1 /* $NetBSD: plcom.c,v 1.26 2008/04/21 12:56:30 ad Exp $ */ 2 3 /*- 4 * Copyright (c) 2001 ARM Ltd 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. The name of the company may not be used to endorse or promote 16 * products derived from this software without specific prior written 17 * permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 20 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 23 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * Copyright (c) 1998, 1999 The NetBSD Foundation, Inc. 32 * All rights reserved. 33 * 34 * This code is derived from software contributed to The NetBSD Foundation 35 * by Charles M. Hannum. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed by the NetBSD 48 * Foundation, Inc. and its contributors. 49 * 4. Neither the name of The NetBSD Foundation nor the names of its 50 * contributors may be used to endorse or promote products derived 51 * from this software without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 54 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 56 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 57 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 58 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 59 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 60 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 61 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 62 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 63 * POSSIBILITY OF SUCH DAMAGE. 64 */ 65 66 /* 67 * Copyright (c) 1991 The Regents of the University of California. 68 * All rights reserved. 69 * 70 * Redistribution and use in source and binary forms, with or without 71 * modification, are permitted provided that the following conditions 72 * are met: 73 * 1. Redistributions of source code must retain the above copyright 74 * notice, this list of conditions and the following disclaimer. 75 * 2. Redistributions in binary form must reproduce the above copyright 76 * notice, this list of conditions and the following disclaimer in the 77 * documentation and/or other materials provided with the distribution. 78 * 3. Neither the name of the University nor the names of its contributors 79 * may be used to endorse or promote products derived from this software 80 * without specific prior written permission. 81 * 82 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 83 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 84 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 85 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 86 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 87 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 88 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 89 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 90 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 91 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 92 * SUCH DAMAGE. 93 * 94 * @(#)com.c 7.5 (Berkeley) 5/16/91 95 */ 96 97 /* 98 * COM driver for the Prime Cell PL010 UART, which is similar to the 16C550, 99 * but has a completely different programmer's model. 100 * Derived from the NS16550AF com driver. 101 */ 102 103 #include <sys/cdefs.h> 104 __KERNEL_RCSID(0, "$NetBSD: plcom.c,v 1.26 2008/04/21 12:56:30 ad Exp $"); 105 106 #include "opt_plcom.h" 107 #include "opt_ddb.h" 108 #include "opt_kgdb.h" 109 #include "opt_lockdebug.h" 110 #include "opt_multiprocessor.h" 111 112 #include "rnd.h" 113 #if NRND > 0 && defined(RND_COM) 114 #include <sys/rnd.h> 115 #endif 116 117 /* 118 * Override cnmagic(9) macro before including <sys/systm.h>. 119 * We need to know if cn_check_magic triggered debugger, so set a flag. 120 * Callers of cn_check_magic must declare int cn_trapped = 0; 121 * XXX: this is *ugly*! 122 */ 123 #define cn_trap() \ 124 do { \ 125 console_debugger(); \ 126 cn_trapped = 1; \ 127 } while (/* CONSTCOND */ 0) 128 129 #include <sys/param.h> 130 #include <sys/systm.h> 131 #include <sys/ioctl.h> 132 #include <sys/select.h> 133 #include <sys/tty.h> 134 #include <sys/proc.h> 135 #include <sys/user.h> 136 #include <sys/conf.h> 137 #include <sys/file.h> 138 #include <sys/uio.h> 139 #include <sys/kernel.h> 140 #include <sys/syslog.h> 141 #include <sys/types.h> 142 #include <sys/device.h> 143 #include <sys/malloc.h> 144 #include <sys/timepps.h> 145 #include <sys/vnode.h> 146 #include <sys/kauth.h> 147 #include <sys/intr.h> 148 #include <sys/bus.h> 149 150 #include <evbarm/dev/plcomreg.h> 151 #include <evbarm/dev/plcomvar.h> 152 153 #include <dev/cons.h> 154 155 static void plcom_enable_debugport (struct plcom_softc *); 156 157 void plcom_config (struct plcom_softc *); 158 void plcom_shutdown (struct plcom_softc *); 159 int plcomspeed (long, long); 160 static u_char cflag2lcr (tcflag_t); 161 int plcomparam (struct tty *, struct termios *); 162 void plcomstart (struct tty *); 163 int plcomhwiflow (struct tty *, int); 164 165 void plcom_loadchannelregs (struct plcom_softc *); 166 void plcom_hwiflow (struct plcom_softc *); 167 void plcom_break (struct plcom_softc *, int); 168 void plcom_modem (struct plcom_softc *, int); 169 void tiocm_to_plcom (struct plcom_softc *, u_long, int); 170 int plcom_to_tiocm (struct plcom_softc *); 171 void plcom_iflush (struct plcom_softc *); 172 173 int plcom_common_getc (dev_t, bus_space_tag_t, bus_space_handle_t); 174 void plcom_common_putc (dev_t, bus_space_tag_t, bus_space_handle_t, int); 175 176 int plcominit (bus_space_tag_t, bus_addr_t, int, int, tcflag_t, 177 bus_space_handle_t *); 178 179 dev_type_open(plcomopen); 180 dev_type_close(plcomclose); 181 dev_type_read(plcomread); 182 dev_type_write(plcomwrite); 183 dev_type_ioctl(plcomioctl); 184 dev_type_stop(plcomstop); 185 dev_type_tty(plcomtty); 186 dev_type_poll(plcompoll); 187 188 int plcomcngetc (dev_t); 189 void plcomcnputc (dev_t, int); 190 void plcomcnpollc (dev_t, int); 191 192 #define integrate static inline 193 void plcomsoft (void *); 194 integrate void plcom_rxsoft (struct plcom_softc *, struct tty *); 195 integrate void plcom_txsoft (struct plcom_softc *, struct tty *); 196 integrate void plcom_stsoft (struct plcom_softc *, struct tty *); 197 integrate void plcom_schedrx (struct plcom_softc *); 198 void plcomdiag (void *); 199 200 extern struct cfdriver plcom_cd; 201 202 const struct cdevsw plcom_cdevsw = { 203 plcomopen, plcomclose, plcomread, plcomwrite, plcomioctl, 204 plcomstop, plcomtty, plcompoll, nommap, ttykqfilter, D_TTY 205 }; 206 207 /* 208 * Make this an option variable one can patch. 209 * But be warned: this must be a power of 2! 210 */ 211 u_int plcom_rbuf_size = PLCOM_RING_SIZE; 212 213 /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */ 214 u_int plcom_rbuf_hiwat = (PLCOM_RING_SIZE * 1) / 4; 215 u_int plcom_rbuf_lowat = (PLCOM_RING_SIZE * 3) / 4; 216 217 static int plcomconsunit = -1; 218 static bus_space_tag_t plcomconstag; 219 static bus_space_handle_t plcomconsioh; 220 static int plcomconsattached; 221 static int plcomconsrate; 222 static tcflag_t plcomconscflag; 223 static struct cnm_state plcom_cnm_state; 224 225 static int ppscap = 226 PPS_TSFMT_TSPEC | 227 PPS_CAPTUREASSERT | 228 PPS_CAPTURECLEAR | 229 #ifdef PPS_SYNC 230 PPS_HARDPPSONASSERT | PPS_HARDPPSONCLEAR | 231 #endif /* PPS_SYNC */ 232 PPS_OFFSETASSERT | PPS_OFFSETCLEAR; 233 234 #ifdef KGDB 235 #include <sys/kgdb.h> 236 237 static int plcom_kgdb_unit; 238 static bus_space_tag_t plcom_kgdb_iot; 239 static bus_space_handle_t plcom_kgdb_ioh; 240 static int plcom_kgdb_attached; 241 242 int plcom_kgdb_getc (void *); 243 void plcom_kgdb_putc (void *, int); 244 #endif /* KGDB */ 245 246 #define PLCOMUNIT_MASK 0x7ffff 247 #define PLCOMDIALOUT_MASK 0x80000 248 249 #define PLCOMUNIT(x) (minor(x) & PLCOMUNIT_MASK) 250 #define PLCOMDIALOUT(x) (minor(x) & PLCOMDIALOUT_MASK) 251 252 #define PLCOM_ISALIVE(sc) ((sc)->enabled != 0 && \ 253 device_is_active(&(sc)->sc_dev)) 254 255 #define BR BUS_SPACE_BARRIER_READ 256 #define BW BUS_SPACE_BARRIER_WRITE 257 #define PLCOM_BARRIER(t, h, f) bus_space_barrier((t), (h), 0, PLCOM_UART_SIZE, (f)) 258 259 #define PLCOM_LOCK(sc) simple_lock(&(sc)->sc_lock) 260 #define PLCOM_UNLOCK(sc) simple_unlock(&(sc)->sc_lock) 261 262 int 263 plcomspeed(long speed, long frequency) 264 { 265 #define divrnd(n, q) (((n)*2/(q)+1)/2) /* divide and round off */ 266 267 int x, err; 268 269 #if 0 270 if (speed == 0) 271 return 0; 272 #endif 273 if (speed <= 0) 274 return -1; 275 x = divrnd(frequency / 16, speed); 276 if (x <= 0) 277 return -1; 278 err = divrnd(((quad_t)frequency) * 1000 / 16, speed * x) - 1000; 279 if (err < 0) 280 err = -err; 281 if (err > PLCOM_TOLERANCE) 282 return -1; 283 return x; 284 285 #undef divrnd 286 } 287 288 #ifdef PLCOM_DEBUG 289 int plcom_debug = 0; 290 291 void plcomstatus (struct plcom_softc *, char *); 292 void 293 plcomstatus(struct plcom_softc *sc, char *str) 294 { 295 struct tty *tp = sc->sc_tty; 296 297 printf("%s: %s %sclocal %sdcd %sts_carr_on %sdtr %stx_stopped\n", 298 sc->sc_dev.dv_xname, str, 299 ISSET(tp->t_cflag, CLOCAL) ? "+" : "-", 300 ISSET(sc->sc_msr, MSR_DCD) ? "+" : "-", 301 ISSET(tp->t_state, TS_CARR_ON) ? "+" : "-", 302 ISSET(sc->sc_mcr, MCR_DTR) ? "+" : "-", 303 sc->sc_tx_stopped ? "+" : "-"); 304 305 printf("%s: %s %scrtscts %scts %sts_ttstop %srts %xrx_flags\n", 306 sc->sc_dev.dv_xname, str, 307 ISSET(tp->t_cflag, CRTSCTS) ? "+" : "-", 308 ISSET(sc->sc_msr, MSR_CTS) ? "+" : "-", 309 ISSET(tp->t_state, TS_TTSTOP) ? "+" : "-", 310 ISSET(sc->sc_mcr, MCR_RTS) ? "+" : "-", 311 sc->sc_rx_flags); 312 } 313 #endif 314 315 int 316 plcomprobe1(bus_space_tag_t iot, bus_space_handle_t ioh) 317 { 318 int data; 319 320 /* Disable the UART. */ 321 bus_space_write_1(iot, ioh, plcom_cr, 0); 322 /* Make sure the FIFO is off. */ 323 bus_space_write_1(iot, ioh, plcom_lcr, LCR_8BITS); 324 /* Disable interrupts. */ 325 bus_space_write_1(iot, ioh, plcom_iir, 0); 326 327 /* Make sure we swallow anything in the receiving register. */ 328 data = bus_space_read_1(iot, ioh, plcom_dr); 329 330 if (bus_space_read_1(iot, ioh, plcom_lcr) != LCR_8BITS) 331 return 0; 332 333 data = bus_space_read_1(iot, ioh, plcom_fr) & (FR_RXFF | FR_RXFE); 334 335 if (data != FR_RXFE) 336 return 0; 337 338 return 1; 339 } 340 341 static void 342 plcom_enable_debugport(struct plcom_softc *sc) 343 { 344 int s; 345 346 /* Turn on line break interrupt, set carrier. */ 347 s = splserial(); 348 PLCOM_LOCK(sc); 349 sc->sc_cr = CR_RIE | CR_RTIE | CR_UARTEN; 350 bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr); 351 SET(sc->sc_mcr, MCR_DTR | MCR_RTS); 352 /* XXX device_unit() abuse */ 353 sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(&sc->sc_dev), 354 sc->sc_mcr); 355 PLCOM_UNLOCK(sc); 356 splx(s); 357 } 358 359 void 360 plcom_attach_subr(struct plcom_softc *sc) 361 { 362 int unit = sc->sc_iounit; 363 bus_space_tag_t iot = sc->sc_iot; 364 bus_space_handle_t ioh = sc->sc_ioh; 365 struct tty *tp; 366 367 callout_init(&sc->sc_diag_callout, 0); 368 simple_lock_init(&sc->sc_lock); 369 370 /* Disable interrupts before configuring the device. */ 371 sc->sc_cr = 0; 372 373 if (plcomconstag && unit == plcomconsunit) { 374 plcomconsattached = 1; 375 376 plcomconstag = iot; 377 plcomconsioh = ioh; 378 379 /* Make sure the console is always "hardwired". */ 380 delay(1000); /* wait for output to finish */ 381 SET(sc->sc_hwflags, PLCOM_HW_CONSOLE); 382 SET(sc->sc_swflags, TIOCFLAG_SOFTCAR); 383 /* Must re-enable the console immediately, or we will 384 hang when trying to print. */ 385 sc->sc_cr = CR_UARTEN; 386 } 387 388 bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr); 389 390 /* The PL010 has a 16-byte fifo, but the tx interrupt triggers when 391 there is space for 8 more bytes. */ 392 sc->sc_fifolen = 8; 393 printf("\n"); 394 395 if (ISSET(sc->sc_hwflags, PLCOM_HW_TXFIFO_DISABLE)) { 396 sc->sc_fifolen = 1; 397 printf("%s: txfifo disabled\n", sc->sc_dev.dv_xname); 398 } 399 400 if (sc->sc_fifolen > 1) 401 SET(sc->sc_hwflags, PLCOM_HW_FIFO); 402 403 tp = ttymalloc(); 404 tp->t_oproc = plcomstart; 405 tp->t_param = plcomparam; 406 tp->t_hwiflow = plcomhwiflow; 407 408 sc->sc_tty = tp; 409 sc->sc_rbuf = malloc(plcom_rbuf_size << 1, M_DEVBUF, M_NOWAIT); 410 sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf; 411 sc->sc_rbavail = plcom_rbuf_size; 412 if (sc->sc_rbuf == NULL) { 413 printf("%s: unable to allocate ring buffer\n", 414 sc->sc_dev.dv_xname); 415 return; 416 } 417 sc->sc_ebuf = sc->sc_rbuf + (plcom_rbuf_size << 1); 418 419 tty_attach(tp); 420 421 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) { 422 int maj; 423 424 /* locate the major number */ 425 maj = cdevsw_lookup_major(&plcom_cdevsw); 426 427 cn_tab->cn_dev = makedev(maj, device_unit(&sc->sc_dev)); 428 429 printf("%s: console\n", sc->sc_dev.dv_xname); 430 } 431 432 #ifdef KGDB 433 /* 434 * Allow kgdb to "take over" this port. If this is 435 * the kgdb device, it has exclusive use. 436 */ 437 if (iot == plcom_kgdb_iot && unit == plcom_kgdb_unit) { 438 plcom_kgdb_attached = 1; 439 440 SET(sc->sc_hwflags, PLCOM_HW_KGDB); 441 printf("%s: kgdb\n", sc->sc_dev.dv_xname); 442 } 443 #endif 444 445 sc->sc_si = softint_establish(SOFTINT_SERIAL, plcomsoft, sc); 446 447 #if NRND > 0 && defined(RND_COM) 448 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname, 449 RND_TYPE_TTY, 0); 450 #endif 451 452 /* if there are no enable/disable functions, assume the device 453 is always enabled */ 454 if (!sc->enable) 455 sc->enabled = 1; 456 457 plcom_config(sc); 458 459 SET(sc->sc_hwflags, PLCOM_HW_DEV_OK); 460 } 461 462 void 463 plcom_config(struct plcom_softc *sc) 464 { 465 bus_space_tag_t iot = sc->sc_iot; 466 bus_space_handle_t ioh = sc->sc_ioh; 467 468 /* Disable interrupts before configuring the device. */ 469 sc->sc_cr = 0; 470 bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr); 471 472 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE|PLCOM_HW_KGDB)) 473 plcom_enable_debugport(sc); 474 } 475 476 int 477 plcom_detach(self, flags) 478 struct device *self; 479 int flags; 480 { 481 struct plcom_softc *sc = (struct plcom_softc *)self; 482 int maj, mn; 483 484 /* locate the major number */ 485 maj = cdevsw_lookup_major(&plcom_cdevsw); 486 487 /* Nuke the vnodes for any open instances. */ 488 mn = device_unit(self); 489 vdevgone(maj, mn, mn, VCHR); 490 491 mn |= PLCOMDIALOUT_MASK; 492 vdevgone(maj, mn, mn, VCHR); 493 494 /* Free the receive buffer. */ 495 free(sc->sc_rbuf, M_DEVBUF); 496 497 /* Detach and free the tty. */ 498 tty_detach(sc->sc_tty); 499 ttyfree(sc->sc_tty); 500 501 /* Unhook the soft interrupt handler. */ 502 softint_disestablish(sc->sc_si); 503 504 #if NRND > 0 && defined(RND_COM) 505 /* Unhook the entropy source. */ 506 rnd_detach_source(&sc->rnd_source); 507 #endif 508 509 return 0; 510 } 511 512 int 513 plcom_activate(struct device *self, enum devact act) 514 { 515 struct plcom_softc *sc = (struct plcom_softc *)self; 516 int s, rv = 0; 517 518 s = splserial(); 519 PLCOM_LOCK(sc); 520 switch (act) { 521 case DVACT_ACTIVATE: 522 rv = EOPNOTSUPP; 523 break; 524 525 case DVACT_DEACTIVATE: 526 if (sc->sc_hwflags & (PLCOM_HW_CONSOLE|PLCOM_HW_KGDB)) { 527 rv = EBUSY; 528 break; 529 } 530 531 if (sc->disable != NULL && sc->enabled != 0) { 532 (*sc->disable)(sc); 533 sc->enabled = 0; 534 } 535 break; 536 } 537 538 PLCOM_UNLOCK(sc); 539 splx(s); 540 return rv; 541 } 542 543 void 544 plcom_shutdown(struct plcom_softc *sc) 545 { 546 struct tty *tp = sc->sc_tty; 547 int s; 548 549 s = splserial(); 550 PLCOM_LOCK(sc); 551 552 /* If we were asserting flow control, then deassert it. */ 553 SET(sc->sc_rx_flags, RX_IBUF_BLOCKED); 554 plcom_hwiflow(sc); 555 556 /* Clear any break condition set with TIOCSBRK. */ 557 plcom_break(sc, 0); 558 559 /* Turn off PPS capture on last close. */ 560 mutex_spin_enter(&timecounter_lock); 561 sc->sc_ppsmask = 0; 562 sc->ppsparam.mode = 0; 563 mutex_spin_exit(&timecounter_lock); 564 565 /* 566 * Hang up if necessary. Wait a bit, so the other side has time to 567 * notice even if we immediately open the port again. 568 * Avoid tsleeping above splhigh(). 569 */ 570 if (ISSET(tp->t_cflag, HUPCL)) { 571 plcom_modem(sc, 0); 572 PLCOM_UNLOCK(sc); 573 splx(s); 574 /* XXX tsleep will only timeout */ 575 (void) tsleep(sc, TTIPRI, ttclos, hz); 576 s = splserial(); 577 PLCOM_LOCK(sc); 578 } 579 580 /* Turn off interrupts. */ 581 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) 582 /* interrupt on break */ 583 sc->sc_cr = CR_RIE | CR_RTIE | CR_UARTEN; 584 else 585 sc->sc_cr = 0; 586 bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr); 587 588 if (sc->disable) { 589 #ifdef DIAGNOSTIC 590 if (!sc->enabled) 591 panic("plcom_shutdown: not enabled?"); 592 #endif 593 (*sc->disable)(sc); 594 sc->enabled = 0; 595 } 596 PLCOM_UNLOCK(sc); 597 splx(s); 598 } 599 600 int 601 plcomopen(dev_t dev, int flag, int mode, struct lwp *l) 602 { 603 struct plcom_softc *sc; 604 struct tty *tp; 605 int s, s2; 606 int error; 607 608 sc = device_lookup(&plcom_cd, PLCOMUNIT(dev)); 609 if (sc == NULL || !ISSET(sc->sc_hwflags, PLCOM_HW_DEV_OK) || 610 sc->sc_rbuf == NULL) 611 return ENXIO; 612 613 if (!device_is_active(&sc->sc_dev)) 614 return ENXIO; 615 616 #ifdef KGDB 617 /* 618 * If this is the kgdb port, no other use is permitted. 619 */ 620 if (ISSET(sc->sc_hwflags, PLCOM_HW_KGDB)) 621 return EBUSY; 622 #endif 623 624 tp = sc->sc_tty; 625 626 if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp)) 627 return (EBUSY); 628 629 s = spltty(); 630 631 /* 632 * Do the following iff this is a first open. 633 */ 634 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) { 635 struct termios t; 636 637 tp->t_dev = dev; 638 639 s2 = splserial(); 640 PLCOM_LOCK(sc); 641 642 if (sc->enable) { 643 if ((*sc->enable)(sc)) { 644 PLCOM_UNLOCK(sc); 645 splx(s2); 646 splx(s); 647 printf("%s: device enable failed\n", 648 sc->sc_dev.dv_xname); 649 return EIO; 650 } 651 sc->enabled = 1; 652 plcom_config(sc); 653 } 654 655 /* Turn on interrupts. */ 656 /* IER_ERXRDY | IER_ERLS | IER_EMSC; */ 657 sc->sc_cr = CR_RIE | CR_RTIE | CR_MSIE | CR_UARTEN; 658 bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr); 659 660 /* Fetch the current modem control status, needed later. */ 661 sc->sc_msr = bus_space_read_1(sc->sc_iot, sc->sc_ioh, plcom_fr); 662 663 /* Clear PPS capture state on first open. */ 664 665 mutex_spin_enter(&timecounter_lock); 666 sc->sc_ppsmask = 0; 667 sc->ppsparam.mode = 0; 668 mutex_spin_exit(&timecounter_lock); 669 670 PLCOM_UNLOCK(sc); 671 splx(s2); 672 673 /* 674 * Initialize the termios status to the defaults. Add in the 675 * sticky bits from TIOCSFLAGS. 676 */ 677 t.c_ispeed = 0; 678 if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) { 679 t.c_ospeed = plcomconsrate; 680 t.c_cflag = plcomconscflag; 681 } else { 682 t.c_ospeed = TTYDEF_SPEED; 683 t.c_cflag = TTYDEF_CFLAG; 684 } 685 if (ISSET(sc->sc_swflags, TIOCFLAG_CLOCAL)) 686 SET(t.c_cflag, CLOCAL); 687 if (ISSET(sc->sc_swflags, TIOCFLAG_CRTSCTS)) 688 SET(t.c_cflag, CRTSCTS); 689 if (ISSET(sc->sc_swflags, TIOCFLAG_MDMBUF)) 690 SET(t.c_cflag, MDMBUF); 691 /* Make sure plcomparam() will do something. */ 692 tp->t_ospeed = 0; 693 (void) plcomparam(tp, &t); 694 tp->t_iflag = TTYDEF_IFLAG; 695 tp->t_oflag = TTYDEF_OFLAG; 696 tp->t_lflag = TTYDEF_LFLAG; 697 ttychars(tp); 698 ttsetwater(tp); 699 700 s2 = splserial(); 701 PLCOM_LOCK(sc); 702 703 /* 704 * Turn on DTR. We must always do this, even if carrier is not 705 * present, because otherwise we'd have to use TIOCSDTR 706 * immediately after setting CLOCAL, which applications do not 707 * expect. We always assert DTR while the device is open 708 * unless explicitly requested to deassert it. 709 */ 710 plcom_modem(sc, 1); 711 712 /* Clear the input ring, and unblock. */ 713 sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf; 714 sc->sc_rbavail = plcom_rbuf_size; 715 plcom_iflush(sc); 716 CLR(sc->sc_rx_flags, RX_ANY_BLOCK); 717 plcom_hwiflow(sc); 718 719 #ifdef PLCOM_DEBUG 720 if (plcom_debug) 721 plcomstatus(sc, "plcomopen "); 722 #endif 723 724 PLCOM_UNLOCK(sc); 725 splx(s2); 726 } 727 728 splx(s); 729 730 error = ttyopen(tp, PLCOMDIALOUT(dev), ISSET(flag, O_NONBLOCK)); 731 if (error) 732 goto bad; 733 734 error = (*tp->t_linesw->l_open)(dev, tp); 735 if (error) 736 goto bad; 737 738 return 0; 739 740 bad: 741 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) { 742 /* 743 * We failed to open the device, and nobody else had it opened. 744 * Clean up the state as appropriate. 745 */ 746 plcom_shutdown(sc); 747 } 748 749 return error; 750 } 751 752 int 753 plcomclose(dev_t dev, int flag, int mode, struct lwp *l) 754 { 755 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev)); 756 struct tty *tp = sc->sc_tty; 757 758 /* XXX This is for cons.c. */ 759 if (!ISSET(tp->t_state, TS_ISOPEN)) 760 return 0; 761 762 (*tp->t_linesw->l_close)(tp, flag); 763 ttyclose(tp); 764 765 if (PLCOM_ISALIVE(sc) == 0) 766 return 0; 767 768 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) { 769 /* 770 * Although we got a last close, the device may still be in 771 * use; e.g. if this was the dialout node, and there are still 772 * processes waiting for carrier on the non-dialout node. 773 */ 774 plcom_shutdown(sc); 775 } 776 777 return 0; 778 } 779 780 int 781 plcomread(dev_t dev, struct uio *uio, int flag) 782 { 783 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev)); 784 struct tty *tp = sc->sc_tty; 785 786 if (PLCOM_ISALIVE(sc) == 0) 787 return EIO; 788 789 return (*tp->t_linesw->l_read)(tp, uio, flag); 790 } 791 792 int 793 plcomwrite(dev_t dev, struct uio *uio, int flag) 794 { 795 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev)); 796 struct tty *tp = sc->sc_tty; 797 798 if (PLCOM_ISALIVE(sc) == 0) 799 return EIO; 800 801 return (*tp->t_linesw->l_write)(tp, uio, flag); 802 } 803 804 int 805 plcompoll(dev_t dev, int events, struct lwp *l) 806 { 807 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev)); 808 struct tty *tp = sc->sc_tty; 809 810 if (PLCOM_ISALIVE(sc) == 0) 811 return EIO; 812 813 return (*tp->t_linesw->l_poll)(tp, events, l); 814 } 815 816 struct tty * 817 plcomtty(dev_t dev) 818 { 819 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev)); 820 struct tty *tp = sc->sc_tty; 821 822 return tp; 823 } 824 825 int 826 plcomioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l) 827 { 828 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(dev)); 829 struct tty *tp = sc->sc_tty; 830 int error; 831 int s; 832 833 if (PLCOM_ISALIVE(sc) == 0) 834 return EIO; 835 836 error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l); 837 if (error != EPASSTHROUGH) 838 return error; 839 840 error = ttioctl(tp, cmd, data, flag, l); 841 if (error != EPASSTHROUGH) 842 return error; 843 844 error = 0; 845 846 s = splserial(); 847 PLCOM_LOCK(sc); 848 849 switch (cmd) { 850 case TIOCSBRK: 851 plcom_break(sc, 1); 852 break; 853 854 case TIOCCBRK: 855 plcom_break(sc, 0); 856 break; 857 858 case TIOCSDTR: 859 plcom_modem(sc, 1); 860 break; 861 862 case TIOCCDTR: 863 plcom_modem(sc, 0); 864 break; 865 866 case TIOCGFLAGS: 867 *(int *)data = sc->sc_swflags; 868 break; 869 870 case TIOCSFLAGS: 871 error = kauth_authorize_device_tty(l->l_cred, 872 KAUTH_DEVICE_TTY_PRIVSET, tp); 873 if (error) 874 break; 875 sc->sc_swflags = *(int *)data; 876 break; 877 878 case TIOCMSET: 879 case TIOCMBIS: 880 case TIOCMBIC: 881 tiocm_to_plcom(sc, cmd, *(int *)data); 882 break; 883 884 case TIOCMGET: 885 *(int *)data = plcom_to_tiocm(sc); 886 break; 887 888 case PPS_IOC_CREATE: 889 break; 890 891 case PPS_IOC_DESTROY: 892 break; 893 894 case PPS_IOC_GETPARAMS: { 895 pps_params_t *pp; 896 pp = (pps_params_t *)data; 897 mutex_spin_enter(&timecounter_lock); 898 *pp = sc->ppsparam; 899 mutex_spin_exit(&timecounter_lock); 900 break; 901 } 902 903 case PPS_IOC_SETPARAMS: { 904 pps_params_t *pp; 905 int mode; 906 pp = (pps_params_t *)data; 907 mutex_spin_enter(&timecounter_lock); 908 if (pp->mode & ~ppscap) { 909 error = EINVAL; 910 mutex_spin_exit(&timecounter_lock); 911 break; 912 } 913 sc->ppsparam = *pp; 914 /* 915 * Compute msr masks from user-specified timestamp state. 916 */ 917 mode = sc->ppsparam.mode; 918 #ifdef PPS_SYNC 919 if (mode & PPS_HARDPPSONASSERT) { 920 mode |= PPS_CAPTUREASSERT; 921 /* XXX revoke any previous HARDPPS source */ 922 } 923 if (mode & PPS_HARDPPSONCLEAR) { 924 mode |= PPS_CAPTURECLEAR; 925 /* XXX revoke any previous HARDPPS source */ 926 } 927 #endif /* PPS_SYNC */ 928 switch (mode & PPS_CAPTUREBOTH) { 929 case 0: 930 sc->sc_ppsmask = 0; 931 break; 932 933 case PPS_CAPTUREASSERT: 934 sc->sc_ppsmask = MSR_DCD; 935 sc->sc_ppsassert = MSR_DCD; 936 sc->sc_ppsclear = -1; 937 break; 938 939 case PPS_CAPTURECLEAR: 940 sc->sc_ppsmask = MSR_DCD; 941 sc->sc_ppsassert = -1; 942 sc->sc_ppsclear = 0; 943 break; 944 945 case PPS_CAPTUREBOTH: 946 sc->sc_ppsmask = MSR_DCD; 947 sc->sc_ppsassert = MSR_DCD; 948 sc->sc_ppsclear = 0; 949 break; 950 951 default: 952 error = EINVAL; 953 break; 954 } 955 mutex_spin_exit(&timecounter_lock); 956 break; 957 } 958 959 case PPS_IOC_GETCAP: 960 *(int*)data = ppscap; 961 break; 962 963 case PPS_IOC_FETCH: { 964 pps_info_t *pi; 965 pi = (pps_info_t *)data; 966 mutex_spin_enter(&timecounter_lock); 967 *pi = sc->ppsinfo; 968 mutex_spin_exit(&timecounter_lock); 969 break; 970 } 971 972 case TIOCDCDTIMESTAMP: /* XXX old, overloaded API used by xntpd v3 */ 973 /* 974 * Some GPS clocks models use the falling rather than 975 * rising edge as the on-the-second signal. 976 * The old API has no way to specify PPS polarity. 977 */ 978 mutex_spin_enter(&timecounter_lock); 979 sc->sc_ppsmask = MSR_DCD; 980 #ifndef PPS_TRAILING_EDGE 981 sc->sc_ppsassert = MSR_DCD; 982 sc->sc_ppsclear = -1; 983 TIMESPEC_TO_TIMEVAL((struct timeval *)data, 984 &sc->ppsinfo.assert_timestamp); 985 #else 986 sc->sc_ppsassert = -1 987 sc->sc_ppsclear = 0; 988 TIMESPEC_TO_TIMEVAL((struct timeval *)data, 989 &sc->ppsinfo.clear_timestamp); 990 #endif 991 mutex_spin_exit(&timecounter_lock); 992 break; 993 994 default: 995 error = EPASSTHROUGH; 996 break; 997 } 998 999 PLCOM_UNLOCK(sc); 1000 splx(s); 1001 1002 #ifdef PLCOM_DEBUG 1003 if (plcom_debug) 1004 plcomstatus(sc, "plcomioctl "); 1005 #endif 1006 1007 return error; 1008 } 1009 1010 integrate void 1011 plcom_schedrx(struct plcom_softc *sc) 1012 { 1013 1014 sc->sc_rx_ready = 1; 1015 1016 /* Wake up the poller. */ 1017 softint_schedule(sc->sc_si); 1018 } 1019 1020 void 1021 plcom_break(struct plcom_softc *sc, int onoff) 1022 { 1023 1024 if (onoff) 1025 SET(sc->sc_lcr, LCR_BRK); 1026 else 1027 CLR(sc->sc_lcr, LCR_BRK); 1028 1029 if (!sc->sc_heldchange) { 1030 if (sc->sc_tx_busy) { 1031 sc->sc_heldtbc = sc->sc_tbc; 1032 sc->sc_tbc = 0; 1033 sc->sc_heldchange = 1; 1034 } else 1035 plcom_loadchannelregs(sc); 1036 } 1037 } 1038 1039 void 1040 plcom_modem(struct plcom_softc *sc, int onoff) 1041 { 1042 1043 if (sc->sc_mcr_dtr == 0) 1044 return; 1045 1046 if (onoff) 1047 SET(sc->sc_mcr, sc->sc_mcr_dtr); 1048 else 1049 CLR(sc->sc_mcr, sc->sc_mcr_dtr); 1050 1051 if (!sc->sc_heldchange) { 1052 if (sc->sc_tx_busy) { 1053 sc->sc_heldtbc = sc->sc_tbc; 1054 sc->sc_tbc = 0; 1055 sc->sc_heldchange = 1; 1056 } else 1057 plcom_loadchannelregs(sc); 1058 } 1059 } 1060 1061 void 1062 tiocm_to_plcom(struct plcom_softc *sc, u_long how, int ttybits) 1063 { 1064 u_char plcombits; 1065 1066 plcombits = 0; 1067 if (ISSET(ttybits, TIOCM_DTR)) 1068 SET(plcombits, MCR_DTR); 1069 if (ISSET(ttybits, TIOCM_RTS)) 1070 SET(plcombits, MCR_RTS); 1071 1072 switch (how) { 1073 case TIOCMBIC: 1074 CLR(sc->sc_mcr, plcombits); 1075 break; 1076 1077 case TIOCMBIS: 1078 SET(sc->sc_mcr, plcombits); 1079 break; 1080 1081 case TIOCMSET: 1082 CLR(sc->sc_mcr, MCR_DTR | MCR_RTS); 1083 SET(sc->sc_mcr, plcombits); 1084 break; 1085 } 1086 1087 if (!sc->sc_heldchange) { 1088 if (sc->sc_tx_busy) { 1089 sc->sc_heldtbc = sc->sc_tbc; 1090 sc->sc_tbc = 0; 1091 sc->sc_heldchange = 1; 1092 } else 1093 plcom_loadchannelregs(sc); 1094 } 1095 } 1096 1097 int 1098 plcom_to_tiocm(struct plcom_softc *sc) 1099 { 1100 u_char plcombits; 1101 int ttybits = 0; 1102 1103 plcombits = sc->sc_mcr; 1104 if (ISSET(plcombits, MCR_DTR)) 1105 SET(ttybits, TIOCM_DTR); 1106 if (ISSET(plcombits, MCR_RTS)) 1107 SET(ttybits, TIOCM_RTS); 1108 1109 plcombits = sc->sc_msr; 1110 if (ISSET(plcombits, MSR_DCD)) 1111 SET(ttybits, TIOCM_CD); 1112 if (ISSET(plcombits, MSR_CTS)) 1113 SET(ttybits, TIOCM_CTS); 1114 if (ISSET(plcombits, MSR_DSR)) 1115 SET(ttybits, TIOCM_DSR); 1116 1117 if (sc->sc_cr != 0) 1118 SET(ttybits, TIOCM_LE); 1119 1120 return ttybits; 1121 } 1122 1123 static u_char 1124 cflag2lcr(tcflag_t cflag) 1125 { 1126 u_char lcr = 0; 1127 1128 switch (ISSET(cflag, CSIZE)) { 1129 case CS5: 1130 SET(lcr, LCR_5BITS); 1131 break; 1132 case CS6: 1133 SET(lcr, LCR_6BITS); 1134 break; 1135 case CS7: 1136 SET(lcr, LCR_7BITS); 1137 break; 1138 case CS8: 1139 SET(lcr, LCR_8BITS); 1140 break; 1141 } 1142 if (ISSET(cflag, PARENB)) { 1143 SET(lcr, LCR_PEN); 1144 if (!ISSET(cflag, PARODD)) 1145 SET(lcr, LCR_EPS); 1146 } 1147 if (ISSET(cflag, CSTOPB)) 1148 SET(lcr, LCR_STP2); 1149 1150 return lcr; 1151 } 1152 1153 int 1154 plcomparam(struct tty *tp, struct termios *t) 1155 { 1156 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(tp->t_dev)); 1157 int ospeed; 1158 u_char lcr; 1159 int s; 1160 1161 if (PLCOM_ISALIVE(sc) == 0) 1162 return EIO; 1163 1164 ospeed = plcomspeed(t->c_ospeed, sc->sc_frequency); 1165 1166 /* Check requested parameters. */ 1167 if (ospeed < 0) 1168 return EINVAL; 1169 if (t->c_ispeed && t->c_ispeed != t->c_ospeed) 1170 return EINVAL; 1171 1172 /* 1173 * For the console, always force CLOCAL and !HUPCL, so that the port 1174 * is always active. 1175 */ 1176 if (ISSET(sc->sc_swflags, TIOCFLAG_SOFTCAR) || 1177 ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) { 1178 SET(t->c_cflag, CLOCAL); 1179 CLR(t->c_cflag, HUPCL); 1180 } 1181 1182 /* 1183 * If there were no changes, don't do anything. This avoids dropping 1184 * input and improves performance when all we did was frob things like 1185 * VMIN and VTIME. 1186 */ 1187 if (tp->t_ospeed == t->c_ospeed && 1188 tp->t_cflag == t->c_cflag) 1189 return 0; 1190 1191 lcr = ISSET(sc->sc_lcr, LCR_BRK) | cflag2lcr(t->c_cflag); 1192 1193 s = splserial(); 1194 PLCOM_LOCK(sc); 1195 1196 sc->sc_lcr = lcr; 1197 1198 /* 1199 * PL010 has a fixed-length FIFO trigger point. 1200 */ 1201 if (ISSET(sc->sc_hwflags, PLCOM_HW_FIFO)) 1202 sc->sc_fifo = 1; 1203 else 1204 sc->sc_fifo = 0; 1205 1206 if (sc->sc_fifo) 1207 SET(sc->sc_lcr, LCR_FEN); 1208 1209 /* 1210 * If we're not in a mode that assumes a connection is present, then 1211 * ignore carrier changes. 1212 */ 1213 if (ISSET(t->c_cflag, CLOCAL | MDMBUF)) 1214 sc->sc_msr_dcd = 0; 1215 else 1216 sc->sc_msr_dcd = MSR_DCD; 1217 /* 1218 * Set the flow control pins depending on the current flow control 1219 * mode. 1220 */ 1221 if (ISSET(t->c_cflag, CRTSCTS)) { 1222 sc->sc_mcr_dtr = MCR_DTR; 1223 sc->sc_mcr_rts = MCR_RTS; 1224 sc->sc_msr_cts = MSR_CTS; 1225 } else if (ISSET(t->c_cflag, MDMBUF)) { 1226 /* 1227 * For DTR/DCD flow control, make sure we don't toggle DTR for 1228 * carrier detection. 1229 */ 1230 sc->sc_mcr_dtr = 0; 1231 sc->sc_mcr_rts = MCR_DTR; 1232 sc->sc_msr_cts = MSR_DCD; 1233 } else { 1234 /* 1235 * If no flow control, then always set RTS. This will make 1236 * the other side happy if it mistakenly thinks we're doing 1237 * RTS/CTS flow control. 1238 */ 1239 sc->sc_mcr_dtr = MCR_DTR | MCR_RTS; 1240 sc->sc_mcr_rts = 0; 1241 sc->sc_msr_cts = 0; 1242 if (ISSET(sc->sc_mcr, MCR_DTR)) 1243 SET(sc->sc_mcr, MCR_RTS); 1244 else 1245 CLR(sc->sc_mcr, MCR_RTS); 1246 } 1247 sc->sc_msr_mask = sc->sc_msr_cts | sc->sc_msr_dcd; 1248 1249 #if 0 1250 if (ospeed == 0) 1251 CLR(sc->sc_mcr, sc->sc_mcr_dtr); 1252 else 1253 SET(sc->sc_mcr, sc->sc_mcr_dtr); 1254 #endif 1255 1256 sc->sc_dlbl = ospeed; 1257 sc->sc_dlbh = ospeed >> 8; 1258 1259 /* And copy to tty. */ 1260 tp->t_ispeed = 0; 1261 tp->t_ospeed = t->c_ospeed; 1262 tp->t_cflag = t->c_cflag; 1263 1264 if (!sc->sc_heldchange) { 1265 if (sc->sc_tx_busy) { 1266 sc->sc_heldtbc = sc->sc_tbc; 1267 sc->sc_tbc = 0; 1268 sc->sc_heldchange = 1; 1269 } else 1270 plcom_loadchannelregs(sc); 1271 } 1272 1273 if (!ISSET(t->c_cflag, CHWFLOW)) { 1274 /* Disable the high water mark. */ 1275 sc->sc_r_hiwat = 0; 1276 sc->sc_r_lowat = 0; 1277 if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) { 1278 CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED); 1279 plcom_schedrx(sc); 1280 } 1281 if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) { 1282 CLR(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED); 1283 plcom_hwiflow(sc); 1284 } 1285 } else { 1286 sc->sc_r_hiwat = plcom_rbuf_hiwat; 1287 sc->sc_r_lowat = plcom_rbuf_lowat; 1288 } 1289 1290 PLCOM_UNLOCK(sc); 1291 splx(s); 1292 1293 /* 1294 * Update the tty layer's idea of the carrier bit, in case we changed 1295 * CLOCAL or MDMBUF. We don't hang up here; we only do that by 1296 * explicit request. 1297 */ 1298 (void) (*tp->t_linesw->l_modem)(tp, ISSET(sc->sc_msr, MSR_DCD)); 1299 1300 #ifdef PLCOM_DEBUG 1301 if (plcom_debug) 1302 plcomstatus(sc, "plcomparam "); 1303 #endif 1304 1305 if (!ISSET(t->c_cflag, CHWFLOW)) { 1306 if (sc->sc_tx_stopped) { 1307 sc->sc_tx_stopped = 0; 1308 plcomstart(tp); 1309 } 1310 } 1311 1312 return 0; 1313 } 1314 1315 void 1316 plcom_iflush(struct plcom_softc *sc) 1317 { 1318 bus_space_tag_t iot = sc->sc_iot; 1319 bus_space_handle_t ioh = sc->sc_ioh; 1320 #ifdef DIAGNOSTIC 1321 int reg; 1322 #endif 1323 int timo; 1324 1325 #ifdef DIAGNOSTIC 1326 reg = 0xffff; 1327 #endif 1328 timo = 50000; 1329 /* flush any pending I/O */ 1330 while (! ISSET(bus_space_read_1(iot, ioh, plcom_fr), FR_RXFE) 1331 && --timo) 1332 #ifdef DIAGNOSTIC 1333 reg = 1334 #else 1335 (void) 1336 #endif 1337 bus_space_read_1(iot, ioh, plcom_dr); 1338 #ifdef DIAGNOSTIC 1339 if (!timo) 1340 printf("%s: plcom_iflush timeout %02x\n", sc->sc_dev.dv_xname, 1341 reg); 1342 #endif 1343 } 1344 1345 void 1346 plcom_loadchannelregs(struct plcom_softc *sc) 1347 { 1348 bus_space_tag_t iot = sc->sc_iot; 1349 bus_space_handle_t ioh = sc->sc_ioh; 1350 1351 /* XXXXX necessary? */ 1352 plcom_iflush(sc); 1353 1354 bus_space_write_1(iot, ioh, plcom_cr, 0); 1355 1356 bus_space_write_1(iot, ioh, plcom_dlbl, sc->sc_dlbl); 1357 bus_space_write_1(iot, ioh, plcom_dlbh, sc->sc_dlbh); 1358 bus_space_write_1(iot, ioh, plcom_lcr, sc->sc_lcr); 1359 /* XXX device_unit() abuse */ 1360 sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(&sc->sc_dev), 1361 sc->sc_mcr_active = sc->sc_mcr); 1362 1363 bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr); 1364 } 1365 1366 int 1367 plcomhwiflow(struct tty *tp, int block) 1368 { 1369 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(tp->t_dev)); 1370 int s; 1371 1372 if (PLCOM_ISALIVE(sc) == 0) 1373 return 0; 1374 1375 if (sc->sc_mcr_rts == 0) 1376 return 0; 1377 1378 s = splserial(); 1379 PLCOM_LOCK(sc); 1380 1381 if (block) { 1382 if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) { 1383 SET(sc->sc_rx_flags, RX_TTY_BLOCKED); 1384 plcom_hwiflow(sc); 1385 } 1386 } else { 1387 if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) { 1388 CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED); 1389 plcom_schedrx(sc); 1390 } 1391 if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) { 1392 CLR(sc->sc_rx_flags, RX_TTY_BLOCKED); 1393 plcom_hwiflow(sc); 1394 } 1395 } 1396 1397 PLCOM_UNLOCK(sc); 1398 splx(s); 1399 return 1; 1400 } 1401 1402 /* 1403 * (un)block input via hw flowcontrol 1404 */ 1405 void 1406 plcom_hwiflow(struct plcom_softc *sc) 1407 { 1408 if (sc->sc_mcr_rts == 0) 1409 return; 1410 1411 if (ISSET(sc->sc_rx_flags, RX_ANY_BLOCK)) { 1412 CLR(sc->sc_mcr, sc->sc_mcr_rts); 1413 CLR(sc->sc_mcr_active, sc->sc_mcr_rts); 1414 } else { 1415 SET(sc->sc_mcr, sc->sc_mcr_rts); 1416 SET(sc->sc_mcr_active, sc->sc_mcr_rts); 1417 } 1418 /* XXX device_unit() abuse */ 1419 sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(&sc->sc_dev), 1420 sc->sc_mcr_active); 1421 } 1422 1423 1424 void 1425 plcomstart(struct tty *tp) 1426 { 1427 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(tp->t_dev)); 1428 bus_space_tag_t iot = sc->sc_iot; 1429 bus_space_handle_t ioh = sc->sc_ioh; 1430 int s; 1431 1432 if (PLCOM_ISALIVE(sc) == 0) 1433 return; 1434 1435 s = spltty(); 1436 if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP)) 1437 goto out; 1438 if (sc->sc_tx_stopped) 1439 goto out; 1440 1441 if (!ttypull(tp)) 1442 goto out; 1443 1444 /* Grab the first contiguous region of buffer space. */ 1445 { 1446 u_char *tba; 1447 int tbc; 1448 1449 tba = tp->t_outq.c_cf; 1450 tbc = ndqb(&tp->t_outq, 0); 1451 1452 (void)splserial(); 1453 PLCOM_LOCK(sc); 1454 1455 sc->sc_tba = tba; 1456 sc->sc_tbc = tbc; 1457 } 1458 1459 SET(tp->t_state, TS_BUSY); 1460 sc->sc_tx_busy = 1; 1461 1462 /* Enable transmit completion interrupts if necessary. */ 1463 if (!ISSET(sc->sc_cr, CR_TIE)) { 1464 SET(sc->sc_cr, CR_TIE); 1465 bus_space_write_1(iot, ioh, plcom_cr, sc->sc_cr); 1466 } 1467 1468 /* Output the first chunk of the contiguous buffer. */ 1469 { 1470 int n; 1471 1472 n = sc->sc_tbc; 1473 if (n > sc->sc_fifolen) 1474 n = sc->sc_fifolen; 1475 bus_space_write_multi_1(iot, ioh, plcom_dr, sc->sc_tba, n); 1476 sc->sc_tbc -= n; 1477 sc->sc_tba += n; 1478 } 1479 PLCOM_UNLOCK(sc); 1480 out: 1481 splx(s); 1482 return; 1483 } 1484 1485 /* 1486 * Stop output on a line. 1487 */ 1488 void 1489 plcomstop(struct tty *tp, int flag) 1490 { 1491 struct plcom_softc *sc = device_lookup(&plcom_cd, PLCOMUNIT(tp->t_dev)); 1492 int s; 1493 1494 s = splserial(); 1495 PLCOM_LOCK(sc); 1496 if (ISSET(tp->t_state, TS_BUSY)) { 1497 /* Stop transmitting at the next chunk. */ 1498 sc->sc_tbc = 0; 1499 sc->sc_heldtbc = 0; 1500 if (!ISSET(tp->t_state, TS_TTSTOP)) 1501 SET(tp->t_state, TS_FLUSH); 1502 } 1503 PLCOM_UNLOCK(sc); 1504 splx(s); 1505 } 1506 1507 void 1508 plcomdiag(void *arg) 1509 { 1510 struct plcom_softc *sc = arg; 1511 int overflows, floods; 1512 int s; 1513 1514 s = splserial(); 1515 PLCOM_LOCK(sc); 1516 overflows = sc->sc_overflows; 1517 sc->sc_overflows = 0; 1518 floods = sc->sc_floods; 1519 sc->sc_floods = 0; 1520 sc->sc_errors = 0; 1521 PLCOM_UNLOCK(sc); 1522 splx(s); 1523 1524 log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n", 1525 sc->sc_dev.dv_xname, 1526 overflows, overflows == 1 ? "" : "s", 1527 floods, floods == 1 ? "" : "s"); 1528 } 1529 1530 integrate void 1531 plcom_rxsoft(struct plcom_softc *sc, struct tty *tp) 1532 { 1533 int (*rint) (int, struct tty *) = tp->t_linesw->l_rint; 1534 u_char *get, *end; 1535 u_int cc, scc; 1536 u_char rsr; 1537 int code; 1538 int s; 1539 1540 end = sc->sc_ebuf; 1541 get = sc->sc_rbget; 1542 scc = cc = plcom_rbuf_size - sc->sc_rbavail; 1543 1544 if (cc == plcom_rbuf_size) { 1545 sc->sc_floods++; 1546 if (sc->sc_errors++ == 0) 1547 callout_reset(&sc->sc_diag_callout, 60 * hz, 1548 plcomdiag, sc); 1549 } 1550 1551 while (cc) { 1552 code = get[0]; 1553 rsr = get[1]; 1554 if (ISSET(rsr, RSR_OE | RSR_BE | RSR_FE | RSR_PE)) { 1555 if (ISSET(rsr, RSR_OE)) { 1556 sc->sc_overflows++; 1557 if (sc->sc_errors++ == 0) 1558 callout_reset(&sc->sc_diag_callout, 1559 60 * hz, plcomdiag, sc); 1560 } 1561 if (ISSET(rsr, RSR_BE | RSR_FE)) 1562 SET(code, TTY_FE); 1563 if (ISSET(rsr, RSR_PE)) 1564 SET(code, TTY_PE); 1565 } 1566 if ((*rint)(code, tp) == -1) { 1567 /* 1568 * The line discipline's buffer is out of space. 1569 */ 1570 if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) { 1571 /* 1572 * We're either not using flow control, or the 1573 * line discipline didn't tell us to block for 1574 * some reason. Either way, we have no way to 1575 * know when there's more space available, so 1576 * just drop the rest of the data. 1577 */ 1578 get += cc << 1; 1579 if (get >= end) 1580 get -= plcom_rbuf_size << 1; 1581 cc = 0; 1582 } else { 1583 /* 1584 * Don't schedule any more receive processing 1585 * until the line discipline tells us there's 1586 * space available (through plcomhwiflow()). 1587 * Leave the rest of the data in the input 1588 * buffer. 1589 */ 1590 SET(sc->sc_rx_flags, RX_TTY_OVERFLOWED); 1591 } 1592 break; 1593 } 1594 get += 2; 1595 if (get >= end) 1596 get = sc->sc_rbuf; 1597 cc--; 1598 } 1599 1600 if (cc != scc) { 1601 sc->sc_rbget = get; 1602 s = splserial(); 1603 PLCOM_LOCK(sc); 1604 1605 cc = sc->sc_rbavail += scc - cc; 1606 /* Buffers should be ok again, release possible block. */ 1607 if (cc >= sc->sc_r_lowat) { 1608 if (ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) { 1609 CLR(sc->sc_rx_flags, RX_IBUF_OVERFLOWED); 1610 SET(sc->sc_cr, CR_RIE | CR_RTIE); 1611 bus_space_write_1(sc->sc_iot, sc->sc_ioh, plcom_cr, sc->sc_cr); 1612 } 1613 if (ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED)) { 1614 CLR(sc->sc_rx_flags, RX_IBUF_BLOCKED); 1615 plcom_hwiflow(sc); 1616 } 1617 } 1618 PLCOM_UNLOCK(sc); 1619 splx(s); 1620 } 1621 } 1622 1623 integrate void 1624 plcom_txsoft(struct plcom_softc *sc, struct tty *tp) 1625 { 1626 1627 CLR(tp->t_state, TS_BUSY); 1628 if (ISSET(tp->t_state, TS_FLUSH)) 1629 CLR(tp->t_state, TS_FLUSH); 1630 else 1631 ndflush(&tp->t_outq, (int)(sc->sc_tba - tp->t_outq.c_cf)); 1632 (*tp->t_linesw->l_start)(tp); 1633 } 1634 1635 integrate void 1636 plcom_stsoft(struct plcom_softc *sc, struct tty *tp) 1637 { 1638 u_char msr, delta; 1639 int s; 1640 1641 s = splserial(); 1642 PLCOM_LOCK(sc); 1643 msr = sc->sc_msr; 1644 delta = sc->sc_msr_delta; 1645 sc->sc_msr_delta = 0; 1646 PLCOM_UNLOCK(sc); 1647 splx(s); 1648 1649 if (ISSET(delta, sc->sc_msr_dcd)) { 1650 /* 1651 * Inform the tty layer that carrier detect changed. 1652 */ 1653 (void) (*tp->t_linesw->l_modem)(tp, ISSET(msr, MSR_DCD)); 1654 } 1655 1656 if (ISSET(delta, sc->sc_msr_cts)) { 1657 /* Block or unblock output according to flow control. */ 1658 if (ISSET(msr, sc->sc_msr_cts)) { 1659 sc->sc_tx_stopped = 0; 1660 (*tp->t_linesw->l_start)(tp); 1661 } else { 1662 sc->sc_tx_stopped = 1; 1663 } 1664 } 1665 1666 #ifdef PLCOM_DEBUG 1667 if (plcom_debug) 1668 plcomstatus(sc, "plcom_stsoft"); 1669 #endif 1670 } 1671 1672 void 1673 plcomsoft(void *arg) 1674 { 1675 struct plcom_softc *sc = arg; 1676 struct tty *tp; 1677 1678 if (PLCOM_ISALIVE(sc) == 0) 1679 return; 1680 1681 tp = sc->sc_tty; 1682 1683 if (sc->sc_rx_ready) { 1684 sc->sc_rx_ready = 0; 1685 plcom_rxsoft(sc, tp); 1686 } 1687 1688 if (sc->sc_st_check) { 1689 sc->sc_st_check = 0; 1690 plcom_stsoft(sc, tp); 1691 } 1692 1693 if (sc->sc_tx_done) { 1694 sc->sc_tx_done = 0; 1695 plcom_txsoft(sc, tp); 1696 } 1697 } 1698 1699 int 1700 plcomintr(void *arg) 1701 { 1702 struct plcom_softc *sc = arg; 1703 bus_space_tag_t iot = sc->sc_iot; 1704 bus_space_handle_t ioh = sc->sc_ioh; 1705 u_char *put, *end; 1706 u_int cc; 1707 u_char rsr, iir; 1708 1709 if (PLCOM_ISALIVE(sc) == 0) 1710 return 0; 1711 1712 PLCOM_LOCK(sc); 1713 iir = bus_space_read_1(iot, ioh, plcom_iir); 1714 if (! ISSET(iir, IIR_IMASK)) { 1715 PLCOM_UNLOCK(sc); 1716 return 0; 1717 } 1718 1719 end = sc->sc_ebuf; 1720 put = sc->sc_rbput; 1721 cc = sc->sc_rbavail; 1722 1723 do { 1724 u_char msr, delta, fr; 1725 1726 fr = bus_space_read_1(iot, ioh, plcom_fr); 1727 1728 if (!ISSET(fr, FR_RXFE) && 1729 !ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) { 1730 while (cc > 0) { 1731 int cn_trapped = 0; 1732 put[0] = bus_space_read_1(iot, ioh, 1733 plcom_dr); 1734 rsr = bus_space_read_1(iot, ioh, plcom_rsr); 1735 /* Clear any error status. */ 1736 if (ISSET(rsr, 1737 (RSR_BE | RSR_OE | RSR_PE | RSR_FE))) 1738 bus_space_write_1(iot, ioh, plcom_ecr, 1739 0); 1740 if (ISSET(rsr, RSR_BE)) { 1741 cn_trapped = 0; 1742 cn_check_magic(sc->sc_tty->t_dev, 1743 CNC_BREAK, plcom_cnm_state); 1744 if (cn_trapped) 1745 continue; 1746 #if defined(KGDB) 1747 if (ISSET(sc->sc_hwflags, 1748 PLCOM_HW_KGDB)) { 1749 kgdb_connect(1); 1750 continue; 1751 } 1752 #endif 1753 } 1754 1755 put[1] = rsr; 1756 cn_trapped = 0; 1757 cn_check_magic(sc->sc_tty->t_dev, 1758 put[0], plcom_cnm_state); 1759 if (cn_trapped) { 1760 fr = bus_space_read_1(iot, ioh, 1761 plcom_fr); 1762 if (ISSET(fr, FR_RXFE)) 1763 break; 1764 1765 continue; 1766 } 1767 put += 2; 1768 if (put >= end) 1769 put = sc->sc_rbuf; 1770 cc--; 1771 1772 fr = bus_space_read_1(iot, ioh, plcom_fr); 1773 if (ISSET(fr, FR_RXFE)) 1774 break; 1775 } 1776 1777 /* 1778 * Current string of incoming characters ended because 1779 * no more data was available or we ran out of space. 1780 * Schedule a receive event if any data was received. 1781 * If we're out of space, turn off receive interrupts. 1782 */ 1783 sc->sc_rbput = put; 1784 sc->sc_rbavail = cc; 1785 if (!ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) 1786 sc->sc_rx_ready = 1; 1787 1788 /* 1789 * See if we are in danger of overflowing a buffer. If 1790 * so, use hardware flow control to ease the pressure. 1791 */ 1792 if (!ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED) && 1793 cc < sc->sc_r_hiwat) { 1794 SET(sc->sc_rx_flags, RX_IBUF_BLOCKED); 1795 plcom_hwiflow(sc); 1796 } 1797 1798 /* 1799 * If we're out of space, disable receive interrupts 1800 * until the queue has drained a bit. 1801 */ 1802 if (!cc) { 1803 SET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED); 1804 CLR(sc->sc_cr, CR_RIE | CR_RTIE); 1805 bus_space_write_1(iot, ioh, plcom_cr, 1806 sc->sc_cr); 1807 } 1808 } else { 1809 if (ISSET(iir, IIR_RIS)) { 1810 bus_space_write_1(iot, ioh, plcom_cr, 0); 1811 delay(10); 1812 bus_space_write_1(iot, ioh, plcom_cr, 1813 sc->sc_cr); 1814 continue; 1815 } 1816 } 1817 1818 msr = bus_space_read_1(iot, ioh, plcom_fr); 1819 delta = msr ^ sc->sc_msr; 1820 sc->sc_msr = msr; 1821 /* Clear any pending modem status interrupt. */ 1822 if (iir & IIR_MIS) 1823 bus_space_write_1(iot, ioh, plcom_icr, 0); 1824 /* 1825 * Pulse-per-second (PSS) signals on edge of DCD? 1826 * Process these even if line discipline is ignoring DCD. 1827 */ 1828 if (delta & sc->sc_ppsmask) { 1829 struct timeval tv; 1830 mutex_spin_enter(&timecounter_lock); 1831 if ((msr & sc->sc_ppsmask) == sc->sc_ppsassert) { 1832 /* XXX nanotime() */ 1833 microtime(&tv); 1834 TIMEVAL_TO_TIMESPEC(&tv, 1835 &sc->ppsinfo.assert_timestamp); 1836 if (sc->ppsparam.mode & PPS_OFFSETASSERT) { 1837 timespecadd(&sc->ppsinfo.assert_timestamp, 1838 &sc->ppsparam.assert_offset, 1839 &sc->ppsinfo.assert_timestamp); 1840 } 1841 1842 #ifdef PPS_SYNC 1843 if (sc->ppsparam.mode & PPS_HARDPPSONASSERT) 1844 hardpps(&tv, tv.tv_usec); 1845 #endif 1846 sc->ppsinfo.assert_sequence++; 1847 sc->ppsinfo.current_mode = sc->ppsparam.mode; 1848 1849 } else if ((msr & sc->sc_ppsmask) == sc->sc_ppsclear) { 1850 /* XXX nanotime() */ 1851 microtime(&tv); 1852 TIMEVAL_TO_TIMESPEC(&tv, 1853 &sc->ppsinfo.clear_timestamp); 1854 if (sc->ppsparam.mode & PPS_OFFSETCLEAR) { 1855 timespecadd(&sc->ppsinfo.clear_timestamp, 1856 &sc->ppsparam.clear_offset, 1857 &sc->ppsinfo.clear_timestamp); 1858 } 1859 1860 #ifdef PPS_SYNC 1861 if (sc->ppsparam.mode & PPS_HARDPPSONCLEAR) 1862 hardpps(&tv, tv.tv_usec); 1863 #endif 1864 sc->ppsinfo.clear_sequence++; 1865 sc->ppsinfo.current_mode = sc->ppsparam.mode; 1866 } 1867 mutex_spin_exit(&timecounter_lock); 1868 } 1869 1870 /* 1871 * Process normal status changes 1872 */ 1873 if (ISSET(delta, sc->sc_msr_mask)) { 1874 SET(sc->sc_msr_delta, delta); 1875 1876 /* 1877 * Stop output immediately if we lose the output 1878 * flow control signal or carrier detect. 1879 */ 1880 if (ISSET(~msr, sc->sc_msr_mask)) { 1881 sc->sc_tbc = 0; 1882 sc->sc_heldtbc = 0; 1883 #ifdef PLCOM_DEBUG 1884 if (plcom_debug) 1885 plcomstatus(sc, "plcomintr "); 1886 #endif 1887 } 1888 1889 sc->sc_st_check = 1; 1890 } 1891 1892 /* 1893 * Done handling any receive interrupts. See if data 1894 * can be * transmitted as well. Schedule tx done 1895 * event if no data left * and tty was marked busy. 1896 */ 1897 if (ISSET(iir, IIR_TIS)) { 1898 /* 1899 * If we've delayed a parameter change, do it 1900 * now, and restart * output. 1901 */ 1902 if (sc->sc_heldchange) { 1903 plcom_loadchannelregs(sc); 1904 sc->sc_heldchange = 0; 1905 sc->sc_tbc = sc->sc_heldtbc; 1906 sc->sc_heldtbc = 0; 1907 } 1908 1909 /* 1910 * Output the next chunk of the contiguous 1911 * buffer, if any. 1912 */ 1913 if (sc->sc_tbc > 0) { 1914 int n; 1915 1916 n = sc->sc_tbc; 1917 if (n > sc->sc_fifolen) 1918 n = sc->sc_fifolen; 1919 bus_space_write_multi_1(iot, ioh, plcom_dr, 1920 sc->sc_tba, n); 1921 sc->sc_tbc -= n; 1922 sc->sc_tba += n; 1923 } else { 1924 /* 1925 * Disable transmit plcompletion 1926 * interrupts if necessary. 1927 */ 1928 if (ISSET(sc->sc_cr, CR_TIE)) { 1929 CLR(sc->sc_cr, CR_TIE); 1930 bus_space_write_1(iot, ioh, plcom_cr, 1931 sc->sc_cr); 1932 } 1933 if (sc->sc_tx_busy) { 1934 sc->sc_tx_busy = 0; 1935 sc->sc_tx_done = 1; 1936 } 1937 } 1938 } 1939 } while (ISSET((iir = bus_space_read_1(iot, ioh, plcom_iir)), 1940 IIR_IMASK)); 1941 1942 PLCOM_UNLOCK(sc); 1943 1944 /* Wake up the poller. */ 1945 softint_schedule(sc->sc_si); 1946 1947 #if NRND > 0 && defined(RND_COM) 1948 rnd_add_uint32(&sc->rnd_source, iir | rsr); 1949 #endif 1950 1951 return 1; 1952 } 1953 1954 /* 1955 * The following functions are polled getc and putc routines, shared 1956 * by the console and kgdb glue. 1957 * 1958 * The read-ahead code is so that you can detect pending in-band 1959 * cn_magic in polled mode while doing output rather than having to 1960 * wait until the kernel decides it needs input. 1961 */ 1962 1963 #define MAX_READAHEAD 20 1964 static int plcom_readahead[MAX_READAHEAD]; 1965 static int plcom_readaheadcount = 0; 1966 1967 int 1968 plcom_common_getc(dev_t dev, bus_space_tag_t iot, bus_space_handle_t ioh) 1969 { 1970 int s = splserial(); 1971 u_char stat, c; 1972 1973 /* got a character from reading things earlier */ 1974 if (plcom_readaheadcount > 0) { 1975 int i; 1976 1977 c = plcom_readahead[0]; 1978 for (i = 1; i < plcom_readaheadcount; i++) { 1979 plcom_readahead[i-1] = plcom_readahead[i]; 1980 } 1981 plcom_readaheadcount--; 1982 splx(s); 1983 return c; 1984 } 1985 1986 /* block until a character becomes available */ 1987 while (ISSET(stat = bus_space_read_1(iot, ioh, plcom_fr), FR_RXFE)) 1988 ; 1989 1990 c = bus_space_read_1(iot, ioh, plcom_dr); 1991 stat = bus_space_read_1(iot, ioh, plcom_iir); 1992 { 1993 int cn_trapped = 0; /* unused */ 1994 #ifdef DDB 1995 extern int db_active; 1996 if (!db_active) 1997 #endif 1998 cn_check_magic(dev, c, plcom_cnm_state); 1999 } 2000 splx(s); 2001 return c; 2002 } 2003 2004 void 2005 plcom_common_putc(dev_t dev, bus_space_tag_t iot, bus_space_handle_t ioh, 2006 int c) 2007 { 2008 int s = splserial(); 2009 int timo; 2010 2011 int cin, stat; 2012 if (plcom_readaheadcount < MAX_READAHEAD 2013 && !ISSET(stat = bus_space_read_1(iot, ioh, plcom_fr), FR_RXFE)) { 2014 int cn_trapped = 0; 2015 cin = bus_space_read_1(iot, ioh, plcom_dr); 2016 stat = bus_space_read_1(iot, ioh, plcom_iir); 2017 cn_check_magic(dev, cin, plcom_cnm_state); 2018 plcom_readahead[plcom_readaheadcount++] = cin; 2019 } 2020 2021 /* wait for any pending transmission to finish */ 2022 timo = 150000; 2023 while (!ISSET(bus_space_read_1(iot, ioh, plcom_fr), FR_TXFE) && --timo) 2024 continue; 2025 2026 bus_space_write_1(iot, ioh, plcom_dr, c); 2027 PLCOM_BARRIER(iot, ioh, BR | BW); 2028 2029 /* wait for this transmission to complete */ 2030 timo = 1500000; 2031 while (!ISSET(bus_space_read_1(iot, ioh, plcom_fr), FR_TXFE) && --timo) 2032 continue; 2033 2034 splx(s); 2035 } 2036 2037 /* 2038 * Initialize UART for use as console or KGDB line. 2039 */ 2040 int 2041 plcominit(bus_space_tag_t iot, bus_addr_t iobase, int rate, int frequency, 2042 tcflag_t cflag, bus_space_handle_t *iohp) 2043 { 2044 bus_space_handle_t ioh; 2045 2046 if (bus_space_map(iot, iobase, PLCOM_UART_SIZE, 0, &ioh)) 2047 return ENOMEM; /* ??? */ 2048 2049 rate = plcomspeed(rate, frequency); 2050 bus_space_write_1(iot, ioh, plcom_cr, 0); 2051 bus_space_write_1(iot, ioh, plcom_dlbl, rate); 2052 bus_space_write_1(iot, ioh, plcom_dlbh, rate >> 8); 2053 bus_space_write_1(iot, ioh, plcom_lcr, cflag2lcr(cflag) | LCR_FEN); 2054 bus_space_write_1(iot, ioh, plcom_cr, CR_UARTEN); 2055 2056 #if 0 2057 /* Ought to do something like this, but we have no sc to 2058 dereference. */ 2059 /* XXX device_unit() abuse */ 2060 sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(&sc->sc_dev), 2061 MCR_DTR | MCR_RTS); 2062 #endif 2063 2064 *iohp = ioh; 2065 return 0; 2066 } 2067 2068 /* 2069 * Following are all routines needed for PLCOM to act as console 2070 */ 2071 struct consdev plcomcons = { 2072 NULL, NULL, plcomcngetc, plcomcnputc, plcomcnpollc, NULL, 2073 NULL, NULL, NODEV, CN_NORMAL 2074 }; 2075 2076 2077 int 2078 plcomcnattach(bus_space_tag_t iot, bus_addr_t iobase, int rate, int frequency, 2079 tcflag_t cflag, int unit) 2080 { 2081 int res; 2082 2083 res = plcominit(iot, iobase, rate, frequency, cflag, &plcomconsioh); 2084 if (res) 2085 return res; 2086 2087 cn_tab = &plcomcons; 2088 cn_init_magic(&plcom_cnm_state); 2089 cn_set_magic("\047\001"); /* default magic is BREAK */ 2090 2091 plcomconstag = iot; 2092 plcomconsunit = unit; 2093 plcomconsrate = rate; 2094 plcomconscflag = cflag; 2095 2096 return 0; 2097 } 2098 2099 void 2100 plcomcndetach(void) 2101 { 2102 bus_space_unmap(plcomconstag, plcomconsioh, PLCOM_UART_SIZE); 2103 plcomconstag = NULL; 2104 2105 cn_tab = NULL; 2106 } 2107 2108 int 2109 plcomcngetc(dev_t dev) 2110 { 2111 return plcom_common_getc(dev, plcomconstag, plcomconsioh); 2112 } 2113 2114 /* 2115 * Console kernel output character routine. 2116 */ 2117 void 2118 plcomcnputc(dev_t dev, int c) 2119 { 2120 plcom_common_putc(dev, plcomconstag, plcomconsioh, c); 2121 } 2122 2123 void 2124 plcomcnpollc(dev_t dev, int on) 2125 { 2126 2127 } 2128 2129 #ifdef KGDB 2130 int 2131 plcom_kgdb_attach(bus_space_tag_t iot, bus_addr_t iobase, int rate, 2132 int frequency, tcflag_t cflag, int unit) 2133 { 2134 int res; 2135 2136 if (iot == plcomconstag && iobase == plcomconsunit) 2137 return EBUSY; /* cannot share with console */ 2138 2139 res = plcominit(iot, iobase, rate, frequency, cflag, &plcom_kgdb_ioh); 2140 if (res) 2141 return res; 2142 2143 kgdb_attach(plcom_kgdb_getc, plcom_kgdb_putc, NULL); 2144 kgdb_dev = 123; /* unneeded, only to satisfy some tests */ 2145 2146 plcom_kgdb_iot = iot; 2147 plcom_kgdb_unit = unit; 2148 2149 return 0; 2150 } 2151 2152 /* ARGSUSED */ 2153 int 2154 plcom_kgdb_getc(void *arg) 2155 { 2156 return plcom_common_getc(NODEV, plcom_kgdb_iot, plcom_kgdb_ioh); 2157 } 2158 2159 /* ARGSUSED */ 2160 void 2161 plcom_kgdb_putc(void *arg, int c) 2162 { 2163 plcom_common_putc(NODEV, plcom_kgdb_iot, plcom_kgdb_ioh, c); 2164 } 2165 #endif /* KGDB */ 2166 2167 /* helper function to identify the plcom ports used by 2168 console or KGDB (and not yet autoconf attached) */ 2169 int 2170 plcom_is_console(bus_space_tag_t iot, int unit, 2171 bus_space_handle_t *ioh) 2172 { 2173 bus_space_handle_t help; 2174 2175 if (!plcomconsattached && 2176 iot == plcomconstag && unit == plcomconsunit) 2177 help = plcomconsioh; 2178 #ifdef KGDB 2179 else if (!plcom_kgdb_attached && 2180 iot == plcom_kgdb_iot && unit == plcom_kgdb_unit) 2181 help = plcom_kgdb_ioh; 2182 #endif 2183 else 2184 return 0; 2185 2186 if (ioh) 2187 *ioh = help; 2188 return 1; 2189 } 2190