xref: /netbsd-src/sys/arch/evbarm/dev/plcom.c (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 /*	$NetBSD: plcom.c,v 1.62 2020/10/19 17:00:02 tnn Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 ARM Ltd
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the company may not be used to endorse or promote
16  *    products derived from this software without specific prior written
17  *    permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
23  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  * Copyright (c) 1998, 1999, 2012 The NetBSD Foundation, Inc.
32  * All rights reserved.
33  *
34  * This code is derived from software contributed to The NetBSD Foundation
35  * by Charles M. Hannum and Nick Hudson.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  *
46  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
47  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
48  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
49  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
50  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
51  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
52  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
53  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
54  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
55  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
56  * POSSIBILITY OF SUCH DAMAGE.
57  */
58 
59 /*
60  * Copyright (c) 1991 The Regents of the University of California.
61  * All rights reserved.
62  *
63  * Redistribution and use in source and binary forms, with or without
64  * modification, are permitted provided that the following conditions
65  * are met:
66  * 1. Redistributions of source code must retain the above copyright
67  *    notice, this list of conditions and the following disclaimer.
68  * 2. Redistributions in binary form must reproduce the above copyright
69  *    notice, this list of conditions and the following disclaimer in the
70  *    documentation and/or other materials provided with the distribution.
71  * 3. Neither the name of the University nor the names of its contributors
72  *    may be used to endorse or promote products derived from this software
73  *    without specific prior written permission.
74  *
75  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
76  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
77  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
78  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
79  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
80  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
81  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
82  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
83  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
84  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
85  * SUCH DAMAGE.
86  *
87  *	@(#)com.c	7.5 (Berkeley) 5/16/91
88  */
89 
90 /*
91  * COM driver for the Prime Cell PL010 and PL011 UARTs. Both are is similar to
92  * the 16C550, but have a completely different programmer's model.
93  * Derived from the NS16550AF com driver.
94  */
95 
96 #include <sys/cdefs.h>
97 __KERNEL_RCSID(0, "$NetBSD: plcom.c,v 1.62 2020/10/19 17:00:02 tnn Exp $");
98 
99 #include "opt_plcom.h"
100 #include "opt_ddb.h"
101 #include "opt_kgdb.h"
102 #include "opt_lockdebug.h"
103 #include "opt_multiprocessor.h"
104 
105 /*
106  * Override cnmagic(9) macro before including <sys/systm.h>.
107  * We need to know if cn_check_magic triggered debugger, so set a flag.
108  * Callers of cn_check_magic must declare int cn_trapped = 0;
109  * XXX: this is *ugly*!
110  */
111 #define cn_trap()				\
112 	do {					\
113 		console_debugger();		\
114 		cn_trapped = 1;			\
115 	} while (/* CONSTCOND */ 0)
116 
117 #include <sys/param.h>
118 #include <sys/systm.h>
119 #include <sys/ioctl.h>
120 #include <sys/select.h>
121 #include <sys/tty.h>
122 #include <sys/proc.h>
123 #include <sys/conf.h>
124 #include <sys/file.h>
125 #include <sys/uio.h>
126 #include <sys/kernel.h>
127 #include <sys/syslog.h>
128 #include <sys/types.h>
129 #include <sys/device.h>
130 #include <sys/malloc.h>
131 #include <sys/timepps.h>
132 #include <sys/vnode.h>
133 #include <sys/kauth.h>
134 #include <sys/intr.h>
135 #include <sys/bus.h>
136 #ifdef RND_COM
137 #include <sys/rndsource.h>
138 #endif
139 
140 #include <evbarm/dev/plcomreg.h>
141 #include <evbarm/dev/plcomvar.h>
142 
143 #include <dev/cons.h>
144 
145 static void plcom_enable_debugport (struct plcom_softc *);
146 
147 void	plcom_config	(struct plcom_softc *);
148 void	plcom_shutdown	(struct plcom_softc *);
149 int	pl010comspeed	(long, long);
150 int	pl011comspeed	(long, long);
151 static	u_char	cflag2lcr (tcflag_t);
152 int	plcomparam	(struct tty *, struct termios *);
153 void	plcomstart	(struct tty *);
154 int	plcomhwiflow	(struct tty *, int);
155 
156 void	plcom_loadchannelregs (struct plcom_softc *);
157 void	plcom_hwiflow	(struct plcom_softc *);
158 void	plcom_break	(struct plcom_softc *, int);
159 void	plcom_modem	(struct plcom_softc *, int);
160 void	tiocm_to_plcom	(struct plcom_softc *, u_long, int);
161 int	plcom_to_tiocm	(struct plcom_softc *);
162 void	plcom_iflush	(struct plcom_softc *);
163 
164 int	plcom_common_getc (dev_t, struct plcom_instance *);
165 void	plcom_common_putc (dev_t, struct plcom_instance *, int);
166 
167 int	plcominit	(struct plcom_instance *, int, int, tcflag_t);
168 
169 dev_type_open(plcomopen);
170 dev_type_close(plcomclose);
171 dev_type_read(plcomread);
172 dev_type_write(plcomwrite);
173 dev_type_ioctl(plcomioctl);
174 dev_type_stop(plcomstop);
175 dev_type_tty(plcomtty);
176 dev_type_poll(plcompoll);
177 
178 int	plcomcngetc	(dev_t);
179 void	plcomcnputc	(dev_t, int);
180 void	plcomcnpollc	(dev_t, int);
181 void	plcomcnhalt	(dev_t);
182 
183 #define	integrate	static inline
184 void 	plcomsoft	(void *);
185 integrate void plcom_rxsoft	(struct plcom_softc *, struct tty *);
186 integrate void plcom_txsoft	(struct plcom_softc *, struct tty *);
187 integrate void plcom_stsoft	(struct plcom_softc *, struct tty *);
188 integrate void plcom_schedrx	(struct plcom_softc *);
189 void	plcomdiag		(void *);
190 
191 bool	plcom_intstatus(struct plcom_instance *, u_int *);
192 
193 extern struct cfdriver plcom_cd;
194 
195 const struct cdevsw plcom_cdevsw = {
196 	.d_open = plcomopen,
197 	.d_close = plcomclose,
198 	.d_read = plcomread,
199 	.d_write = plcomwrite,
200 	.d_ioctl = plcomioctl,
201 	.d_stop = plcomstop,
202 	.d_tty = plcomtty,
203 	.d_poll = plcompoll,
204 	.d_mmap = nommap,
205 	.d_kqfilter = ttykqfilter,
206 	.d_discard = nodiscard,
207 	.d_flag = D_TTY
208 };
209 
210 /*
211  * Make this an option variable one can patch.
212  * But be warned:  this must be a power of 2!
213  */
214 u_int plcom_rbuf_size = PLCOM_RING_SIZE;
215 
216 /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */
217 u_int plcom_rbuf_hiwat = (PLCOM_RING_SIZE * 1) / 4;
218 u_int plcom_rbuf_lowat = (PLCOM_RING_SIZE * 3) / 4;
219 
220 static int	plcomconsunit = -1;
221 static struct plcom_instance plcomcons_info;
222 
223 static int plcomconsattached;
224 static int plcomconsrate;
225 static tcflag_t plcomconscflag;
226 static struct cnm_state plcom_cnm_state;
227 
228 static int ppscap =
229 	PPS_TSFMT_TSPEC |
230 	PPS_CAPTUREASSERT |
231 	PPS_CAPTURECLEAR |
232 #ifdef  PPS_SYNC
233 	PPS_HARDPPSONASSERT | PPS_HARDPPSONCLEAR |
234 #endif	/* PPS_SYNC */
235 	PPS_OFFSETASSERT | PPS_OFFSETCLEAR;
236 
237 #ifdef KGDB
238 #include <sys/kgdb.h>
239 
240 static struct plcom_instance plcomkgdb_info;
241 static int plcom_kgdb_attached;
242 
243 int	plcom_kgdb_getc (void *);
244 void	plcom_kgdb_putc (void *, int);
245 #endif /* KGDB */
246 
247 #define	PLCOMDIALOUT_MASK	TTDIALOUT_MASK
248 
249 #define	PLCOMUNIT(x)	TTUNIT(x)
250 #define	PLCOMDIALOUT(x)	TTDIALOUT(x)
251 
252 #define	PLCOM_ISALIVE(sc)	((sc)->enabled != 0 && \
253 				 device_is_active((sc)->sc_dev))
254 
255 #define	BR	BUS_SPACE_BARRIER_READ
256 #define	BW	BUS_SPACE_BARRIER_WRITE
257 #define PLCOM_BARRIER(pi, f)	\
258     bus_space_barrier((pi)->pi_iot, (pi)->pi_ioh, 0, (pi)->pi_size, (f))
259 
260 static uint8_t
261 pread1(struct plcom_instance *pi, bus_size_t reg)
262 {
263 	if (!ISSET(pi->pi_flags, PLC_FLAG_32BIT_ACCESS))
264 		return bus_space_read_1(pi->pi_iot, pi->pi_ioh, reg);
265 
266 	return bus_space_read_4(pi->pi_iot, pi->pi_ioh, reg & -4) >>
267 	    (8 * (reg & 3));
268 }
269 int nhcr;
270 static void
271 pwrite1(struct plcom_instance *pi, bus_size_t o, uint8_t val)
272 {
273 	if (!ISSET(pi->pi_flags, PLC_FLAG_32BIT_ACCESS)) {
274 		bus_space_write_1(pi->pi_iot, pi->pi_ioh, o, val);
275 	} else {
276 		const size_t shift = 8 * (o & 3);
277 		o &= -4;
278 		uint32_t tmp = bus_space_read_4(pi->pi_iot, pi->pi_ioh, o);
279 		tmp = (val << shift) | (tmp & ~(0xff << shift));
280 		bus_space_write_4(pi->pi_iot, pi->pi_ioh, o, tmp);
281 	}
282 }
283 
284 static void
285 pwritem1(struct plcom_instance *pi, bus_size_t o, const uint8_t *datap,
286     bus_size_t count)
287 {
288 	if (!ISSET(pi->pi_flags, PLC_FLAG_32BIT_ACCESS)) {
289 		bus_space_write_multi_1(pi->pi_iot, pi->pi_ioh, o, datap, count);
290 	} else {
291 		KASSERT((o & 3) == 0);
292 		while (count--) {
293 			bus_space_write_4(pi->pi_iot, pi->pi_ioh, o, *datap++);
294 		};
295 	}
296 }
297 
298 #define	PREAD1(pi, reg)		pread1(pi, reg)
299 #define	PREAD4(pi, reg)		\
300 	bus_space_read_4((pi)->pi_iot, (pi)->pi_ioh, (reg))
301 
302 #define	PWRITE1(pi, reg, val)	pwrite1(pi, reg, val)
303 #define	PWRITEM1(pi, reg, d, c)	pwritem1(pi, reg, d, c)
304 #define	PWRITE4(pi, reg, val)	\
305 	bus_space_write_4((pi)->pi_iot, (pi)->pi_ioh, (reg), (val))
306 
307 int
308 pl010comspeed(long speed, long frequency)
309 {
310 #define	divrnd(n, q)	(((n)*2/(q)+1)/2)	/* divide and round off */
311 
312 	int x, err;
313 
314 #if 0
315 	if (speed == 0)
316 		return 0;
317 #endif
318 	if (speed <= 0)
319 		return -1;
320 	x = divrnd(frequency / 16, speed);
321 	if (x <= 0)
322 		return -1;
323 	err = divrnd(((quad_t)frequency) * 1000 / 16, speed * x) - 1000;
324 	if (err < 0)
325 		err = -err;
326 	if (err > PLCOM_TOLERANCE)
327 		return -1;
328 	return x;
329 
330 #undef	divrnd
331 }
332 
333 int
334 pl011comspeed(long speed, long frequency)
335 {
336 	int denom = 16 * speed;
337 	int div = frequency / denom;
338 	int rem = frequency % denom;
339 
340 	int ibrd = div << 6;
341 	int fbrd = (((8 * rem) / speed) + 1) / 2;
342 
343 	/* Tolerance? */
344 	return ibrd | fbrd;
345 }
346 
347 #ifdef PLCOM_DEBUG
348 int	plcom_debug = 0;
349 
350 void plcomstatus (struct plcom_softc *, const char *);
351 void
352 plcomstatus(struct plcom_softc *sc, const char *str)
353 {
354 	struct tty *tp = sc->sc_tty;
355 
356 	printf("%s: %s %sclocal  %sdcd %sts_carr_on %sdtr %stx_stopped\n",
357 	    device_xname(sc->sc_dev), str,
358 	    ISSET(tp->t_cflag, CLOCAL) ? "+" : "-",
359 	    ISSET(sc->sc_msr, PL01X_MSR_DCD) ? "+" : "-",
360 	    ISSET(tp->t_state, TS_CARR_ON) ? "+" : "-",
361 	    ISSET(sc->sc_mcr, PL01X_MCR_DTR) ? "+" : "-",
362 	    sc->sc_tx_stopped ? "+" : "-");
363 
364 	printf("%s: %s %scrtscts %scts %sts_ttstop  %srts %xrx_flags\n",
365 	    device_xname(sc->sc_dev), str,
366 	    ISSET(tp->t_cflag, CRTSCTS) ? "+" : "-",
367 	    ISSET(sc->sc_msr, PL01X_MSR_CTS) ? "+" : "-",
368 	    ISSET(tp->t_state, TS_TTSTOP) ? "+" : "-",
369 	    ISSET(sc->sc_mcr, PL01X_MCR_RTS) ? "+" : "-",
370 	    sc->sc_rx_flags);
371 }
372 #endif
373 
374 #if 0
375 int
376 plcomprobe1(bus_space_tag_t iot, bus_space_handle_t ioh)
377 {
378 	int data;
379 
380 	/* Disable the UART.  */
381 	bus_space_write_1(iot, ioh, plcom_cr, 0);
382 	/* Make sure the FIFO is off.  */
383 	bus_space_write_1(iot, ioh, plcom_lcr, PL01X_LCR_8BITS);
384 	/* Disable interrupts.  */
385 	bus_space_write_1(iot, ioh, plcom_iir, 0);
386 
387 	/* Make sure we swallow anything in the receiving register.  */
388 	data = bus_space_read_1(iot, ioh, plcom_dr);
389 
390 	if (bus_space_read_1(iot, ioh, plcom_lcr) != PL01X_LCR_8BITS)
391 		return 0;
392 
393 	data = bus_space_read_1(iot, ioh, plcom_fr) & (PL01X_FR_RXFF | PL01X_FR_RXFE);
394 
395 	if (data != PL01X_FR_RXFE)
396 		return 0;
397 
398 	return 1;
399 }
400 #endif
401 
402 /*
403  * No locking in this routine; it is only called during attach,
404  * or with the port already locked.
405  */
406 static void
407 plcom_enable_debugport(struct plcom_softc *sc)
408 {
409 	struct plcom_instance *pi = &sc->sc_pi;
410 
411 	sc->sc_cr = PL01X_CR_UARTEN;
412 	SET(sc->sc_mcr, PL01X_MCR_DTR | PL01X_MCR_RTS);
413 
414 	/* Turn on line break interrupt, set carrier. */
415 	switch (pi->pi_type) {
416 	case PLCOM_TYPE_PL010:
417 		SET(sc->sc_cr, PL010_CR_RIE | PL010_CR_RTIE);
418 		PWRITE1(pi, PL010COM_CR, sc->sc_cr);
419 		if (sc->sc_set_mcr) {
420 			/* XXX device_unit() abuse */
421 			sc->sc_set_mcr(sc->sc_set_mcr_arg,
422 			    device_unit(sc->sc_dev), sc->sc_mcr);
423 		}
424 		break;
425 	case PLCOM_TYPE_PL011:
426 		sc->sc_imsc = PL011_INT_RX | PL011_INT_RT;
427 		SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
428 		SET(sc->sc_cr, PL011_MCR(sc->sc_mcr));
429 		PWRITE4(pi, PL011COM_CR, sc->sc_cr);
430 		PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
431 		break;
432 	}
433 
434 }
435 
436 void
437 plcom_attach_subr(struct plcom_softc *sc)
438 {
439 	struct plcom_instance *pi = &sc->sc_pi;
440 	struct tty *tp;
441 
442 	callout_init(&sc->sc_diag_callout, 0);
443 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_HIGH);
444 
445 	switch (pi->pi_type) {
446 	case PLCOM_TYPE_PL010:
447 	case PLCOM_TYPE_PL011:
448 		break;
449 	default:
450 		aprint_error_dev(sc->sc_dev,
451 		    "Unknown plcom type: %d\n", pi->pi_type);
452 		return;
453 	}
454 
455 	/* Disable interrupts before configuring the device. */
456 	sc->sc_cr = 0;
457 	sc->sc_imsc = 0;
458 
459 	if (bus_space_is_equal(pi->pi_iot, plcomcons_info.pi_iot) &&
460 	    pi->pi_iobase == plcomcons_info.pi_iobase) {
461 		plcomconsattached = 1;
462 
463 		/* Make sure the console is always "hardwired". */
464 		delay(1000);			/* wait for output to finish */
465 		SET(sc->sc_hwflags, PLCOM_HW_CONSOLE);
466 		SET(sc->sc_swflags, TIOCFLAG_SOFTCAR);
467 		/*
468 		 * Must re-enable the console immediately, or we will
469 		 * hang when trying to print.
470 		 */
471 		sc->sc_cr = PL01X_CR_UARTEN;
472 		if (pi->pi_type == PLCOM_TYPE_PL011)
473 			SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
474 	}
475 
476 	switch (pi->pi_type) {
477 	case PLCOM_TYPE_PL010:
478 		PWRITE1(pi, PL010COM_CR, sc->sc_cr);
479 		break;
480 
481 	case PLCOM_TYPE_PL011:
482 		PWRITE4(pi, PL011COM_CR, sc->sc_cr);
483 		PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
484 		break;
485 	}
486 
487 	if (sc->sc_fifolen == 0) {
488 		switch (pi->pi_type) {
489 		case PLCOM_TYPE_PL010:
490 			/*
491 			 * The PL010 has a 16-byte fifo, but the tx interrupt
492 			 * triggers when there is space for 8 more bytes.
493 			*/
494 			sc->sc_fifolen = 8;
495 			break;
496 		case PLCOM_TYPE_PL011:
497 			/* Some revisions have a 32 byte TX FIFO */
498 			sc->sc_fifolen = 16;
499 			break;
500 		}
501 	}
502 
503 	if (ISSET(sc->sc_hwflags, PLCOM_HW_TXFIFO_DISABLE)) {
504 		sc->sc_fifolen = 1;
505 		aprint_normal_dev(sc->sc_dev, "txfifo disabled\n");
506 	}
507 
508 	if (sc->sc_fifolen > 1)
509 		SET(sc->sc_hwflags, PLCOM_HW_FIFO);
510 
511 	tp = tty_alloc();
512 	tp->t_oproc = plcomstart;
513 	tp->t_param = plcomparam;
514 	tp->t_hwiflow = plcomhwiflow;
515 
516 	sc->sc_tty = tp;
517 	sc->sc_rbuf = malloc(plcom_rbuf_size << 1, M_DEVBUF, M_WAITOK);
518 	sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf;
519 	sc->sc_rbavail = plcom_rbuf_size;
520 	sc->sc_ebuf = sc->sc_rbuf + (plcom_rbuf_size << 1);
521 
522 	tty_attach(tp);
523 
524 	if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
525 		int maj;
526 
527 		/* locate the major number */
528 		maj = cdevsw_lookup_major(&plcom_cdevsw);
529 
530 		tp->t_dev = cn_tab->cn_dev = makedev(maj, device_unit(sc->sc_dev));
531 
532 		aprint_normal_dev(sc->sc_dev, "console\n");
533 	}
534 
535 #ifdef KGDB
536 	/*
537 	 * Allow kgdb to "take over" this port.  If this is
538 	 * the kgdb device, it has exclusive use.
539 	 */
540 	if (bus_space_is_equal(pi->pi_iot, plcomkgdb_info.pi_iot) &&
541 	    pi->pi_iobase == plcomkgdb_info.pi_iobase) {
542 		if (!ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
543 			plcom_kgdb_attached = 1;
544 
545 			SET(sc->sc_hwflags, PLCOM_HW_KGDB);
546 		}
547 		aprint_normal_dev(sc->sc_dev, "kgdb\n");
548 	}
549 #endif
550 
551 	sc->sc_si = softint_establish(SOFTINT_SERIAL, plcomsoft, sc);
552 
553 #ifdef RND_COM
554 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
555 	    RND_TYPE_TTY, RND_FLAG_DEFAULT);
556 #endif
557 
558 	/*
559 	 * if there are no enable/disable functions, assume the device
560 	 * is always enabled
561 	 */
562 	if (!sc->enable)
563 		sc->enabled = 1;
564 
565 	plcom_config(sc);
566 
567 	SET(sc->sc_hwflags, PLCOM_HW_DEV_OK);
568 }
569 
570 void
571 plcom_config(struct plcom_softc *sc)
572 {
573 	struct plcom_instance *pi = &sc->sc_pi;
574 
575 	/* Disable interrupts before configuring the device. */
576 	sc->sc_cr = 0;
577 	sc->sc_imsc = 0;
578 	switch (pi->pi_type) {
579 	case PLCOM_TYPE_PL010:
580 		PWRITE1(pi, PL010COM_CR, sc->sc_cr);
581 		break;
582 
583 	case PLCOM_TYPE_PL011:
584 		PWRITE4(pi, PL011COM_CR, sc->sc_cr);
585 		PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
586 		break;
587 	}
588 
589 	if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE|PLCOM_HW_KGDB))
590 		plcom_enable_debugport(sc);
591 }
592 
593 int
594 plcom_detach(device_t self, int flags)
595 {
596 	struct plcom_softc *sc = device_private(self);
597 	int maj, mn;
598 
599 	if (sc->sc_hwflags & (PLCOM_HW_CONSOLE|PLCOM_HW_KGDB))
600 		return EBUSY;
601 
602 	if (sc->disable != NULL && sc->enabled != 0) {
603 		(*sc->disable)(sc);
604 		sc->enabled = 0;
605 	}
606 
607 	/* locate the major number */
608 	maj = cdevsw_lookup_major(&plcom_cdevsw);
609 
610 	/* Nuke the vnodes for any open instances. */
611 	mn = device_unit(self);
612 	vdevgone(maj, mn, mn, VCHR);
613 
614 	mn |= PLCOMDIALOUT_MASK;
615 	vdevgone(maj, mn, mn, VCHR);
616 
617 	if (sc->sc_rbuf == NULL) {
618 		/*
619 		 * Ring buffer allocation failed in the plcom_attach_subr,
620 		 * only the tty is allocated, and nothing else.
621 		 */
622 		tty_free(sc->sc_tty);
623 		return 0;
624 	}
625 
626 	/* Free the receive buffer. */
627 	free(sc->sc_rbuf, M_DEVBUF);
628 
629 	/* Detach and free the tty. */
630 	tty_detach(sc->sc_tty);
631 	tty_free(sc->sc_tty);
632 
633 	/* Unhook the soft interrupt handler. */
634 	softint_disestablish(sc->sc_si);
635 
636 #ifdef RND_COM
637 	/* Unhook the entropy source. */
638 	rnd_detach_source(&sc->rnd_source);
639 #endif
640 	callout_destroy(&sc->sc_diag_callout);
641 
642 	/* Destroy the lock. */
643 	mutex_destroy(&sc->sc_lock);
644 
645 	return 0;
646 }
647 
648 int
649 plcom_activate(device_t self, enum devact act)
650 {
651 	struct plcom_softc *sc = device_private(self);
652 
653 	switch (act) {
654 	case DVACT_DEACTIVATE:
655 		sc->enabled = 0;
656 		return 0;
657 	default:
658 		return EOPNOTSUPP;
659 	}
660 }
661 
662 void
663 plcom_shutdown(struct plcom_softc *sc)
664 {
665 	struct plcom_instance *pi = &sc->sc_pi;
666 	struct tty *tp = sc->sc_tty;
667 	mutex_spin_enter(&sc->sc_lock);
668 
669 	/* If we were asserting flow control, then deassert it. */
670 	SET(sc->sc_rx_flags, RX_IBUF_BLOCKED);
671 	plcom_hwiflow(sc);
672 
673 	/* Clear any break condition set with TIOCSBRK. */
674 	plcom_break(sc, 0);
675 
676 	/* Turn off PPS capture on last close. */
677 	mutex_spin_enter(&timecounter_lock);
678 	sc->sc_ppsmask = 0;
679 	sc->ppsparam.mode = 0;
680 	mutex_spin_exit(&timecounter_lock);
681 
682 	/*
683 	 * Hang up if necessary.  Wait a bit, so the other side has time to
684 	 * notice even if we immediately open the port again.
685 	 * Avoid tsleeping above splhigh().
686 	 */
687 	if (ISSET(tp->t_cflag, HUPCL)) {
688 		plcom_modem(sc, 0);
689 		mutex_spin_exit(&sc->sc_lock);
690 		/* XXX will only timeout */
691 		(void) kpause(ttclos, false, hz, NULL);
692 		mutex_spin_enter(&sc->sc_lock);
693 	}
694 
695 	sc->sc_cr = 0;
696 	sc->sc_imsc = 0;
697 	/* Turn off interrupts. */
698 	if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
699 		/* interrupt on break */
700 
701 		sc->sc_cr = PL01X_CR_UARTEN;
702 		sc->sc_imsc = 0;
703 		switch (pi->pi_type) {
704 		case PLCOM_TYPE_PL010:
705 			SET(sc->sc_cr, PL010_CR_RIE | PL010_CR_RTIE);
706 			break;
707 		case PLCOM_TYPE_PL011:
708 			SET(sc->sc_cr, PL011_CR_RXE);
709 			SET(sc->sc_imsc, PL011_INT_RT | PL011_INT_RX);
710 			break;
711 		}
712 	}
713 	switch (pi->pi_type) {
714 	case PLCOM_TYPE_PL010:
715 		SET(sc->sc_cr, PL010_CR_RIE | PL010_CR_RTIE);
716 		PWRITE1(pi, PL010COM_CR, sc->sc_cr);
717 		break;
718 	case PLCOM_TYPE_PL011:
719 		SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
720 		SET(sc->sc_imsc, PL011_INT_RT | PL011_INT_RX);
721 		PWRITE4(pi, PL011COM_CR, sc->sc_cr);
722 		PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
723 		break;
724 	}
725 
726 	mutex_spin_exit(&sc->sc_lock);
727 	if (sc->disable) {
728 #ifdef DIAGNOSTIC
729 		if (!sc->enabled)
730 			panic("plcom_shutdown: not enabled?");
731 #endif
732 		(*sc->disable)(sc);
733 		sc->enabled = 0;
734 	}
735 }
736 
737 int
738 plcomopen(dev_t dev, int flag, int mode, struct lwp *l)
739 {
740 	struct plcom_softc *sc;
741 	struct plcom_instance *pi;
742 	struct tty *tp;
743 	int s;
744 	int error;
745 
746 	sc = device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
747 	if (sc == NULL || !ISSET(sc->sc_hwflags, PLCOM_HW_DEV_OK) ||
748 		sc->sc_rbuf == NULL)
749 		return ENXIO;
750 
751 	if (!device_is_active(sc->sc_dev))
752 		return ENXIO;
753 
754 	pi = &sc->sc_pi;
755 
756 #ifdef KGDB
757 	/*
758 	 * If this is the kgdb port, no other use is permitted.
759 	 */
760 	if (ISSET(sc->sc_hwflags, PLCOM_HW_KGDB))
761 		return EBUSY;
762 #endif
763 
764 	tp = sc->sc_tty;
765 
766 	if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
767 		return (EBUSY);
768 
769 	s = spltty();
770 
771 	/*
772 	 * Do the following iff this is a first open.
773 	 */
774 	if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
775 		struct termios t;
776 
777 		tp->t_dev = dev;
778 
779 		if (sc->enable) {
780 			if ((*sc->enable)(sc)) {
781 				splx(s);
782 				aprint_error_dev(sc->sc_dev,
783 				    "device enable failed\n");
784 				return EIO;
785 			}
786 			mutex_spin_enter(&sc->sc_lock);
787 			sc->enabled = 1;
788 			plcom_config(sc);
789 		} else {
790 			mutex_spin_enter(&sc->sc_lock);
791 		}
792 
793 		/* Turn on interrupts. */
794 		/* IER_ERXRDY | IER_ERLS | IER_EMSC;  */
795 		/* Fetch the current modem control status, needed later. */
796 		sc->sc_cr = PL01X_CR_UARTEN;
797 		switch (pi->pi_type) {
798 		case PLCOM_TYPE_PL010:
799 			SET(sc->sc_cr,
800 			    PL010_CR_RIE | PL010_CR_RTIE | PL010_CR_MSIE);
801 			PWRITE1(pi, PL010COM_CR, sc->sc_cr);
802 			sc->sc_msr = PREAD1(pi, PL01XCOM_FR);
803 			break;
804 		case PLCOM_TYPE_PL011:
805 			SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
806 			SET(sc->sc_imsc, PL011_INT_RT | PL011_INT_RX |
807 			    PL011_INT_MSMASK);
808 			PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
809 			sc->sc_msr = PREAD4(pi, PL01XCOM_FR);
810 			break;
811 		}
812 
813 		/* Clear PPS capture state on first open. */
814 
815 		mutex_spin_enter(&timecounter_lock);
816 		sc->sc_ppsmask = 0;
817 		sc->ppsparam.mode = 0;
818 		mutex_spin_exit(&timecounter_lock);
819 
820 		mutex_spin_exit(&sc->sc_lock);
821 
822 		/*
823 		 * Initialize the termios status to the defaults.  Add in the
824 		 * sticky bits from TIOCSFLAGS.
825 		 */
826 		if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
827 			t.c_ospeed = plcomconsrate;
828 			t.c_cflag = plcomconscflag;
829 		} else {
830 			t.c_ospeed = TTYDEF_SPEED;
831 			t.c_cflag = TTYDEF_CFLAG;
832 		}
833 		t.c_ispeed = t.c_ospeed;
834 
835 		if (ISSET(sc->sc_swflags, TIOCFLAG_CLOCAL))
836 			SET(t.c_cflag, CLOCAL);
837 		if (ISSET(sc->sc_swflags, TIOCFLAG_CRTSCTS))
838 			SET(t.c_cflag, CRTSCTS);
839 		if (ISSET(sc->sc_swflags, TIOCFLAG_MDMBUF))
840 			SET(t.c_cflag, MDMBUF);
841 		/* Make sure plcomparam() will do something. */
842 		tp->t_ospeed = 0;
843 		(void) plcomparam(tp, &t);
844 		tp->t_iflag = TTYDEF_IFLAG;
845 		tp->t_oflag = TTYDEF_OFLAG;
846 		tp->t_lflag = TTYDEF_LFLAG;
847 		ttychars(tp);
848 		ttsetwater(tp);
849 
850 		mutex_spin_enter(&sc->sc_lock);
851 
852 		/*
853 		 * Turn on DTR.  We must always do this, even if carrier is not
854 		 * present, because otherwise we'd have to use TIOCSDTR
855 		 * immediately after setting CLOCAL, which applications do not
856 		 * expect.  We always assert DTR while the device is open
857 		 * unless explicitly requested to deassert it.
858 		 */
859 		plcom_modem(sc, 1);
860 
861 		/* Clear the input ring, and unblock. */
862 		sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf;
863 		sc->sc_rbavail = plcom_rbuf_size;
864 		plcom_iflush(sc);
865 		CLR(sc->sc_rx_flags, RX_ANY_BLOCK);
866 		plcom_hwiflow(sc);
867 
868 #ifdef PLCOM_DEBUG
869 		if (plcom_debug)
870 			plcomstatus(sc, "plcomopen  ");
871 #endif
872 
873 		mutex_spin_exit(&sc->sc_lock);
874 	}
875 
876 	splx(s);
877 
878 	error = ttyopen(tp, PLCOMDIALOUT(dev), ISSET(flag, O_NONBLOCK));
879 	if (error)
880 		goto bad;
881 
882 	error = (*tp->t_linesw->l_open)(dev, tp);
883 	if (error)
884 		goto bad;
885 
886 	return 0;
887 
888 bad:
889 	if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
890 		/*
891 		 * We failed to open the device, and nobody else had it opened.
892 		 * Clean up the state as appropriate.
893 		 */
894 		plcom_shutdown(sc);
895 	}
896 
897 	return error;
898 }
899 
900 int
901 plcomclose(dev_t dev, int flag, int mode, struct lwp *l)
902 {
903 	struct plcom_softc *sc =
904 		device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
905 	struct tty *tp = sc->sc_tty;
906 
907 	/* XXX This is for cons.c. */
908 	if (!ISSET(tp->t_state, TS_ISOPEN))
909 		return 0;
910 
911 	(*tp->t_linesw->l_close)(tp, flag);
912 	ttyclose(tp);
913 
914 	if (PLCOM_ISALIVE(sc) == 0)
915 		return 0;
916 
917 	if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
918 		/*
919 		 * Although we got a last close, the device may still be in
920 		 * use; e.g. if this was the dialout node, and there are still
921 		 * processes waiting for carrier on the non-dialout node.
922 		 */
923 		plcom_shutdown(sc);
924 	}
925 
926 	return 0;
927 }
928 
929 int
930 plcomread(dev_t dev, struct uio *uio, int flag)
931 {
932 	struct plcom_softc *sc =
933 		device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
934 	struct tty *tp = sc->sc_tty;
935 
936 	if (PLCOM_ISALIVE(sc) == 0)
937 		return EIO;
938 
939 	return (*tp->t_linesw->l_read)(tp, uio, flag);
940 }
941 
942 int
943 plcomwrite(dev_t dev, struct uio *uio, int flag)
944 {
945 	struct plcom_softc *sc =
946 		device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
947 	struct tty *tp = sc->sc_tty;
948 
949 	if (PLCOM_ISALIVE(sc) == 0)
950 		return EIO;
951 
952 	return (*tp->t_linesw->l_write)(tp, uio, flag);
953 }
954 
955 int
956 plcompoll(dev_t dev, int events, struct lwp *l)
957 {
958 	struct plcom_softc *sc =
959 		device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
960 	struct tty *tp = sc->sc_tty;
961 
962 	if (PLCOM_ISALIVE(sc) == 0)
963 		return EIO;
964 
965 	return (*tp->t_linesw->l_poll)(tp, events, l);
966 }
967 
968 struct tty *
969 plcomtty(dev_t dev)
970 {
971 	struct plcom_softc *sc =
972 		device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
973 	struct tty *tp = sc->sc_tty;
974 
975 	return tp;
976 }
977 
978 int
979 plcomioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
980 {
981 	struct plcom_softc *sc =
982 		device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
983 	struct tty *tp;
984 	int error;
985 
986 	if (sc == NULL)
987 		return ENXIO;
988 	if (PLCOM_ISALIVE(sc) == 0)
989 		return EIO;
990 
991 	tp = sc->sc_tty;
992 
993 	error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l);
994 	if (error != EPASSTHROUGH)
995 		return error;
996 
997 	error = ttioctl(tp, cmd, data, flag, l);
998 	if (error != EPASSTHROUGH)
999 		return error;
1000 
1001 	error = 0;
1002 	switch (cmd) {
1003 	case TIOCSFLAGS:
1004 		error = kauth_authorize_device_tty(l->l_cred,
1005 		    KAUTH_DEVICE_TTY_PRIVSET, tp);
1006 		break;
1007 	default:
1008 		/* nothing */
1009 		break;
1010 	}
1011 	if (error) {
1012 		return error;
1013 	}
1014 
1015 	mutex_spin_enter(&sc->sc_lock);
1016 	switch (cmd) {
1017 	case TIOCSBRK:
1018 		plcom_break(sc, 1);
1019 		break;
1020 
1021 	case TIOCCBRK:
1022 		plcom_break(sc, 0);
1023 		break;
1024 
1025 	case TIOCSDTR:
1026 		plcom_modem(sc, 1);
1027 		break;
1028 
1029 	case TIOCCDTR:
1030 		plcom_modem(sc, 0);
1031 		break;
1032 
1033 	case TIOCGFLAGS:
1034 		*(int *)data = sc->sc_swflags;
1035 		break;
1036 
1037 	case TIOCSFLAGS:
1038 		sc->sc_swflags = *(int *)data;
1039 		break;
1040 
1041 	case TIOCMSET:
1042 	case TIOCMBIS:
1043 	case TIOCMBIC:
1044 		tiocm_to_plcom(sc, cmd, *(int *)data);
1045 		break;
1046 
1047 	case TIOCMGET:
1048 		*(int *)data = plcom_to_tiocm(sc);
1049 		break;
1050 
1051 	case PPS_IOC_CREATE:
1052 		break;
1053 
1054 	case PPS_IOC_DESTROY:
1055 		break;
1056 
1057 	case PPS_IOC_GETPARAMS: {
1058 		pps_params_t *pp;
1059 		pp = (pps_params_t *)data;
1060 		mutex_spin_enter(&timecounter_lock);
1061 		*pp = sc->ppsparam;
1062 		mutex_spin_exit(&timecounter_lock);
1063 		break;
1064 	}
1065 
1066 	case PPS_IOC_SETPARAMS: {
1067 	  	pps_params_t *pp;
1068 		int mode;
1069 		pp = (pps_params_t *)data;
1070 		mutex_spin_enter(&timecounter_lock);
1071 		if (pp->mode & ~ppscap) {
1072 			error = EINVAL;
1073 			mutex_spin_exit(&timecounter_lock);
1074 			break;
1075 		}
1076 		sc->ppsparam = *pp;
1077 	 	/*
1078 		 * Compute msr masks from user-specified timestamp state.
1079 		 */
1080 		mode = sc->ppsparam.mode;
1081 #ifdef	PPS_SYNC
1082 		if (mode & PPS_HARDPPSONASSERT) {
1083 			mode |= PPS_CAPTUREASSERT;
1084 			/* XXX revoke any previous HARDPPS source */
1085 		}
1086 		if (mode & PPS_HARDPPSONCLEAR) {
1087 			mode |= PPS_CAPTURECLEAR;
1088 			/* XXX revoke any previous HARDPPS source */
1089 		}
1090 #endif	/* PPS_SYNC */
1091 		switch (mode & PPS_CAPTUREBOTH) {
1092 		case 0:
1093 			sc->sc_ppsmask = 0;
1094 			break;
1095 
1096 		case PPS_CAPTUREASSERT:
1097 			sc->sc_ppsmask = PL01X_MSR_DCD;
1098 			sc->sc_ppsassert = PL01X_MSR_DCD;
1099 			sc->sc_ppsclear = -1;
1100 			break;
1101 
1102 		case PPS_CAPTURECLEAR:
1103 			sc->sc_ppsmask = PL01X_MSR_DCD;
1104 			sc->sc_ppsassert = -1;
1105 			sc->sc_ppsclear = 0;
1106 			break;
1107 
1108 		case PPS_CAPTUREBOTH:
1109 			sc->sc_ppsmask = PL01X_MSR_DCD;
1110 			sc->sc_ppsassert = PL01X_MSR_DCD;
1111 			sc->sc_ppsclear = 0;
1112 			break;
1113 
1114 		default:
1115 			error = EINVAL;
1116 			break;
1117 		}
1118 		mutex_spin_exit(&timecounter_lock);
1119 		break;
1120 	}
1121 
1122 	case PPS_IOC_GETCAP:
1123 		*(int*)data = ppscap;
1124 		break;
1125 
1126 	case PPS_IOC_FETCH: {
1127 		pps_info_t *pi;
1128 		pi = (pps_info_t *)data;
1129 		mutex_spin_enter(&timecounter_lock);
1130 		*pi = sc->ppsinfo;
1131 		mutex_spin_exit(&timecounter_lock);
1132 		break;
1133 	}
1134 
1135 	case TIOCDCDTIMESTAMP:	/* XXX old, overloaded  API used by xntpd v3 */
1136 		/*
1137 		 * Some GPS clocks models use the falling rather than
1138 		 * rising edge as the on-the-second signal.
1139 		 * The old API has no way to specify PPS polarity.
1140 		 */
1141 		mutex_spin_enter(&timecounter_lock);
1142 		sc->sc_ppsmask = PL01X_MSR_DCD;
1143 #ifndef PPS_TRAILING_EDGE
1144 		sc->sc_ppsassert = PL01X_MSR_DCD;
1145 		sc->sc_ppsclear = -1;
1146 		TIMESPEC_TO_TIMEVAL((struct timeval *)data,
1147 		    &sc->ppsinfo.assert_timestamp);
1148 #else
1149 		sc->sc_ppsassert = -1
1150 		sc->sc_ppsclear = 0;
1151 		TIMESPEC_TO_TIMEVAL((struct timeval *)data,
1152 		    &sc->ppsinfo.clear_timestamp);
1153 #endif
1154 		mutex_spin_exit(&timecounter_lock);
1155 		break;
1156 
1157 	default:
1158 		error = EPASSTHROUGH;
1159 		break;
1160 	}
1161 
1162 	mutex_spin_exit(&sc->sc_lock);
1163 
1164 #ifdef PLCOM_DEBUG
1165 	if (plcom_debug)
1166 		plcomstatus(sc, "plcomioctl ");
1167 #endif
1168 
1169 	return error;
1170 }
1171 
1172 integrate void
1173 plcom_schedrx(struct plcom_softc *sc)
1174 {
1175 
1176 	sc->sc_rx_ready = 1;
1177 
1178 	/* Wake up the poller. */
1179 	softint_schedule(sc->sc_si);
1180 }
1181 
1182 void
1183 plcom_break(struct plcom_softc *sc, int onoff)
1184 {
1185 
1186 	if (onoff)
1187 		SET(sc->sc_lcr, PL01X_LCR_BRK);
1188 	else
1189 		CLR(sc->sc_lcr, PL01X_LCR_BRK);
1190 
1191 	if (!sc->sc_heldchange) {
1192 		if (sc->sc_tx_busy) {
1193 			sc->sc_heldtbc = sc->sc_tbc;
1194 			sc->sc_tbc = 0;
1195 			sc->sc_heldchange = 1;
1196 		} else
1197 			plcom_loadchannelregs(sc);
1198 	}
1199 }
1200 
1201 void
1202 plcom_modem(struct plcom_softc *sc, int onoff)
1203 {
1204 
1205 	if (sc->sc_mcr_dtr == 0)
1206 		return;
1207 
1208 	if (onoff)
1209 		SET(sc->sc_mcr, sc->sc_mcr_dtr);
1210 	else
1211 		CLR(sc->sc_mcr, sc->sc_mcr_dtr);
1212 
1213 	if (!sc->sc_heldchange) {
1214 		if (sc->sc_tx_busy) {
1215 			sc->sc_heldtbc = sc->sc_tbc;
1216 			sc->sc_tbc = 0;
1217 			sc->sc_heldchange = 1;
1218 		} else
1219 			plcom_loadchannelregs(sc);
1220 	}
1221 }
1222 
1223 void
1224 tiocm_to_plcom(struct plcom_softc *sc, u_long how, int ttybits)
1225 {
1226 	u_char plcombits;
1227 
1228 	plcombits = 0;
1229 	if (ISSET(ttybits, TIOCM_DTR))
1230 		SET(plcombits, PL01X_MCR_DTR);
1231 	if (ISSET(ttybits, TIOCM_RTS))
1232 		SET(plcombits, PL01X_MCR_RTS);
1233 
1234 	switch (how) {
1235 	case TIOCMBIC:
1236 		CLR(sc->sc_mcr, plcombits);
1237 		break;
1238 
1239 	case TIOCMBIS:
1240 		SET(sc->sc_mcr, plcombits);
1241 		break;
1242 
1243 	case TIOCMSET:
1244 		CLR(sc->sc_mcr, PL01X_MCR_DTR | PL01X_MCR_RTS);
1245 		SET(sc->sc_mcr, plcombits);
1246 		break;
1247 	}
1248 
1249 	if (!sc->sc_heldchange) {
1250 		if (sc->sc_tx_busy) {
1251 			sc->sc_heldtbc = sc->sc_tbc;
1252 			sc->sc_tbc = 0;
1253 			sc->sc_heldchange = 1;
1254 		} else
1255 			plcom_loadchannelregs(sc);
1256 	}
1257 }
1258 
1259 int
1260 plcom_to_tiocm(struct plcom_softc *sc)
1261 {
1262 	u_char plcombits;
1263 	int ttybits = 0;
1264 
1265 	plcombits = sc->sc_mcr;
1266 	if (ISSET(plcombits, PL01X_MCR_DTR))
1267 		SET(ttybits, TIOCM_DTR);
1268 	if (ISSET(plcombits, PL01X_MCR_RTS))
1269 		SET(ttybits, TIOCM_RTS);
1270 
1271 	plcombits = sc->sc_msr;
1272 	if (ISSET(plcombits, PL01X_MSR_DCD))
1273 		SET(ttybits, TIOCM_CD);
1274 	if (ISSET(plcombits, PL01X_MSR_CTS))
1275 		SET(ttybits, TIOCM_CTS);
1276 	if (ISSET(plcombits, PL01X_MSR_DSR))
1277 		SET(ttybits, TIOCM_DSR);
1278 	if (ISSET(plcombits, PL011_MSR_RI))
1279 		SET(ttybits, TIOCM_RI);
1280 
1281 	if (sc->sc_cr != 0)
1282 		SET(ttybits, TIOCM_LE);
1283 
1284 	return ttybits;
1285 }
1286 
1287 static u_char
1288 cflag2lcr(tcflag_t cflag)
1289 {
1290 	u_char lcr = 0;
1291 
1292 	switch (ISSET(cflag, CSIZE)) {
1293 	case CS5:
1294 		SET(lcr, PL01X_LCR_5BITS);
1295 		break;
1296 	case CS6:
1297 		SET(lcr, PL01X_LCR_6BITS);
1298 		break;
1299 	case CS7:
1300 		SET(lcr, PL01X_LCR_7BITS);
1301 		break;
1302 	case CS8:
1303 		SET(lcr, PL01X_LCR_8BITS);
1304 		break;
1305 	}
1306 	if (ISSET(cflag, PARENB)) {
1307 		SET(lcr, PL01X_LCR_PEN);
1308 		if (!ISSET(cflag, PARODD))
1309 			SET(lcr, PL01X_LCR_EPS);
1310 	}
1311 	if (ISSET(cflag, CSTOPB))
1312 		SET(lcr, PL01X_LCR_STP2);
1313 
1314 	return lcr;
1315 }
1316 
1317 int
1318 plcomparam(struct tty *tp, struct termios *t)
1319 {
1320 	struct plcom_softc *sc =
1321 		device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1322 	struct plcom_instance *pi = &sc->sc_pi;
1323 	int ospeed = -1;
1324 	u_char lcr;
1325 
1326 	if (PLCOM_ISALIVE(sc) == 0)
1327 		return EIO;
1328 
1329 	switch (pi->pi_type) {
1330 	case PLCOM_TYPE_PL010:
1331 		ospeed = pl010comspeed(t->c_ospeed, sc->sc_frequency);
1332 		break;
1333 	case PLCOM_TYPE_PL011:
1334 		ospeed = pl011comspeed(t->c_ospeed, sc->sc_frequency);
1335 		break;
1336 	}
1337 
1338 	/* Check requested parameters. */
1339 	if (ospeed < 0)
1340 		return EINVAL;
1341 	if (t->c_ispeed && t->c_ispeed != t->c_ospeed)
1342 		return EINVAL;
1343 
1344 	/*
1345 	 * For the console, always force CLOCAL and !HUPCL, so that the port
1346 	 * is always active.
1347 	 */
1348 	if (ISSET(sc->sc_swflags, TIOCFLAG_SOFTCAR) ||
1349 	    ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
1350 		SET(t->c_cflag, CLOCAL);
1351 		CLR(t->c_cflag, HUPCL);
1352 	}
1353 
1354 	/*
1355 	 * If there were no changes, don't do anything.  This avoids dropping
1356 	 * input and improves performance when all we did was frob things like
1357 	 * VMIN and VTIME.
1358 	 */
1359 	if (tp->t_ospeed == t->c_ospeed &&
1360 	    tp->t_cflag == t->c_cflag)
1361 		return 0;
1362 
1363 	lcr = ISSET(sc->sc_lcr, PL01X_LCR_BRK) | cflag2lcr(t->c_cflag);
1364 
1365 	mutex_spin_enter(&sc->sc_lock);
1366 
1367 	sc->sc_lcr = lcr;
1368 
1369 	/*
1370 	 * PL010 has a fixed-length FIFO trigger point.
1371 	 */
1372 	if (ISSET(sc->sc_hwflags, PLCOM_HW_FIFO))
1373 		sc->sc_fifo = 1;
1374 	else
1375 		sc->sc_fifo = 0;
1376 
1377 	if (sc->sc_fifo)
1378 		SET(sc->sc_lcr, PL01X_LCR_FEN);
1379 
1380 	/*
1381 	 * If we're not in a mode that assumes a connection is present, then
1382 	 * ignore carrier changes.
1383 	 */
1384 	if (ISSET(t->c_cflag, CLOCAL | MDMBUF))
1385 		sc->sc_msr_dcd = 0;
1386 	else
1387 		sc->sc_msr_dcd = PL01X_MSR_DCD;
1388 	/*
1389 	 * Set the flow control pins depending on the current flow control
1390 	 * mode.
1391 	 */
1392 	if (ISSET(t->c_cflag, CRTSCTS)) {
1393 		sc->sc_mcr_dtr = PL01X_MCR_DTR;
1394 		sc->sc_mcr_rts = PL01X_MCR_RTS;
1395 		sc->sc_msr_cts = PL01X_MSR_CTS;
1396 	} else if (ISSET(t->c_cflag, MDMBUF)) {
1397 		/*
1398 		 * For DTR/DCD flow control, make sure we don't toggle DTR for
1399 		 * carrier detection.
1400 		 */
1401 		sc->sc_mcr_dtr = 0;
1402 		sc->sc_mcr_rts = PL01X_MCR_DTR;
1403 		sc->sc_msr_cts = PL01X_MSR_DCD;
1404 	} else {
1405 		/*
1406 		 * If no flow control, then always set RTS.  This will make
1407 		 * the other side happy if it mistakenly thinks we're doing
1408 		 * RTS/CTS flow control.
1409 		 */
1410 		sc->sc_mcr_dtr = PL01X_MCR_DTR | PL01X_MCR_RTS;
1411 		sc->sc_mcr_rts = 0;
1412 		sc->sc_msr_cts = 0;
1413 		if (ISSET(sc->sc_mcr, PL01X_MCR_DTR))
1414 			SET(sc->sc_mcr, PL01X_MCR_RTS);
1415 		else
1416 			CLR(sc->sc_mcr, PL01X_MCR_RTS);
1417 	}
1418 	sc->sc_msr_mask = sc->sc_msr_cts | sc->sc_msr_dcd;
1419 
1420 #if 0
1421 	if (ospeed == 0)
1422 		CLR(sc->sc_mcr, sc->sc_mcr_dtr);
1423 	else
1424 		SET(sc->sc_mcr, sc->sc_mcr_dtr);
1425 #endif
1426 
1427 	switch (pi->pi_type) {
1428 	case PLCOM_TYPE_PL010:
1429 		sc->sc_ratel = ospeed & 0xff;
1430 		sc->sc_rateh = (ospeed >> 8) & 0xff;
1431 		break;
1432 	case PLCOM_TYPE_PL011:
1433 		sc->sc_ratel = ospeed & ((1 << 6) - 1);
1434 		sc->sc_rateh = ospeed >> 6;
1435 		break;
1436 	}
1437 
1438 	/* And copy to tty. */
1439 	tp->t_ispeed = t->c_ospeed;
1440 	tp->t_ospeed = t->c_ospeed;
1441 	tp->t_cflag = t->c_cflag;
1442 
1443 	if (!sc->sc_heldchange) {
1444 		if (sc->sc_tx_busy) {
1445 			sc->sc_heldtbc = sc->sc_tbc;
1446 			sc->sc_tbc = 0;
1447 			sc->sc_heldchange = 1;
1448 		} else
1449 			plcom_loadchannelregs(sc);
1450 	}
1451 
1452 	if (!ISSET(t->c_cflag, CHWFLOW)) {
1453 		/* Disable the high water mark. */
1454 		sc->sc_r_hiwat = 0;
1455 		sc->sc_r_lowat = 0;
1456 		if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) {
1457 			CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1458 			plcom_schedrx(sc);
1459 		}
1460 		if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) {
1461 			CLR(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED);
1462 			plcom_hwiflow(sc);
1463 		}
1464 	} else {
1465 		sc->sc_r_hiwat = plcom_rbuf_hiwat;
1466 		sc->sc_r_lowat = plcom_rbuf_lowat;
1467 	}
1468 
1469 	mutex_spin_exit(&sc->sc_lock);
1470 
1471 	/*
1472 	 * Update the tty layer's idea of the carrier bit, in case we changed
1473 	 * CLOCAL or MDMBUF.  We don't hang up here; we only do that by
1474 	 * explicit request.
1475 	 */
1476 	(void) (*tp->t_linesw->l_modem)(tp, ISSET(sc->sc_msr, PL01X_MSR_DCD));
1477 
1478 #ifdef PLCOM_DEBUG
1479 	if (plcom_debug)
1480 		plcomstatus(sc, "plcomparam ");
1481 #endif
1482 
1483 	if (!ISSET(t->c_cflag, CHWFLOW)) {
1484 		if (sc->sc_tx_stopped) {
1485 			sc->sc_tx_stopped = 0;
1486 			plcomstart(tp);
1487 		}
1488 	}
1489 
1490 	return 0;
1491 }
1492 
1493 void
1494 plcom_iflush(struct plcom_softc *sc)
1495 {
1496 	struct plcom_instance *pi = &sc->sc_pi;
1497 #ifdef DIAGNOSTIC
1498 	int reg;
1499 #endif
1500 	int timo;
1501 
1502 #ifdef DIAGNOSTIC
1503 	reg = 0xffff;
1504 #endif
1505 	timo = 50000;
1506 	/* flush any pending I/O */
1507 	while (! ISSET(PREAD1(pi, PL01XCOM_FR), PL01X_FR_RXFE)
1508 	    && --timo)
1509 #ifdef DIAGNOSTIC
1510 		reg =
1511 #else
1512 		    (void)
1513 #endif
1514 		    PREAD1(pi, PL01XCOM_DR);
1515 #ifdef DIAGNOSTIC
1516 	if (!timo)
1517 		aprint_error_dev(sc->sc_dev, ": %s timeout %02x\n", __func__,
1518 		    reg);
1519 #endif
1520 }
1521 
1522 void
1523 plcom_loadchannelregs(struct plcom_softc *sc)
1524 {
1525 	struct plcom_instance *pi = &sc->sc_pi;
1526 
1527 	/* XXXXX necessary? */
1528 	plcom_iflush(sc);
1529 
1530 	switch (pi->pi_type) {
1531 	case PLCOM_TYPE_PL010:
1532 		PWRITE1(pi, PL010COM_CR, 0);
1533 		if (sc->sc_frequency != 0) {
1534 			PWRITE1(pi, PL010COM_DLBL, sc->sc_ratel);
1535 			PWRITE1(pi, PL010COM_DLBH, sc->sc_rateh);
1536 		}
1537 		PWRITE1(pi, PL010COM_LCR, sc->sc_lcr);
1538 
1539 		/* XXX device_unit() abuse */
1540 		if (sc->sc_set_mcr)
1541 			sc->sc_set_mcr(sc->sc_set_mcr_arg,
1542 			    device_unit(sc->sc_dev),
1543 			    sc->sc_mcr_active = sc->sc_mcr);
1544 
1545 		PWRITE1(pi, PL010COM_CR, sc->sc_cr);
1546 		break;
1547 
1548 	case PLCOM_TYPE_PL011:
1549 		PWRITE4(pi, PL011COM_CR, 0);
1550 		if (sc->sc_frequency != 0) {
1551 			PWRITE1(pi, PL011COM_FBRD, sc->sc_ratel);
1552 			PWRITE4(pi, PL011COM_IBRD, sc->sc_rateh);
1553 		}
1554 		PWRITE1(pi, PL011COM_LCRH, sc->sc_lcr);
1555 		sc->sc_mcr_active = sc->sc_mcr;
1556 		CLR(sc->sc_cr, PL011_MCR(PL01X_MCR_RTS | PL01X_MCR_DTR));
1557 		SET(sc->sc_cr, PL011_MCR(sc->sc_mcr_active));
1558 		PWRITE4(pi, PL011COM_CR, sc->sc_cr);
1559 		break;
1560 	}
1561 }
1562 
1563 int
1564 plcomhwiflow(struct tty *tp, int block)
1565 {
1566 	struct plcom_softc *sc =
1567 		device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1568 
1569 	if (PLCOM_ISALIVE(sc) == 0)
1570 		return 0;
1571 
1572 	if (sc->sc_mcr_rts == 0)
1573 		return 0;
1574 
1575 	mutex_spin_enter(&sc->sc_lock);
1576 
1577 	if (block) {
1578 		if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1579 			SET(sc->sc_rx_flags, RX_TTY_BLOCKED);
1580 			plcom_hwiflow(sc);
1581 		}
1582 	} else {
1583 		if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) {
1584 			CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1585 			plcom_schedrx(sc);
1586 		}
1587 		if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1588 			CLR(sc->sc_rx_flags, RX_TTY_BLOCKED);
1589 			plcom_hwiflow(sc);
1590 		}
1591 	}
1592 
1593 	mutex_spin_exit(&sc->sc_lock);
1594 	return 1;
1595 }
1596 
1597 /*
1598  * (un)block input via hw flowcontrol
1599  */
1600 void
1601 plcom_hwiflow(struct plcom_softc *sc)
1602 {
1603 	struct plcom_instance *pi = &sc->sc_pi;
1604 
1605 	if (sc->sc_mcr_rts == 0)
1606 		return;
1607 
1608 	if (ISSET(sc->sc_rx_flags, RX_ANY_BLOCK)) {
1609 		CLR(sc->sc_mcr, sc->sc_mcr_rts);
1610 		CLR(sc->sc_mcr_active, sc->sc_mcr_rts);
1611 	} else {
1612 		SET(sc->sc_mcr, sc->sc_mcr_rts);
1613 		SET(sc->sc_mcr_active, sc->sc_mcr_rts);
1614 	}
1615 	switch (pi->pi_type) {
1616 	case PLCOM_TYPE_PL010:
1617 		if (sc->sc_set_mcr)
1618 			/* XXX device_unit() abuse */
1619 			sc->sc_set_mcr(sc->sc_set_mcr_arg,
1620 			     device_unit(sc->sc_dev), sc->sc_mcr_active);
1621 		break;
1622 	case PLCOM_TYPE_PL011:
1623 		CLR(sc->sc_cr, PL011_MCR(PL01X_MCR_RTS | PL01X_MCR_DTR));
1624 		SET(sc->sc_cr, PL011_MCR(sc->sc_mcr_active));
1625 		PWRITE4(pi, PL011COM_CR, sc->sc_cr);
1626 		break;
1627 	}
1628 }
1629 
1630 
1631 void
1632 plcomstart(struct tty *tp)
1633 {
1634 	struct plcom_softc *sc =
1635 		device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1636 	struct plcom_instance *pi = &sc->sc_pi;
1637 	int s;
1638 
1639 	if (PLCOM_ISALIVE(sc) == 0)
1640 		return;
1641 
1642 	s = spltty();
1643 	if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
1644 		goto out;
1645 	if (sc->sc_tx_stopped)
1646 		goto out;
1647 
1648 	if (!ttypull(tp))
1649 		goto out;
1650 
1651 	/* Grab the first contiguous region of buffer space. */
1652 	{
1653 		u_char *tba;
1654 		int tbc;
1655 
1656 		tba = tp->t_outq.c_cf;
1657 		tbc = ndqb(&tp->t_outq, 0);
1658 
1659 		mutex_spin_enter(&sc->sc_lock);
1660 
1661 		sc->sc_tba = tba;
1662 		sc->sc_tbc = tbc;
1663 	}
1664 
1665 	SET(tp->t_state, TS_BUSY);
1666 	sc->sc_tx_busy = 1;
1667 
1668 	/* Enable transmit completion interrupts if necessary. */
1669 	switch (pi->pi_type) {
1670 	case PLCOM_TYPE_PL010:
1671 		if (!ISSET(sc->sc_cr, PL010_CR_TIE)) {
1672 			SET(sc->sc_cr, PL010_CR_TIE);
1673 			PWRITE1(pi, PL010COM_CR, sc->sc_cr);
1674 		}
1675 		break;
1676 	case PLCOM_TYPE_PL011:
1677 		if (!ISSET(sc->sc_imsc, PL011_INT_TX)) {
1678 			SET(sc->sc_imsc, PL011_INT_TX);
1679 			PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
1680 		}
1681 		break;
1682 	}
1683 
1684 	/* Output the first chunk of the contiguous buffer. */
1685 	{
1686 		int n;
1687 
1688 		n = sc->sc_tbc;
1689 		if (n > sc->sc_fifolen)
1690 			n = sc->sc_fifolen;
1691 		PWRITEM1(pi, PL01XCOM_DR, sc->sc_tba, n);
1692 		sc->sc_tbc -= n;
1693 		sc->sc_tba += n;
1694 	}
1695 	mutex_spin_exit(&sc->sc_lock);
1696 out:
1697 	splx(s);
1698 	return;
1699 }
1700 
1701 /*
1702  * Stop output on a line.
1703  */
1704 void
1705 plcomstop(struct tty *tp, int flag)
1706 {
1707 	struct plcom_softc *sc =
1708 		device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1709 
1710 	mutex_spin_enter(&sc->sc_lock);
1711 	if (ISSET(tp->t_state, TS_BUSY)) {
1712 		/* Stop transmitting at the next chunk. */
1713 		sc->sc_tbc = 0;
1714 		sc->sc_heldtbc = 0;
1715 		if (!ISSET(tp->t_state, TS_TTSTOP))
1716 			SET(tp->t_state, TS_FLUSH);
1717 	}
1718 	mutex_spin_exit(&sc->sc_lock);
1719 }
1720 
1721 void
1722 plcomdiag(void *arg)
1723 {
1724 	struct plcom_softc *sc = arg;
1725 	int overflows, floods;
1726 
1727 	mutex_spin_enter(&sc->sc_lock);
1728 	overflows = sc->sc_overflows;
1729 	sc->sc_overflows = 0;
1730 	floods = sc->sc_floods;
1731 	sc->sc_floods = 0;
1732 	sc->sc_errors = 0;
1733 	mutex_spin_exit(&sc->sc_lock);
1734 
1735 	log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n",
1736 	    device_xname(sc->sc_dev),
1737 	    overflows, overflows == 1 ? "" : "s",
1738 	    floods, floods == 1 ? "" : "s");
1739 }
1740 
1741 integrate void
1742 plcom_rxsoft(struct plcom_softc *sc, struct tty *tp)
1743 {
1744 	int (*rint) (int, struct tty *) = tp->t_linesw->l_rint;
1745 	struct plcom_instance *pi = &sc->sc_pi;
1746 	u_char *get, *end;
1747 	u_int cc, scc;
1748 	u_char rsr;
1749 	int code;
1750 
1751 	end = sc->sc_ebuf;
1752 	get = sc->sc_rbget;
1753 	scc = cc = plcom_rbuf_size - sc->sc_rbavail;
1754 
1755 	if (cc == plcom_rbuf_size) {
1756 		sc->sc_floods++;
1757 		if (sc->sc_errors++ == 0)
1758 			callout_reset(&sc->sc_diag_callout, 60 * hz,
1759 			    plcomdiag, sc);
1760 	}
1761 
1762 	while (cc) {
1763 		code = get[0];
1764 		rsr = get[1];
1765 		if (ISSET(rsr, PL01X_RSR_ERROR)) {
1766 			if (ISSET(rsr, PL01X_RSR_OE)) {
1767 				sc->sc_overflows++;
1768 				if (sc->sc_errors++ == 0)
1769 					callout_reset(&sc->sc_diag_callout,
1770 					    60 * hz, plcomdiag, sc);
1771 			}
1772 			if (ISSET(rsr, PL01X_RSR_BE | PL01X_RSR_FE))
1773 				SET(code, TTY_FE);
1774 			if (ISSET(rsr, PL01X_RSR_PE))
1775 				SET(code, TTY_PE);
1776 		}
1777 		if ((*rint)(code, tp) == -1) {
1778 			/*
1779 			 * The line discipline's buffer is out of space.
1780 			 */
1781 			if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1782 				/*
1783 				 * We're either not using flow control, or the
1784 				 * line discipline didn't tell us to block for
1785 				 * some reason.  Either way, we have no way to
1786 				 * know when there's more space available, so
1787 				 * just drop the rest of the data.
1788 				 */
1789 				get += cc << 1;
1790 				if (get >= end)
1791 					get -= plcom_rbuf_size << 1;
1792 				cc = 0;
1793 			} else {
1794 				/*
1795 				 * Don't schedule any more receive processing
1796 				 * until the line discipline tells us there's
1797 				 * space available (through plcomhwiflow()).
1798 				 * Leave the rest of the data in the input
1799 				 * buffer.
1800 				 */
1801 				SET(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1802 			}
1803 			break;
1804 		}
1805 		get += 2;
1806 		if (get >= end)
1807 			get = sc->sc_rbuf;
1808 		cc--;
1809 	}
1810 
1811 	if (cc != scc) {
1812 		sc->sc_rbget = get;
1813 		mutex_spin_enter(&sc->sc_lock);
1814 
1815 		cc = sc->sc_rbavail += scc - cc;
1816 		/* Buffers should be ok again, release possible block. */
1817 		if (cc >= sc->sc_r_lowat) {
1818 			if (ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) {
1819 				CLR(sc->sc_rx_flags, RX_IBUF_OVERFLOWED);
1820 				switch (pi->pi_type) {
1821 				case PLCOM_TYPE_PL010:
1822 					SET(sc->sc_cr,
1823 					    PL010_CR_RIE | PL010_CR_RTIE);
1824 					PWRITE1(pi, PL010COM_CR, sc->sc_cr);
1825 					break;
1826 				case PLCOM_TYPE_PL011:
1827 					SET(sc->sc_imsc,
1828 					    PL011_INT_RX | PL011_INT_RT);
1829 					PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
1830 					break;
1831 				}
1832 			}
1833 			if (ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED)) {
1834 				CLR(sc->sc_rx_flags, RX_IBUF_BLOCKED);
1835 				plcom_hwiflow(sc);
1836 			}
1837 		}
1838 		mutex_spin_exit(&sc->sc_lock);
1839 	}
1840 }
1841 
1842 integrate void
1843 plcom_txsoft(struct plcom_softc *sc, struct tty *tp)
1844 {
1845 
1846 	CLR(tp->t_state, TS_BUSY);
1847 	if (ISSET(tp->t_state, TS_FLUSH))
1848 		CLR(tp->t_state, TS_FLUSH);
1849 	else
1850 		ndflush(&tp->t_outq, (int)(sc->sc_tba - tp->t_outq.c_cf));
1851 	(*tp->t_linesw->l_start)(tp);
1852 }
1853 
1854 integrate void
1855 plcom_stsoft(struct plcom_softc *sc, struct tty *tp)
1856 {
1857 	u_char msr, delta;
1858 
1859 	mutex_spin_enter(&sc->sc_lock);
1860 	msr = sc->sc_msr;
1861 	delta = sc->sc_msr_delta;
1862 	sc->sc_msr_delta = 0;
1863 	mutex_spin_exit(&sc->sc_lock);
1864 
1865 	if (ISSET(delta, sc->sc_msr_dcd)) {
1866 		/*
1867 		 * Inform the tty layer that carrier detect changed.
1868 		 */
1869 		(void) (*tp->t_linesw->l_modem)(tp, ISSET(msr, PL01X_MSR_DCD));
1870 	}
1871 
1872 	if (ISSET(delta, sc->sc_msr_cts)) {
1873 		/* Block or unblock output according to flow control. */
1874 		if (ISSET(msr, sc->sc_msr_cts)) {
1875 			sc->sc_tx_stopped = 0;
1876 			(*tp->t_linesw->l_start)(tp);
1877 		} else {
1878 			sc->sc_tx_stopped = 1;
1879 		}
1880 	}
1881 
1882 #ifdef PLCOM_DEBUG
1883 	if (plcom_debug)
1884 		plcomstatus(sc, "plcom_stsoft");
1885 #endif
1886 }
1887 
1888 void
1889 plcomsoft(void *arg)
1890 {
1891 	struct plcom_softc *sc = arg;
1892 	struct tty *tp;
1893 
1894 	if (PLCOM_ISALIVE(sc) == 0)
1895 		return;
1896 
1897 	tp = sc->sc_tty;
1898 
1899 	if (sc->sc_rx_ready) {
1900 		sc->sc_rx_ready = 0;
1901 		plcom_rxsoft(sc, tp);
1902 	}
1903 
1904 	if (sc->sc_st_check) {
1905 		sc->sc_st_check = 0;
1906 		plcom_stsoft(sc, tp);
1907 	}
1908 
1909 	if (sc->sc_tx_done) {
1910 		sc->sc_tx_done = 0;
1911 		plcom_txsoft(sc, tp);
1912 	}
1913 }
1914 
1915 bool
1916 plcom_intstatus(struct plcom_instance *pi, u_int *istatus)
1917 {
1918 	bool ret = false;
1919 	u_int stat = 0;
1920 
1921 	switch (pi->pi_type) {
1922 	case PLCOM_TYPE_PL010:
1923 		stat = PREAD1(pi, PL010COM_IIR);
1924 		ret = ISSET(stat, PL010_IIR_IMASK);
1925 		break;
1926 	case PLCOM_TYPE_PL011:
1927 		stat = PREAD4(pi, PL011COM_MIS);
1928 		ret = ISSET(stat, PL011_INT_ALLMASK);
1929 		break;
1930 	}
1931 	*istatus = stat;
1932 
1933 	return ret;
1934 }
1935 
1936 int
1937 plcomintr(void *arg)
1938 {
1939 	struct plcom_softc *sc = arg;
1940 	struct plcom_instance *pi = &sc->sc_pi;
1941 	u_char *put, *end;
1942 	u_int cc;
1943 	u_int istatus = 0;
1944 	u_char rsr;
1945 	bool intr = false;
1946 
1947 	PLCOM_BARRIER(pi, BR | BW);
1948 
1949 	if (PLCOM_ISALIVE(sc) == 0)
1950 		return 0;
1951 
1952 	mutex_spin_enter(&sc->sc_lock);
1953 	intr = plcom_intstatus(pi, &istatus);
1954 	if (!intr) {
1955 		mutex_spin_exit(&sc->sc_lock);
1956 		return 0;
1957 	}
1958 
1959 	end = sc->sc_ebuf;
1960 	put = sc->sc_rbput;
1961 	cc = sc->sc_rbavail;
1962 
1963 	do {
1964 		u_int msr = 0, delta, fr;
1965 		bool rxintr = false, txintr = false, msintr;
1966 
1967 		/* don't need RI here*/
1968 		fr = PREAD1(pi, PL01XCOM_FR);
1969 
1970 		if (!ISSET(fr, PL01X_FR_RXFE) &&
1971 		    !ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) {
1972 			while (cc > 0) {
1973 				int cn_trapped = 0;
1974 				put[0] = PREAD1(pi, PL01XCOM_DR);
1975 				rsr = PREAD1(pi, PL01XCOM_RSR);
1976 				/* Clear any error status.  */
1977 				if (ISSET(rsr, PL01X_RSR_ERROR))
1978 					PWRITE1(pi, PL01XCOM_ECR, 0);
1979 				if (ISSET(rsr, PL01X_RSR_BE)) {
1980 					cn_trapped = 0;
1981 					cn_check_magic(sc->sc_tty->t_dev,
1982 					    CNC_BREAK, plcom_cnm_state);
1983 					if (cn_trapped)
1984 						continue;
1985 #if defined(KGDB)
1986 					if (ISSET(sc->sc_hwflags,
1987 					    PLCOM_HW_KGDB)) {
1988 						kgdb_connect(1);
1989 						continue;
1990 					}
1991 #endif
1992 				}
1993 
1994 				put[1] = rsr;
1995 				cn_trapped = 0;
1996 				cn_check_magic(sc->sc_tty->t_dev, put[0],
1997 				    plcom_cnm_state);
1998 				if (cn_trapped) {
1999 					fr = PREAD1(pi, PL01XCOM_FR);
2000 					if (ISSET(fr, PL01X_FR_RXFE))
2001 						break;
2002 
2003 					continue;
2004 				}
2005 				put += 2;
2006 				if (put >= end)
2007 					put = sc->sc_rbuf;
2008 				cc--;
2009 
2010 				/* don't need RI here*/
2011 				fr = PREAD1(pi, PL01XCOM_FR);
2012 				if (ISSET(fr, PL01X_FR_RXFE))
2013 					break;
2014 			}
2015 
2016 			/*
2017 			 * Current string of incoming characters ended because
2018 			 * no more data was available or we ran out of space.
2019 			 * Schedule a receive event if any data was received.
2020 			 * If we're out of space, turn off receive interrupts.
2021 			 */
2022 			sc->sc_rbput = put;
2023 			sc->sc_rbavail = cc;
2024 			if (!ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED))
2025 				sc->sc_rx_ready = 1;
2026 
2027 			/*
2028 			 * See if we are in danger of overflowing a buffer. If
2029 			 * so, use hardware flow control to ease the pressure.
2030 			 */
2031 			if (!ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED) &&
2032 			    cc < sc->sc_r_hiwat) {
2033 				SET(sc->sc_rx_flags, RX_IBUF_BLOCKED);
2034 				plcom_hwiflow(sc);
2035 			}
2036 
2037 			/*
2038 			 * If we're out of space, disable receive interrupts
2039 			 * until the queue has drained a bit.
2040 			 */
2041 			if (!cc) {
2042 				SET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED);
2043 				switch (pi->pi_type) {
2044 				case PLCOM_TYPE_PL010:
2045 					CLR(sc->sc_cr,
2046 					    PL010_CR_RIE | PL010_CR_RTIE);
2047 					PWRITE1(pi, PL010COM_CR, sc->sc_cr);
2048 					break;
2049 				case PLCOM_TYPE_PL011:
2050 					CLR(sc->sc_imsc,
2051 					    PL011_INT_RT | PL011_INT_RX);
2052 					PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
2053 					break;
2054 				}
2055 			}
2056 		} else {
2057 			switch (pi->pi_type) {
2058 			case PLCOM_TYPE_PL010:
2059 				rxintr = ISSET(istatus, PL010_IIR_RIS);
2060 				if (rxintr) {
2061 					PWRITE1(pi, PL010COM_CR, 0);
2062 					delay(10);
2063 					PWRITE1(pi, PL010COM_CR, sc->sc_cr);
2064 					continue;
2065 				}
2066 				break;
2067 			case PLCOM_TYPE_PL011:
2068 				rxintr = ISSET(istatus, PL011_INT_RX);
2069 				if (rxintr) {
2070 					PWRITE4(pi, PL011COM_CR, 0);
2071 					delay(10);
2072 					PWRITE4(pi, PL011COM_CR, sc->sc_cr);
2073 					continue;
2074 				}
2075 				break;
2076 			}
2077 		}
2078 
2079 		switch (pi->pi_type) {
2080 		case PLCOM_TYPE_PL010:
2081 			msr = PREAD1(pi, PL01XCOM_FR);
2082 			break;
2083 		case PLCOM_TYPE_PL011:
2084 			msr = PREAD4(pi, PL01XCOM_FR);
2085 			break;
2086 		}
2087 		delta = msr ^ sc->sc_msr;
2088 		sc->sc_msr = msr;
2089 
2090 		/* Clear any pending modem status interrupt.  */
2091 		switch (pi->pi_type) {
2092 		case PLCOM_TYPE_PL010:
2093 			msintr = ISSET(istatus, PL010_IIR_MIS);
2094 			if (msintr) {
2095 				PWRITE1(pi, PL010COM_ICR, 0);
2096 			}
2097 			break;
2098 		case PLCOM_TYPE_PL011:
2099 			msintr = ISSET(istatus, PL011_INT_MSMASK);
2100 			if (msintr) {
2101 				PWRITE4(pi, PL011COM_ICR, PL011_INT_MSMASK);
2102 			}
2103 			break;
2104 		}
2105 		/*
2106 		 * Pulse-per-second (PSS) signals on edge of DCD?
2107 		 * Process these even if line discipline is ignoring DCD.
2108 		 */
2109 		if (delta & sc->sc_ppsmask) {
2110 			struct timeval tv;
2111 			mutex_spin_enter(&timecounter_lock);
2112 		    	if ((msr & sc->sc_ppsmask) == sc->sc_ppsassert) {
2113 				/* XXX nanotime() */
2114 				microtime(&tv);
2115 				TIMEVAL_TO_TIMESPEC(&tv,
2116 				    &sc->ppsinfo.assert_timestamp);
2117 				if (sc->ppsparam.mode & PPS_OFFSETASSERT) {
2118 					timespecadd(&sc->ppsinfo.assert_timestamp,
2119 					    &sc->ppsparam.assert_offset,
2120 						    &sc->ppsinfo.assert_timestamp);
2121 				}
2122 
2123 #ifdef PPS_SYNC
2124 				if (sc->ppsparam.mode & PPS_HARDPPSONASSERT)
2125 					hardpps(&tv, tv.tv_usec);
2126 #endif
2127 				sc->ppsinfo.assert_sequence++;
2128 				sc->ppsinfo.current_mode = sc->ppsparam.mode;
2129 
2130 			} else if ((msr & sc->sc_ppsmask) == sc->sc_ppsclear) {
2131 				/* XXX nanotime() */
2132 				microtime(&tv);
2133 				TIMEVAL_TO_TIMESPEC(&tv,
2134 				    &sc->ppsinfo.clear_timestamp);
2135 				if (sc->ppsparam.mode & PPS_OFFSETCLEAR) {
2136 					timespecadd(&sc->ppsinfo.clear_timestamp,
2137 					    &sc->ppsparam.clear_offset,
2138 					    &sc->ppsinfo.clear_timestamp);
2139 				}
2140 
2141 #ifdef PPS_SYNC
2142 				if (sc->ppsparam.mode & PPS_HARDPPSONCLEAR)
2143 					hardpps(&tv, tv.tv_usec);
2144 #endif
2145 				sc->ppsinfo.clear_sequence++;
2146 				sc->ppsinfo.current_mode = sc->ppsparam.mode;
2147 			}
2148 			mutex_spin_exit(&timecounter_lock);
2149 		}
2150 
2151 		/*
2152 		 * Process normal status changes
2153 		 */
2154 		if (ISSET(delta, sc->sc_msr_mask)) {
2155 			SET(sc->sc_msr_delta, delta);
2156 
2157 			/*
2158 			 * Stop output immediately if we lose the output
2159 			 * flow control signal or carrier detect.
2160 			 */
2161 			if (ISSET(~msr, sc->sc_msr_mask)) {
2162 				sc->sc_tbc = 0;
2163 				sc->sc_heldtbc = 0;
2164 #ifdef PLCOM_DEBUG
2165 				if (plcom_debug)
2166 					plcomstatus(sc, "plcomintr  ");
2167 #endif
2168 			}
2169 
2170 			sc->sc_st_check = 1;
2171 		}
2172 
2173 		/*
2174 		 * Done handling any receive interrupts. See if data
2175 		 * can be transmitted as well. Schedule tx done
2176 		 * event if no data left and tty was marked busy.
2177 		 */
2178 
2179 		switch (pi->pi_type) {
2180 		case PLCOM_TYPE_PL010:
2181 			txintr = ISSET(istatus, PL010_IIR_TIS);
2182 			break;
2183 		case PLCOM_TYPE_PL011:
2184 			txintr = ISSET(istatus, PL011_INT_TX);
2185 			break;
2186 		}
2187 		if (txintr) {
2188 			/*
2189 			 * If we've delayed a parameter change, do it
2190 			 * now, and restart * output.
2191 			 */
2192 // PWRITE4(pi, PL011COM_ICR, PL011_INT_TX);
2193 			if (sc->sc_heldchange) {
2194 				plcom_loadchannelregs(sc);
2195 				sc->sc_heldchange = 0;
2196 				sc->sc_tbc = sc->sc_heldtbc;
2197 				sc->sc_heldtbc = 0;
2198 			}
2199 
2200 			/*
2201 			 * Output the next chunk of the contiguous
2202 			 * buffer, if any.
2203 			 */
2204 			if (sc->sc_tbc > 0) {
2205 				int n;
2206 
2207 				n = sc->sc_tbc;
2208 				if (n > sc->sc_fifolen)
2209 					n = sc->sc_fifolen;
2210 				PWRITEM1(pi, PL01XCOM_DR, sc->sc_tba, n);
2211 				sc->sc_tbc -= n;
2212 				sc->sc_tba += n;
2213 			} else {
2214 				/*
2215 				 * Disable transmit completion
2216 				 * interrupts if necessary.
2217 				 */
2218 				switch (pi->pi_type) {
2219 				case PLCOM_TYPE_PL010:
2220 					if (ISSET(sc->sc_cr, PL010_CR_TIE)) {
2221 						CLR(sc->sc_cr, PL010_CR_TIE);
2222 						PWRITE1(pi, PL010COM_CR,
2223 						    sc->sc_cr);
2224 					}
2225 					break;
2226 				case PLCOM_TYPE_PL011:
2227 					if (ISSET(sc->sc_imsc, PL011_INT_TX)) {
2228 						CLR(sc->sc_imsc, PL011_INT_TX);
2229 						PWRITE4(pi, PL011COM_IMSC,
2230 						    sc->sc_imsc);
2231 					}
2232 					break;
2233 				}
2234 				if (sc->sc_tx_busy) {
2235 					sc->sc_tx_busy = 0;
2236 					sc->sc_tx_done = 1;
2237 				}
2238 			}
2239 		}
2240 
2241 	} while (plcom_intstatus(pi, &istatus));
2242 
2243 	mutex_spin_exit(&sc->sc_lock);
2244 
2245 	/* Wake up the poller. */
2246 	softint_schedule(sc->sc_si);
2247 
2248 #ifdef RND_COM
2249 	rnd_add_uint32(&sc->rnd_source, istatus | rsr);
2250 #endif
2251 
2252 	PLCOM_BARRIER(pi, BR | BW);
2253 
2254 	return 1;
2255 }
2256 
2257 /*
2258  * The following functions are polled getc and putc routines, shared
2259  * by the console and kgdb glue.
2260  *
2261  * The read-ahead code is so that you can detect pending in-band
2262  * cn_magic in polled mode while doing output rather than having to
2263  * wait until the kernel decides it needs input.
2264  */
2265 
2266 #define MAX_READAHEAD	20
2267 static int plcom_readahead[MAX_READAHEAD];
2268 static int plcom_readaheadcount = 0;
2269 
2270 int
2271 plcom_common_getc(dev_t dev, struct plcom_instance *pi)
2272 {
2273 	int s = splserial();
2274 	u_char c;
2275 
2276 	/* got a character from reading things earlier */
2277 	if (plcom_readaheadcount > 0) {
2278 		int i;
2279 
2280 		c = plcom_readahead[0];
2281 		for (i = 1; i < plcom_readaheadcount; i++) {
2282 			plcom_readahead[i-1] = plcom_readahead[i];
2283 		}
2284 		plcom_readaheadcount--;
2285 		splx(s);
2286 		return c;
2287 	}
2288 
2289 	if (ISSET(PREAD1(pi, PL01XCOM_FR), PL01X_FR_RXFE)) {
2290 		splx(s);
2291 		return -1;
2292 	}
2293 
2294 	c = PREAD1(pi, PL01XCOM_DR);
2295 	{
2296 		int cn_trapped __unused = 0;
2297 #ifdef DDB
2298 		extern int db_active;
2299 		if (!db_active)
2300 #endif
2301 			cn_check_magic(dev, c, plcom_cnm_state);
2302 	}
2303 	splx(s);
2304 	return c;
2305 }
2306 
2307 void
2308 plcom_common_putc(dev_t dev, struct plcom_instance *pi, int c)
2309 {
2310 	int s = splserial();
2311 	int timo;
2312 
2313 	int cin, stat;
2314 	if (plcom_readaheadcount < MAX_READAHEAD
2315 	     && !ISSET(stat = PREAD1(pi, PL01XCOM_FR), PL01X_FR_RXFE)) {
2316 		int cn_trapped __unused = 0;
2317 		cin = PREAD1(pi, PL01XCOM_DR);
2318 		cn_check_magic(dev, cin, plcom_cnm_state);
2319 		plcom_readahead[plcom_readaheadcount++] = cin;
2320 	}
2321 
2322 	/* wait for any pending transmission to finish */
2323 	timo = 150000;
2324 	while (ISSET(PREAD1(pi, PL01XCOM_FR), PL01X_FR_TXFF) && --timo)
2325 		continue;
2326 
2327 	PWRITE1(pi, PL01XCOM_DR, c);
2328 	PLCOM_BARRIER(pi, BR | BW);
2329 
2330 	splx(s);
2331 }
2332 
2333 /*
2334  * Initialize UART for use as console or KGDB line.
2335  */
2336 int
2337 plcominit(struct plcom_instance *pi, int rate, int frequency, tcflag_t cflag)
2338 {
2339 	u_char lcr;
2340 
2341 	switch (pi->pi_type) {
2342 	case PLCOM_TYPE_PL010:
2343 		if (pi->pi_size == 0)
2344 			pi->pi_size = PL010COM_UART_SIZE;
2345 		break;
2346 	case PLCOM_TYPE_PL011:
2347 		if (pi->pi_size == 0)
2348 			pi->pi_size = PL011COM_UART_SIZE;
2349 		break;
2350 	default:
2351 		panic("Unknown plcom type");
2352 	}
2353 
2354 	if (bus_space_map(pi->pi_iot, pi->pi_iobase, pi->pi_size, 0,
2355 	    &pi->pi_ioh))
2356 		return ENOMEM; /* ??? */
2357 
2358 	lcr = cflag2lcr(cflag) | PL01X_LCR_FEN;
2359 	switch (pi->pi_type) {
2360 	case PLCOM_TYPE_PL010:
2361 		PWRITE1(pi, PL010COM_CR, 0);
2362 
2363 		if (rate && frequency) {
2364 			rate = pl010comspeed(rate, frequency);
2365 			PWRITE1(pi, PL010COM_DLBL, (rate & 0xff));
2366 			PWRITE1(pi, PL010COM_DLBH, ((rate >> 8) & 0xff));
2367 		}
2368 		PWRITE1(pi, PL010COM_LCR, lcr);
2369 		PWRITE1(pi, PL010COM_CR, PL01X_CR_UARTEN);
2370 		break;
2371 	case PLCOM_TYPE_PL011:
2372 		PWRITE4(pi, PL011COM_CR, 0);
2373 
2374 		if (rate && frequency) {
2375 			rate = pl011comspeed(rate, frequency);
2376 			PWRITE1(pi, PL011COM_FBRD, rate & ((1 << 6) - 1));
2377 			PWRITE4(pi, PL011COM_IBRD, rate >> 6);
2378 		}
2379 		PWRITE1(pi, PL011COM_LCRH, lcr);
2380 		PWRITE4(pi, PL011COM_CR,
2381 		    PL01X_CR_UARTEN | PL011_CR_RXE | PL011_CR_TXE);
2382 		break;
2383 	}
2384 
2385 #if 0
2386 	/* Ought to do something like this, but we have no sc to
2387 	   dereference. */
2388 	/* XXX device_unit() abuse */
2389 	sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(sc->sc_dev),
2390 	    PL01X_MCR_DTR | PL01X_MCR_RTS);
2391 #endif
2392 
2393 	return 0;
2394 }
2395 
2396 /*
2397  * Following are all routines needed for PLCOM to act as console
2398  */
2399 struct consdev plcomcons = {
2400 	NULL, NULL, plcomcngetc, plcomcnputc, plcomcnpollc, NULL,
2401 	plcomcnhalt, NULL, NODEV, CN_NORMAL
2402 };
2403 
2404 int
2405 plcomcnattach(struct plcom_instance *pi, int rate, int frequency,
2406     tcflag_t cflag, int unit)
2407 {
2408 	int res;
2409 
2410 	plcomcons_info = *pi;
2411 
2412 	res = plcominit(&plcomcons_info, rate, frequency, cflag);
2413 	if (res)
2414 		return res;
2415 
2416 	cn_tab = &plcomcons;
2417 	cn_init_magic(&plcom_cnm_state);
2418 	cn_set_magic("\047\001"); /* default magic is BREAK */
2419 
2420 	plcomconsunit = unit;
2421 	plcomconsrate = rate;
2422 	plcomconscflag = cflag;
2423 
2424 	return 0;
2425 }
2426 
2427 void
2428 plcomcndetach(void)
2429 {
2430 
2431 	bus_space_unmap(plcomcons_info.pi_iot, plcomcons_info.pi_ioh,
2432 	    plcomcons_info.pi_size);
2433 	plcomcons_info.pi_iot = NULL;
2434 
2435 	cn_tab = NULL;
2436 }
2437 
2438 int
2439 plcomcngetc(dev_t dev)
2440 {
2441 	return plcom_common_getc(dev, &plcomcons_info);
2442 }
2443 
2444 /*
2445  * Console kernel output character routine.
2446  */
2447 void
2448 plcomcnputc(dev_t dev, int c)
2449 {
2450 	plcom_common_putc(dev, &plcomcons_info, c);
2451 }
2452 
2453 void
2454 plcomcnpollc(dev_t dev, int on)
2455 {
2456 
2457 	plcom_readaheadcount = 0;
2458 }
2459 
2460 void
2461 plcomcnhalt(dev_t dev)
2462 {
2463 	struct plcom_instance *pi = &plcomcons_info;
2464 
2465 	switch (pi->pi_type) {
2466 	case PLCOM_TYPE_PL010:
2467 		PWRITE1(pi, PL010COM_CR, PL01X_CR_UARTEN);
2468 		break;
2469 	case PLCOM_TYPE_PL011:
2470 		PWRITE4(pi, PL011COM_CR,
2471 		    PL01X_CR_UARTEN | PL011_CR_RXE | PL011_CR_TXE);
2472 		PWRITE4(pi, PL011COM_IMSC, 0);
2473 		break;
2474 	}
2475 }
2476 
2477 #ifdef KGDB
2478 int
2479 plcom_kgdb_attach(struct plcom_instance *pi, int rate, int frequency,
2480     tcflag_t cflag, int unit)
2481 {
2482 	int res;
2483 
2484 	if (pi->pi_iot == plcomcons_info.pi_iot &&
2485 	    pi->pi_iobase == plcomcons_info.pi_iobase)
2486 		return EBUSY; /* cannot share with console */
2487 
2488 	res = plcominit(pi, rate, frequency, cflag);
2489 	if (res)
2490 		return res;
2491 
2492 	kgdb_attach(plcom_kgdb_getc, plcom_kgdb_putc, NULL);
2493 	kgdb_dev = 123; /* unneeded, only to satisfy some tests */
2494 
2495 	plcomkgdb_info.pi_iot = pi->pi_iot;
2496 	plcomkgdb_info.pi_ioh = pi->pi_ioh;
2497 	plcomkgdb_info.pi_iobase = pi->pi_iobase;
2498 
2499 	return 0;
2500 }
2501 
2502 /* ARGSUSED */
2503 int
2504 plcom_kgdb_getc(void *arg)
2505 {
2506 	return plcom_common_getc(NODEV, &plcomkgdb_info);
2507 }
2508 
2509 /* ARGSUSED */
2510 void
2511 plcom_kgdb_putc(void *arg, int c)
2512 {
2513 	plcom_common_putc(NODEV, &plcomkgdb_info, c);
2514 }
2515 #endif /* KGDB */
2516 
2517 /* helper function to identify the plcom ports used by
2518  console or KGDB (and not yet autoconf attached) */
2519 int
2520 plcom_is_console(bus_space_tag_t iot, bus_addr_t iobase,
2521     bus_space_handle_t *ioh)
2522 {
2523 	bus_space_handle_t help;
2524 
2525 	if (!plcomconsattached &&
2526 	    bus_space_is_equal(iot, plcomcons_info.pi_iot) &&
2527 	    iobase == plcomcons_info.pi_iobase)
2528 		help = plcomcons_info.pi_ioh;
2529 #ifdef KGDB
2530 	else if (!plcom_kgdb_attached &&
2531 	    bus_space_is_equal(iot, plcomkgdb_info.pi_iot) &&
2532 	    iobase == plcomkgdb_info.pi_iobase)
2533 		help = plcomkgdb_info.pi_ioh;
2534 #endif
2535 	else
2536 		return 0;
2537 
2538 	if (ioh)
2539 		*ioh = help;
2540 	return 1;
2541 }
2542