcom_rxsoft(sc, tp); 1740 } 1741 1742 if (sc->sc_st_check) { 1743 sc->sc_st_check = 0; 1744 plcom_stsoft(sc, tp); 1745 } 1746 1747 if (sc->sc_tx_done) { 1748 sc->sc_tx_done = 0; 1749 plcom_txsoft(sc, tp); 1750 } 1751 } 1752 1753 #ifndef __HAVE_GENERIC_SOFT_INTERRUPTS 1754 #ifdef __NO_SOFT_SERIAL_INTERRUPT 1755 splx(s); 1756 #endif 1757 #endif 1758 } 1759 1760 #ifdef __ALIGN_BRACKET_LEVEL_FOR_CTAGS 1761 /* there has got to be a better way to do plcomsoft() */ 1762 }} 1763 #endif 1764 1765 int 1766 plcomintr(void *arg) 1767 { 1768 struct plcom_softc *sc = arg; 1769 bus_space_tag_t iot = sc->sc_iot; 1770 bus_space_handle_t ioh = sc->sc_ioh; 1771 u_char *put, *end; 1772 u_int cc; 1773 u_char rsr, iir; 1774 1775 if (PLCOM_ISALIVE(sc) == 0) 1776 return 0; 1777 1778 PLCOM_LOCK(sc); 1779 iir = bus_space_read_1(iot, ioh, plcom_iir); 1780 if (! ISSET(iir, IIR_IMASK)) { 1781 PLCOM_UNLOCK(sc); 1782 return 0; 1783 } 1784 1785 end = sc->sc_ebuf; 1786 put = sc->sc_rbput; 1787 cc = sc->sc_rbavail; 1788 1789 do { 1790 u_char msr, delta, fr; 1791 1792 fr = bus_space_read_1(iot, ioh, plcom_fr); 1793 1794 if (!ISSET(fr, FR_RXFE) && 1795 !ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) { 1796 while (cc > 0) { 1797 int cn_trapped = 0; 1798 put[0] = bus_space_read_1(iot, ioh, 1799 plcom_dr); 1800 rsr = bus_space_read_1(iot, ioh, plcom_rsr); 1801 /* Clear any error status. */ 1802 if (ISSET(rsr, 1803 (RSR_BE | RSR_OE | RSR_PE | RSR_FE))) 1804 bus_space_write_1(iot, ioh, plcom_ecr, 1805 0); 1806 if (ISSET(rsr, RSR_BE)) { 1807 cn_trapped = 0; 1808 cn_check_magic(sc->sc_tty->t_dev, 1809 CNC_BREAK, plcom_cnm_state); 1810 if (cn_trapped) 1811 continue; 1812 #if defined(KGDB) 1813 if (ISSET(sc->sc_hwflags, 1814 PLCOM_HW_KGDB)) { 1815 kgdb_connect(1); 1816 continue; 1817 } 1818 #endif 1819 } 1820 1821 put[1] = rsr; 1822 cn_trapped = 0; 1823 cn_check_magic(sc->sc_tty->t_dev, 1824 put[0], plcom_cnm_state); 1825 if (cn_trapped) { 1826 fr = bus_space_read_1(iot, ioh, 1827 plcom_fr); 1828 if (ISSET(fr, FR_RXFE)) 1829 break; 1830 1831 continue; 1832 } 1833 put += 2; 1834 if (put >= end) 1835 put = sc->sc_rbuf; 1836 cc--; 1837 1838 fr = bus_space_read_1(iot, ioh, plcom_fr); 1839 if (ISSET(fr, FR_RXFE)) 1840 break; 1841 } 1842 1843 /* 1844 * Current string of incoming characters ended because 1845 * no more data was available or we ran out of space. 1846 * Schedule a receive event if any data was received. 1847 * If we're out of space, turn off receive interrupts. 1848 */ 1849 sc->sc_rbput = put; 1850 sc->sc_rbavail = cc; 1851 if (!ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) 1852 sc->sc_rx_ready = 1; 1853 1854 /* 1855 * See if we are in danger of overflowing a buffer. If 1856 * so, use hardware flow control to ease the pressure. 1857 */ 1858 if (!ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED) && 1859 cc < sc->sc_r_hiwat) { 1860 SET(sc->sc_rx_flags, RX_IBUF_BLOCKED); 1861 plcom_hwiflow(sc); 1862 } 1863 1864 /* 1865 * If we're out of space, disable receive interrupts 1866 * until the queue has drained a bit. 1867 */ 1868 if (!cc) { 1869 SET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED); 1870 CLR(sc->sc_cr, CR_RIE | CR_RTIE); 1871 bus_space_write_1(iot, ioh, plcom_cr, 1872 sc->sc_cr); 1873 } 1874 } else { 1875 if (ISSET(iir, IIR_RIS)) { 1876 bus_space_write_1(iot, ioh, plcom_cr, 0); 1877 delay(10); 1878 bus_space_write_1(iot, ioh, plcom_cr, 1879 sc->sc_cr); 1880 continue; 1881 } 1882 } 1883 1884 msr = bus_space_read_1(iot, ioh, plcom_fr); 1885 delta = msr ^ sc->sc_msr; 1886 sc->sc_msr = msr; 1887 /* Clear any pending modem status interrupt. */ 1888 if (iir & IIR_MIS) 1889 bus_space_write_1(iot, ioh, plcom_icr, 0); 1890 /* 1891 * Pulse-per-second (PSS) signals on edge of DCD? 1892 * Process these even if line discipline is ignoring DCD. 1893 */ 1894 if (delta & sc->sc_ppsmask) { 1895 struct timeval tv; 1896 if ((msr & sc->sc_ppsmask) == sc->sc_ppsassert) { 1897 /* XXX nanotime() */ 1898 microtime(&tv); 1899 TIMEVAL_TO_TIMESPEC(&tv, 1900 &sc->ppsinfo.assert_timestamp); 1901 if (sc->ppsparam.mode & PPS_OFFSETASSERT) { 1902 timespecadd(&sc->ppsinfo.assert_timestamp, 1903 &sc->ppsparam.assert_offset, 1904 &sc->ppsinfo.assert_timestamp); 1905 } 1906 1907 #ifdef PPS_SYNC 1908 if (sc->ppsparam.mode & PPS_HARDPPSONASSERT) 1909 hardpps(&tv, tv.tv_usec); 1910 #endif 1911 sc->ppsinfo.assert_sequence++; 1912 sc->ppsinfo.current_mode = sc->ppsparam.mode; 1913 1914 } else if ((msr & sc->sc_ppsmask) == sc->sc_ppsclear) { 1915 /* XXX nanotime() */ 1916 microtime(&tv); 1917 TIMEVAL_TO_TIMESPEC(&tv, 1918 &sc->ppsinfo.clear_timestamp); 1919 if (sc->ppsparam.mode & PPS_OFFSETCLEAR) { 1920 timespecadd(&sc->ppsinfo.clear_timestamp, 1921 &sc->ppsparam.clear_offset, 1922 &sc->ppsinfo.clear_timestamp); 1923 } 1924 1925 #ifdef PPS_SYNC 1926 if (sc->ppsparam.mode & PPS_HARDPPSONCLEAR) 1927 hardpps(&tv, tv.tv_usec); 1928 #endif 1929 sc->ppsinfo.clear_sequence++; 1930 sc->ppsinfo.current_mode = sc->ppsparam.mode; 1931 } 1932 } 1933 1934 /* 1935 * Process normal status changes 1936 */ 1937 if (ISSET(delta, sc->sc_msr_mask)) { 1938 SET(sc->sc_msr_delta, delta); 1939 1940 /* 1941 * Stop output immediately if we lose the output 1942 * flow control signal or carrier detect. 1943 */ 1944 if (ISSET(~msr, sc->sc_msr_mask)) { 1945 sc->sc_tbc = 0; 1946 sc->sc_heldtbc = 0; 1947 #ifdef PLCOM_DEBUG 1948 if (plcom_debug) 1949 plcomstatus(sc, "plcomintr "); 1950 #endif 1951 } 1952 1953 sc->sc_st_check = 1; 1954 } 1955 1956 /* 1957 * Done handling any receive interrupts. See if data 1958 * can be * transmitted as well. Schedule tx done 1959 * event if no data left * and tty was marked busy. 1960 */ 1961 if (ISSET(iir, IIR_TIS)) { 1962 /* 1963 * If we've delayed a parameter change, do it 1964 * now, and restart * output. 1965 */ 1966 if (sc->sc_heldchange) { 1967 plcom_loadchannelregs(sc); 1968 sc->sc_heldchange = 0; 1969 sc->sc_tbc = sc->sc_heldtbc; 1970 sc->sc_heldtbc = 0; 1971 } 1972 1973 /* 1974 * Output the next chunk of the contiguous 1975 * buffer, if any. 1976 */ 1977 if (sc->sc_tbc > 0) { 1978 int n; 1979 1980 n = sc->sc_tbc; 1981 if (n > sc->sc_fifolen) 1982 n = sc->sc_fifolen; 1983 bus_space_write_multi_1(iot, ioh, plcom_dr, 1984 sc->sc_tba, n); 1985 sc->sc_tbc -= n; 1986 sc->sc_tba += n; 1987 } else { 1988 /* 1989 * Disable transmit plcompletion 1990 * interrupts if necessary. 1991 */ 1992 if (ISSET(sc->sc_cr, CR_TIE)) { 1993 CLR(sc->sc_cr, CR_TIE); 1994 bus_space_write_1(iot, ioh, plcom_cr, 1995 sc->sc_cr); 1996 } 1997 if (sc->sc_tx_busy) { 1998 sc->sc_tx_busy = 0; 1999 sc->sc_tx_done = 1; 2000 } 2001 } 2002 } 2003 } while (ISSET((iir = bus_space_read_1(iot, ioh, plcom_iir)), 2004 IIR_IMASK)); 2005 2006 PLCOM_UNLOCK(sc); 2007 2008 /* Wake up the poller. */ 2009 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS 2010 softintr_schedule(sc->sc_si); 2011 #else 2012 #ifndef __NO_SOFT_SERIAL_INTERRUPT 2013 setsoftserial(); 2014 #else 2015 if (!plcom_softintr_scheduled) { 2016 plcom_softintr_scheduled = 1; 2017 callout_reset(&plcomsoft_callout, 1, plcomsoft, NULL); 2018 } 2019 #endif 2020 #endif 2021 2022 #if NRND > 0 && defined(RND_COM) 2023 rnd_add_uint32(&sc->rnd_source, iir | rsr); 2024 #endif 2025 2026 return 1; 2027 } 2028 2029 /* 2030 * The following functions are polled getc and putc routines, shared 2031 * by the console and kgdb glue. 2032 * 2033 * The read-ahead code is so that you can detect pending in-band 2034 * cn_magic in polled mode while doing output rather than having to 2035 * wait until the kernel decides it needs input. 2036 */ 2037 2038 #define MAX_READAHEAD 20 2039 static int plcom_readahead[MAX_READAHEAD]; 2040 static int plcom_readaheadcount = 0; 2041 2042 int 2043 plcom_common_getc(dev_t dev, bus_space_tag_t iot, bus_space_handle_t ioh) 2044 { 2045 int s = splserial(); 2046 u_char stat, c; 2047 2048 /* got a character from reading things earlier */ 2049 if (plcom_readaheadcount > 0) { 2050 int i; 2051 2052 c = plcom_readahead[0]; 2053 for (i = 1; i < plcom_readaheadcount; i++) { 2054 plcom_readahead[i-1] = plcom_readahead[i]; 2055 } 2056 plcom_readaheadcount--; 2057 splx(s); 2058 return c; 2059 } 2060 2061 /* block until a character becomes available */ 2062 while (ISSET(stat = bus_space_read_1(iot, ioh, plcom_fr), FR_RXFE)) 2063 ; 2064 2065 c = bus_space_read_1(iot, ioh, plcom_dr); 2066 stat = bus_space_read_1(iot, ioh, plcom_iir); 2067 { 2068 int cn_trapped = 0; /* unused */ 2069 #ifdef DDB 2070 extern int db_active; 2071 if (!db_active) 2072 #endif 2073 cn_check_magic(dev, c, plcom_cnm_state); 2074 } 2075 splx(s); 2076 return c; 2077 } 2078 2079 void 2080 plcom_common_putc(dev_t dev, bus_space_tag_t iot, bus_space_handle_t ioh, 2081 int c) 2082 { 2083 int s = splserial(); 2084 int timo; 2085 2086 int cin, stat; 2087 if (plcom_readaheadcount < MAX_READAHEAD 2088 && !ISSET(stat = bus_space_read_1(iot, ioh, plcom_fr), FR_RXFE)) { 2089 int cn_trapped = 0; 2090 cin = bus_space_read_1(iot, ioh, plcom_dr); 2091 stat = bus_space_read_1(iot, ioh, plcom_iir); 2092 cn_check_magic(dev, cin, plcom_cnm_state); 2093 plcom_readahead[plcom_readaheadcount++] = cin; 2094 } 2095 2096 /* wait for any pending transmission to finish */ 2097 timo = 150000; 2098 while (!ISSET(bus_space_read_1(iot, ioh, plcom_fr), FR_TXFE) && --timo) 2099 continue; 2100 2101 bus_space_write_1(iot, ioh, plcom_dr, c); 2102 PLCOM_BARRIER(iot, ioh, BR | BW); 2103 2104 /* wait for this transmission to complete */ 2105 timo = 1500000; 2106 while (!ISSET(bus_space_read_1(iot, ioh, plcom_fr), FR_TXFE) && --timo) 2107 continue; 2108 2109 splx(s); 2110 } 2111 2112 /* 2113 * Initialize UART for use as console or KGDB line. 2114 */ 2115 int 2116 plcominit(bus_space_tag_t iot, bus_addr_t iobase, int rate, int frequency, 2117 tcflag_t cflag, bus_space_handle_t *iohp) 2118 { 2119 bus_space_handle_t ioh; 2120 2121 if (bus_space_map(iot, iobase, PLCOM_UART_SIZE, 0, &ioh)) 2122 return ENOMEM; /* ??? */ 2123 2124 rate = plcomspeed(rate, frequency); 2125 bus_space_write_1(iot, ioh, plcom_cr, 0); 2126 bus_space_write_1(iot, ioh, plcom_dlbl, rate); 2127 bus_space_write_1(iot, ioh, plcom_dlbh, rate >> 8); 2128 bus_space_write_1(iot, ioh, plcom_lcr, cflag2lcr(cflag) | LCR_FEN); 2129 bus_space_write_1(iot, ioh, plcom_cr, CR_UARTEN); 2130 2131 #if 0 2132 /* Ought to do something like this, but we have no sc to 2133 dereference. */ 2134 sc->sc_set_mcr(sc->sc_set_mcr_arg, sc->sc_dev.dv_unit, 2135 MCR_DTR | MCR_RTS); 2136 #endif 2137 2138 *iohp = ioh; 2139 return 0; 2140 } 2141 2142 /* 2143 * Following are all routines needed for PLCOM to act as console 2144 */ 2145 struct consdev plcomcons = { 2146 NULL, NULL, plcomcngetc, plcomcnputc, plcomcnpollc, NULL, 2147 NULL, NULL, NODEV, CN_NORMAL 2148 }; 2149 2150 2151 int 2152 plcomcnattach(bus_space_tag_t iot, bus_addr_t iobase, int rate, int frequency, 2153 tcflag_t cflag, int unit) 2154 { 2155 int res; 2156 2157 res = plcominit(iot, iobase, rate, frequency, cflag, &plcomconsioh); 2158 if (res) 2159 return res; 2160 2161 cn_tab = &plcomcons; 2162 cn_init_magic(&plcom_cnm_state); 2163 cn_set_magic("\047\001"); /* default magic is BREAK */ 2164 2165 plcomconstag = iot; 2166 plcomconsunit = unit; 2167 plcomconsrate = rate; 2168 plcomconscflag = cflag; 2169 2170 return 0; 2171 } 2172 2173 void 2174 plcomcndetach(void) 2175 { 2176 bus_space_unmap(plcomconstag, plcomconsioh, PLCOM_UART_SIZE); 2177 plcomconstag = NULL; 2178 2179 cn_tab = NULL; 2180 } 2181 2182 int 2183 plcomcngetc(dev_t dev) 2184 { 2185 return plcom_common_getc(dev, plcomconstag, plcomconsioh); 2186 } 2187 2188 /* 2189 * Console kernel output character routine. 2190 */ 2191 void 2192 plcomcnputc(dev_t dev, int c) 2193 { 2194 plcom_common_putc(dev, plcomconstag, plcomconsioh, c); 2195 } 2196 2197 void 2198 plcomcnpollc(dev_t dev, int on) 2199 { 2200 2201 } 2202 2203 #ifdef KGDB 2204 int 2205 plcom_kgdb_attach(bus_space_tag_t iot, bus_addr_t iobase, int rate, 2206 int frequency, tcflag_t cflag, int unit) 2207 { 2208 int res; 2209 2210 if (iot == plcomconstag && iobase == plcomconsunit) 2211 return EBUSY; /* cannot share with console */ 2212 2213 res = plcominit(iot, iobase, rate, frequency, cflag, &plcom_kgdb_ioh); 2214 if (res) 2215 return res; 2216 2217 kgdb_attach(plcom_kgdb_getc, plcom_kgdb_putc, NULL); 2218 kgdb_dev = 123; /* unneeded, only to satisfy some tests */ 2219 2220 plcom_kgdb_iot = iot; 2221 plcom_kgdb_unit = unit; 2222 2223 return 0; 2224 } 2225 2226 /* ARGSUSED */ 2227 int 2228 plcom_kgdb_getc(void *arg) 2229 { 2230 return plcom_common_getc(NODEV, plcom_kgdb_iot, plcom_kgdb_ioh); 2231 } 2232 2233 /* ARGSUSED */ 2234 void 2235 plcom_kgdb_putc(void *arg, int c) 2236 { 2237 plcom_common_putc(NODEV, plcom_kgdb_iot, plcom_kgdb_ioh, c); 2238 } 2239 #endif /* KGDB */ 2240 2241 /* helper function to identify the plcom ports used by 2242 console or KGDB (and not yet autoconf attached) */ 2243 int 2244 plcom_is_console(bus_space_tag_t iot, int unit, 2245 bus_space_handle_t *ioh) 2246 { 2247 bus_space_handle_t help; 2248 2249 if (!plcomconsattached && 2250 iot == plcomconstag && unit == plcomconsunit) 2251 help = plcomconsioh; 2252 #ifdef KGDB 2253 else if (!plcom_kgdb_attached && 2254 iot == plcom_kgdb_iot && unit == plcom_kgdb_unit) 2255 help = plcom_kgdb_ioh; 2256 #endif 2257 else 2258 return 0; 2259 2260 if (ioh) 2261 *ioh = help; 2262 return 1; 2263 } 2264