xref: /netbsd-src/sys/arch/evbarm/dev/plcom.c (revision 5f2f42719cd62ff11fd913b40b7ce19f07c4fd25)
1 /*	$NetBSD: plcom.c,v 1.64 2021/10/20 01:09:49 jmcneill Exp $	*/
2 
3 /*-
4  * Copyright (c) 2001 ARM Ltd
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the company may not be used to endorse or promote
16  *    products derived from this software without specific prior written
17  *    permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
23  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  * Copyright (c) 1998, 1999, 2012 The NetBSD Foundation, Inc.
32  * All rights reserved.
33  *
34  * This code is derived from software contributed to The NetBSD Foundation
35  * by Charles M. Hannum and Nick Hudson.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  *
46  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
47  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
48  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
49  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
50  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
51  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
52  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
53  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
54  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
55  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
56  * POSSIBILITY OF SUCH DAMAGE.
57  */
58 
59 /*
60  * Copyright (c) 1991 The Regents of the University of California.
61  * All rights reserved.
62  *
63  * Redistribution and use in source and binary forms, with or without
64  * modification, are permitted provided that the following conditions
65  * are met:
66  * 1. Redistributions of source code must retain the above copyright
67  *    notice, this list of conditions and the following disclaimer.
68  * 2. Redistributions in binary form must reproduce the above copyright
69  *    notice, this list of conditions and the following disclaimer in the
70  *    documentation and/or other materials provided with the distribution.
71  * 3. Neither the name of the University nor the names of its contributors
72  *    may be used to endorse or promote products derived from this software
73  *    without specific prior written permission.
74  *
75  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
76  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
77  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
78  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
79  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
80  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
81  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
82  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
83  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
84  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
85  * SUCH DAMAGE.
86  *
87  *	@(#)com.c	7.5 (Berkeley) 5/16/91
88  */
89 
90 /*
91  * COM driver for the Prime Cell PL010 and PL011 UARTs. Both are is similar to
92  * the 16C550, but have a completely different programmer's model.
93  * Derived from the NS16550AF com driver.
94  */
95 
96 #include <sys/cdefs.h>
97 __KERNEL_RCSID(0, "$NetBSD: plcom.c,v 1.64 2021/10/20 01:09:49 jmcneill Exp $");
98 
99 #include "opt_plcom.h"
100 #include "opt_ddb.h"
101 #include "opt_kgdb.h"
102 #include "opt_lockdebug.h"
103 #include "opt_multiprocessor.h"
104 
105 /*
106  * Override cnmagic(9) macro before including <sys/systm.h>.
107  * We need to know if cn_check_magic triggered debugger, so set a flag.
108  * Callers of cn_check_magic must declare int cn_trapped = 0;
109  * XXX: this is *ugly*!
110  */
111 #define cn_trap()				\
112 	do {					\
113 		console_debugger();		\
114 		cn_trapped = 1;			\
115 	} while (/* CONSTCOND */ 0)
116 
117 #include <sys/param.h>
118 #include <sys/systm.h>
119 #include <sys/ioctl.h>
120 #include <sys/select.h>
121 #include <sys/tty.h>
122 #include <sys/proc.h>
123 #include <sys/conf.h>
124 #include <sys/file.h>
125 #include <sys/uio.h>
126 #include <sys/kernel.h>
127 #include <sys/syslog.h>
128 #include <sys/types.h>
129 #include <sys/device.h>
130 #include <sys/malloc.h>
131 #include <sys/timepps.h>
132 #include <sys/vnode.h>
133 #include <sys/kauth.h>
134 #include <sys/intr.h>
135 #include <sys/bus.h>
136 #ifdef RND_COM
137 #include <sys/rndsource.h>
138 #endif
139 
140 #include <evbarm/dev/plcomreg.h>
141 #include <evbarm/dev/plcomvar.h>
142 
143 #include <dev/cons.h>
144 
145 static void plcom_enable_debugport (struct plcom_softc *);
146 
147 void	plcom_config	(struct plcom_softc *);
148 void	plcom_shutdown	(struct plcom_softc *);
149 int	pl010comspeed	(long, long);
150 int	pl011comspeed	(long, long);
151 static	u_char	cflag2lcr (tcflag_t);
152 int	plcomparam	(struct tty *, struct termios *);
153 void	plcomstart	(struct tty *);
154 int	plcomhwiflow	(struct tty *, int);
155 
156 void	plcom_loadchannelregs (struct plcom_softc *);
157 void	plcom_hwiflow	(struct plcom_softc *);
158 void	plcom_break	(struct plcom_softc *, int);
159 void	plcom_modem	(struct plcom_softc *, int);
160 void	tiocm_to_plcom	(struct plcom_softc *, u_long, int);
161 int	plcom_to_tiocm	(struct plcom_softc *);
162 void	plcom_iflush	(struct plcom_softc *);
163 
164 int	plcom_common_getc (dev_t, struct plcom_instance *);
165 void	plcom_common_putc (dev_t, struct plcom_instance *, int);
166 
167 int	plcominit	(struct plcom_instance *, int, int, tcflag_t);
168 
169 dev_type_open(plcomopen);
170 dev_type_close(plcomclose);
171 dev_type_read(plcomread);
172 dev_type_write(plcomwrite);
173 dev_type_ioctl(plcomioctl);
174 dev_type_stop(plcomstop);
175 dev_type_tty(plcomtty);
176 dev_type_poll(plcompoll);
177 
178 int	plcomcngetc	(dev_t);
179 void	plcomcnputc	(dev_t, int);
180 void	plcomcnpollc	(dev_t, int);
181 void	plcomcnhalt	(dev_t);
182 
183 #define	integrate	static inline
184 void 	plcomsoft	(void *);
185 integrate void plcom_rxsoft	(struct plcom_softc *, struct tty *);
186 integrate void plcom_txsoft	(struct plcom_softc *, struct tty *);
187 integrate void plcom_stsoft	(struct plcom_softc *, struct tty *);
188 integrate void plcom_schedrx	(struct plcom_softc *);
189 void	plcomdiag		(void *);
190 
191 bool	plcom_intstatus(struct plcom_instance *, u_int *);
192 
193 extern struct cfdriver plcom_cd;
194 
195 const struct cdevsw plcom_cdevsw = {
196 	.d_open = plcomopen,
197 	.d_close = plcomclose,
198 	.d_read = plcomread,
199 	.d_write = plcomwrite,
200 	.d_ioctl = plcomioctl,
201 	.d_stop = plcomstop,
202 	.d_tty = plcomtty,
203 	.d_poll = plcompoll,
204 	.d_mmap = nommap,
205 	.d_kqfilter = ttykqfilter,
206 	.d_discard = nodiscard,
207 	.d_flag = D_TTY
208 };
209 
210 /*
211  * Make this an option variable one can patch.
212  * But be warned:  this must be a power of 2!
213  */
214 u_int plcom_rbuf_size = PLCOM_RING_SIZE;
215 
216 /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */
217 u_int plcom_rbuf_hiwat = (PLCOM_RING_SIZE * 1) / 4;
218 u_int plcom_rbuf_lowat = (PLCOM_RING_SIZE * 3) / 4;
219 
220 static int	plcomconsunit = -1;
221 static struct plcom_instance plcomcons_info;
222 
223 static int plcomconsattached;
224 static int plcomconsrate;
225 static tcflag_t plcomconscflag;
226 static struct cnm_state plcom_cnm_state;
227 
228 static int ppscap =
229 	PPS_TSFMT_TSPEC |
230 	PPS_CAPTUREASSERT |
231 	PPS_CAPTURECLEAR |
232 #ifdef  PPS_SYNC
233 	PPS_HARDPPSONASSERT | PPS_HARDPPSONCLEAR |
234 #endif	/* PPS_SYNC */
235 	PPS_OFFSETASSERT | PPS_OFFSETCLEAR;
236 
237 #ifdef KGDB
238 #include <sys/kgdb.h>
239 
240 static struct plcom_instance plcomkgdb_info;
241 static int plcom_kgdb_attached;
242 
243 int	plcom_kgdb_getc (void *);
244 void	plcom_kgdb_putc (void *, int);
245 #endif /* KGDB */
246 
247 #define	PLCOMDIALOUT_MASK	TTDIALOUT_MASK
248 
249 #define	PLCOMUNIT(x)	TTUNIT(x)
250 #define	PLCOMDIALOUT(x)	TTDIALOUT(x)
251 
252 #define	PLCOM_ISALIVE(sc)	((sc)->enabled != 0 && \
253 				 device_is_active((sc)->sc_dev))
254 
255 #define	BR	BUS_SPACE_BARRIER_READ
256 #define	BW	BUS_SPACE_BARRIER_WRITE
257 #define PLCOM_BARRIER(pi, f)	\
258     bus_space_barrier((pi)->pi_iot, (pi)->pi_ioh, 0, (pi)->pi_size, (f))
259 
260 static uint8_t
261 pread1(struct plcom_instance *pi, bus_size_t reg)
262 {
263 	if (!ISSET(pi->pi_flags, PLC_FLAG_32BIT_ACCESS))
264 		return bus_space_read_1(pi->pi_iot, pi->pi_ioh, reg);
265 
266 	return bus_space_read_4(pi->pi_iot, pi->pi_ioh, reg & -4) >>
267 	    (8 * (reg & 3));
268 }
269 int nhcr;
270 static void
271 pwrite1(struct plcom_instance *pi, bus_size_t o, uint8_t val)
272 {
273 	if (!ISSET(pi->pi_flags, PLC_FLAG_32BIT_ACCESS)) {
274 		bus_space_write_1(pi->pi_iot, pi->pi_ioh, o, val);
275 	} else {
276 		const size_t shift = 8 * (o & 3);
277 		o &= -4;
278 		uint32_t tmp = bus_space_read_4(pi->pi_iot, pi->pi_ioh, o);
279 		tmp = (val << shift) | (tmp & ~(0xff << shift));
280 		bus_space_write_4(pi->pi_iot, pi->pi_ioh, o, tmp);
281 	}
282 }
283 
284 static void
285 pwritem1(struct plcom_instance *pi, bus_size_t o, const uint8_t *datap,
286     bus_size_t count)
287 {
288 	if (!ISSET(pi->pi_flags, PLC_FLAG_32BIT_ACCESS)) {
289 		bus_space_write_multi_1(pi->pi_iot, pi->pi_ioh, o, datap, count);
290 	} else {
291 		KASSERT((o & 3) == 0);
292 		while (count--) {
293 			bus_space_write_4(pi->pi_iot, pi->pi_ioh, o, *datap++);
294 		};
295 	}
296 }
297 
298 #define	PREAD1(pi, reg)		pread1(pi, reg)
299 #define	PREAD4(pi, reg)		\
300 	bus_space_read_4((pi)->pi_iot, (pi)->pi_ioh, (reg))
301 
302 #define	PWRITE1(pi, reg, val)	pwrite1(pi, reg, val)
303 #define	PWRITEM1(pi, reg, d, c)	pwritem1(pi, reg, d, c)
304 #define	PWRITE4(pi, reg, val)	\
305 	bus_space_write_4((pi)->pi_iot, (pi)->pi_ioh, (reg), (val))
306 
307 int
308 pl010comspeed(long speed, long frequency)
309 {
310 #define	divrnd(n, q)	(((n)*2/(q)+1)/2)	/* divide and round off */
311 
312 	int x, err;
313 
314 #if 0
315 	if (speed == 0)
316 		return 0;
317 #endif
318 	if (speed <= 0)
319 		return -1;
320 	x = divrnd(frequency / 16, speed);
321 	if (x <= 0)
322 		return -1;
323 	err = divrnd(((quad_t)frequency) * 1000 / 16, speed * x) - 1000;
324 	if (err < 0)
325 		err = -err;
326 	if (err > PLCOM_TOLERANCE)
327 		return -1;
328 	return x;
329 
330 #undef	divrnd
331 }
332 
333 int
334 pl011comspeed(long speed, long frequency)
335 {
336 	int denom = 16 * speed;
337 	int div = frequency / denom;
338 	int rem = frequency % denom;
339 
340 	int ibrd = div << 6;
341 	int fbrd = (((8 * rem) / speed) + 1) / 2;
342 
343 	/* Tolerance? */
344 	return ibrd | fbrd;
345 }
346 
347 #ifdef PLCOM_DEBUG
348 int	plcom_debug = 0;
349 
350 void plcomstatus (struct plcom_softc *, const char *);
351 void
352 plcomstatus(struct plcom_softc *sc, const char *str)
353 {
354 	struct tty *tp = sc->sc_tty;
355 
356 	printf("%s: %s %sclocal  %sdcd %sts_carr_on %sdtr %stx_stopped\n",
357 	    device_xname(sc->sc_dev), str,
358 	    ISSET(tp->t_cflag, CLOCAL) ? "+" : "-",
359 	    ISSET(sc->sc_msr, PL01X_MSR_DCD) ? "+" : "-",
360 	    ISSET(tp->t_state, TS_CARR_ON) ? "+" : "-",
361 	    ISSET(sc->sc_mcr, PL01X_MCR_DTR) ? "+" : "-",
362 	    sc->sc_tx_stopped ? "+" : "-");
363 
364 	printf("%s: %s %scrtscts %scts %sts_ttstop  %srts %xrx_flags\n",
365 	    device_xname(sc->sc_dev), str,
366 	    ISSET(tp->t_cflag, CRTSCTS) ? "+" : "-",
367 	    ISSET(sc->sc_msr, PL01X_MSR_CTS) ? "+" : "-",
368 	    ISSET(tp->t_state, TS_TTSTOP) ? "+" : "-",
369 	    ISSET(sc->sc_mcr, PL01X_MCR_RTS) ? "+" : "-",
370 	    sc->sc_rx_flags);
371 }
372 #endif
373 
374 #if 0
375 int
376 plcomprobe1(bus_space_tag_t iot, bus_space_handle_t ioh)
377 {
378 	int data;
379 
380 	/* Disable the UART.  */
381 	bus_space_write_1(iot, ioh, plcom_cr, 0);
382 	/* Make sure the FIFO is off.  */
383 	bus_space_write_1(iot, ioh, plcom_lcr, PL01X_LCR_8BITS);
384 	/* Disable interrupts.  */
385 	bus_space_write_1(iot, ioh, plcom_iir, 0);
386 
387 	/* Make sure we swallow anything in the receiving register.  */
388 	data = bus_space_read_1(iot, ioh, plcom_dr);
389 
390 	if (bus_space_read_1(iot, ioh, plcom_lcr) != PL01X_LCR_8BITS)
391 		return 0;
392 
393 	data = bus_space_read_1(iot, ioh, plcom_fr) & (PL01X_FR_RXFF | PL01X_FR_RXFE);
394 
395 	if (data != PL01X_FR_RXFE)
396 		return 0;
397 
398 	return 1;
399 }
400 #endif
401 
402 /*
403  * No locking in this routine; it is only called during attach,
404  * or with the port already locked.
405  */
406 static void
407 plcom_enable_debugport(struct plcom_softc *sc)
408 {
409 	struct plcom_instance *pi = &sc->sc_pi;
410 
411 	sc->sc_cr = PL01X_CR_UARTEN;
412 	SET(sc->sc_mcr, PL01X_MCR_DTR | PL01X_MCR_RTS);
413 
414 	/* Turn on line break interrupt, set carrier. */
415 	switch (pi->pi_type) {
416 	case PLCOM_TYPE_PL010:
417 		SET(sc->sc_cr, PL010_CR_RIE | PL010_CR_RTIE);
418 		PWRITE1(pi, PL010COM_CR, sc->sc_cr);
419 		if (sc->sc_set_mcr) {
420 			/* XXX device_unit() abuse */
421 			sc->sc_set_mcr(sc->sc_set_mcr_arg,
422 			    device_unit(sc->sc_dev), sc->sc_mcr);
423 		}
424 		break;
425 	case PLCOM_TYPE_PL011:
426 		sc->sc_imsc = PL011_INT_RX | PL011_INT_RT;
427 		SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
428 		SET(sc->sc_cr, PL011_MCR(sc->sc_mcr));
429 		PWRITE4(pi, PL011COM_CR, sc->sc_cr);
430 		PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
431 		break;
432 	}
433 
434 }
435 
436 void
437 plcom_attach_subr(struct plcom_softc *sc)
438 {
439 	struct plcom_instance *pi = &sc->sc_pi;
440 	struct tty *tp;
441 
442 	callout_init(&sc->sc_diag_callout, 0);
443 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_HIGH);
444 
445 	switch (pi->pi_type) {
446 	case PLCOM_TYPE_PL010:
447 	case PLCOM_TYPE_PL011:
448 		break;
449 	default:
450 		aprint_error_dev(sc->sc_dev,
451 		    "Unknown plcom type: %d\n", pi->pi_type);
452 		return;
453 	}
454 
455 	/* Disable interrupts before configuring the device. */
456 	sc->sc_cr = 0;
457 	sc->sc_imsc = 0;
458 
459 	if (bus_space_is_equal(pi->pi_iot, plcomcons_info.pi_iot) &&
460 	    pi->pi_iobase == plcomcons_info.pi_iobase) {
461 		plcomconsattached = 1;
462 
463 		/* Make sure the console is always "hardwired". */
464 		delay(1000);			/* wait for output to finish */
465 		SET(sc->sc_hwflags, PLCOM_HW_CONSOLE);
466 		SET(sc->sc_swflags, TIOCFLAG_SOFTCAR);
467 		/*
468 		 * Must re-enable the console immediately, or we will
469 		 * hang when trying to print.
470 		 */
471 		sc->sc_cr = PL01X_CR_UARTEN;
472 		if (pi->pi_type == PLCOM_TYPE_PL011)
473 			SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
474 	}
475 
476 	switch (pi->pi_type) {
477 	case PLCOM_TYPE_PL010:
478 		PWRITE1(pi, PL010COM_CR, sc->sc_cr);
479 		break;
480 
481 	case PLCOM_TYPE_PL011:
482 		PWRITE4(pi, PL011COM_CR, sc->sc_cr);
483 		PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
484 		break;
485 	}
486 
487 	if (sc->sc_fifolen == 0) {
488 		switch (pi->pi_type) {
489 		case PLCOM_TYPE_PL010:
490 			/*
491 			 * The PL010 has a 16-byte fifo, but the tx interrupt
492 			 * triggers when there is space for 8 more bytes.
493 			*/
494 			sc->sc_fifolen = 8;
495 			break;
496 		case PLCOM_TYPE_PL011:
497 			/* Some revisions have a 32 byte TX FIFO */
498 			sc->sc_fifolen = 16;
499 			break;
500 		}
501 	}
502 
503 	if (ISSET(sc->sc_hwflags, PLCOM_HW_TXFIFO_DISABLE)) {
504 		sc->sc_fifolen = 1;
505 		aprint_normal_dev(sc->sc_dev, "txfifo disabled\n");
506 	}
507 
508 	if (sc->sc_fifolen > 1)
509 		SET(sc->sc_hwflags, PLCOM_HW_FIFO);
510 
511 	tp = tty_alloc();
512 	tp->t_oproc = plcomstart;
513 	tp->t_param = plcomparam;
514 	tp->t_hwiflow = plcomhwiflow;
515 
516 	sc->sc_tty = tp;
517 	sc->sc_rbuf = malloc(plcom_rbuf_size << 1, M_DEVBUF, M_WAITOK);
518 	sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf;
519 	sc->sc_rbavail = plcom_rbuf_size;
520 	sc->sc_ebuf = sc->sc_rbuf + (plcom_rbuf_size << 1);
521 
522 	tty_attach(tp);
523 
524 	if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
525 		int maj;
526 
527 		/* locate the major number */
528 		maj = cdevsw_lookup_major(&plcom_cdevsw);
529 
530 		tp->t_dev = cn_tab->cn_dev = makedev(maj, device_unit(sc->sc_dev));
531 
532 		aprint_normal_dev(sc->sc_dev, "console\n");
533 	}
534 
535 #ifdef KGDB
536 	/*
537 	 * Allow kgdb to "take over" this port.  If this is
538 	 * the kgdb device, it has exclusive use.
539 	 */
540 	if (bus_space_is_equal(pi->pi_iot, plcomkgdb_info.pi_iot) &&
541 	    pi->pi_iobase == plcomkgdb_info.pi_iobase) {
542 		if (!ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
543 			plcom_kgdb_attached = 1;
544 
545 			SET(sc->sc_hwflags, PLCOM_HW_KGDB);
546 		}
547 		aprint_normal_dev(sc->sc_dev, "kgdb\n");
548 	}
549 #endif
550 
551 	sc->sc_si = softint_establish(SOFTINT_SERIAL, plcomsoft, sc);
552 
553 #ifdef RND_COM
554 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
555 	    RND_TYPE_TTY, RND_FLAG_DEFAULT);
556 #endif
557 
558 	/*
559 	 * if there are no enable/disable functions, assume the device
560 	 * is always enabled
561 	 */
562 	if (!sc->enable)
563 		sc->enabled = 1;
564 
565 	plcom_config(sc);
566 
567 	SET(sc->sc_hwflags, PLCOM_HW_DEV_OK);
568 }
569 
570 void
571 plcom_config(struct plcom_softc *sc)
572 {
573 	struct plcom_instance *pi = &sc->sc_pi;
574 
575 	/* Disable interrupts before configuring the device. */
576 	sc->sc_cr = 0;
577 	sc->sc_imsc = 0;
578 	switch (pi->pi_type) {
579 	case PLCOM_TYPE_PL010:
580 		PWRITE1(pi, PL010COM_CR, sc->sc_cr);
581 		break;
582 
583 	case PLCOM_TYPE_PL011:
584 		PWRITE4(pi, PL011COM_CR, sc->sc_cr);
585 		PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
586 		break;
587 	}
588 
589 	if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE|PLCOM_HW_KGDB))
590 		plcom_enable_debugport(sc);
591 }
592 
593 int
594 plcom_detach(device_t self, int flags)
595 {
596 	struct plcom_softc *sc = device_private(self);
597 	int maj, mn;
598 
599 	if (sc->sc_hwflags & (PLCOM_HW_CONSOLE|PLCOM_HW_KGDB))
600 		return EBUSY;
601 
602 	if (sc->disable != NULL && sc->enabled != 0) {
603 		(*sc->disable)(sc);
604 		sc->enabled = 0;
605 	}
606 
607 	/* locate the major number */
608 	maj = cdevsw_lookup_major(&plcom_cdevsw);
609 
610 	/* Nuke the vnodes for any open instances. */
611 	mn = device_unit(self);
612 	vdevgone(maj, mn, mn, VCHR);
613 
614 	mn |= PLCOMDIALOUT_MASK;
615 	vdevgone(maj, mn, mn, VCHR);
616 
617 	if (sc->sc_rbuf == NULL) {
618 		/*
619 		 * Ring buffer allocation failed in the plcom_attach_subr,
620 		 * only the tty is allocated, and nothing else.
621 		 */
622 		tty_free(sc->sc_tty);
623 		return 0;
624 	}
625 
626 	/* Free the receive buffer. */
627 	free(sc->sc_rbuf, M_DEVBUF);
628 
629 	/* Detach and free the tty. */
630 	tty_detach(sc->sc_tty);
631 	tty_free(sc->sc_tty);
632 
633 	/* Unhook the soft interrupt handler. */
634 	softint_disestablish(sc->sc_si);
635 
636 #ifdef RND_COM
637 	/* Unhook the entropy source. */
638 	rnd_detach_source(&sc->rnd_source);
639 #endif
640 	callout_destroy(&sc->sc_diag_callout);
641 
642 	/* Destroy the lock. */
643 	mutex_destroy(&sc->sc_lock);
644 
645 	return 0;
646 }
647 
648 int
649 plcom_activate(device_t self, enum devact act)
650 {
651 	struct plcom_softc *sc = device_private(self);
652 
653 	switch (act) {
654 	case DVACT_DEACTIVATE:
655 		sc->enabled = 0;
656 		return 0;
657 	default:
658 		return EOPNOTSUPP;
659 	}
660 }
661 
662 void
663 plcom_shutdown(struct plcom_softc *sc)
664 {
665 	struct plcom_instance *pi = &sc->sc_pi;
666 	struct tty *tp = sc->sc_tty;
667 	mutex_spin_enter(&sc->sc_lock);
668 
669 	/* If we were asserting flow control, then deassert it. */
670 	SET(sc->sc_rx_flags, RX_IBUF_BLOCKED);
671 	plcom_hwiflow(sc);
672 
673 	/* Clear any break condition set with TIOCSBRK. */
674 	plcom_break(sc, 0);
675 
676 	/* Turn off PPS capture on last close. */
677 	mutex_spin_enter(&timecounter_lock);
678 	sc->sc_ppsmask = 0;
679 	sc->ppsparam.mode = 0;
680 	mutex_spin_exit(&timecounter_lock);
681 
682 	/*
683 	 * Hang up if necessary.  Wait a bit, so the other side has time to
684 	 * notice even if we immediately open the port again.
685 	 * Avoid tsleeping above splhigh().
686 	 */
687 	if (ISSET(tp->t_cflag, HUPCL)) {
688 		plcom_modem(sc, 0);
689 		microuptime(&sc->sc_hup_pending);
690 		sc->sc_hup_pending.tv_sec++;
691 	}
692 
693 	sc->sc_cr = 0;
694 	sc->sc_imsc = 0;
695 	/* Turn off interrupts. */
696 	if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
697 		/* interrupt on break */
698 
699 		sc->sc_cr = PL01X_CR_UARTEN;
700 		sc->sc_imsc = 0;
701 		switch (pi->pi_type) {
702 		case PLCOM_TYPE_PL010:
703 			SET(sc->sc_cr, PL010_CR_RIE | PL010_CR_RTIE);
704 			break;
705 		case PLCOM_TYPE_PL011:
706 			SET(sc->sc_cr, PL011_CR_RXE);
707 			SET(sc->sc_imsc, PL011_INT_RT | PL011_INT_RX);
708 			break;
709 		}
710 	}
711 	switch (pi->pi_type) {
712 	case PLCOM_TYPE_PL010:
713 		SET(sc->sc_cr, PL010_CR_RIE | PL010_CR_RTIE);
714 		PWRITE1(pi, PL010COM_CR, sc->sc_cr);
715 		break;
716 	case PLCOM_TYPE_PL011:
717 		SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
718 		SET(sc->sc_imsc, PL011_INT_RT | PL011_INT_RX);
719 		PWRITE4(pi, PL011COM_CR, sc->sc_cr);
720 		PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
721 		break;
722 	}
723 
724 	mutex_spin_exit(&sc->sc_lock);
725 	if (sc->disable) {
726 #ifdef DIAGNOSTIC
727 		if (!sc->enabled)
728 			panic("plcom_shutdown: not enabled?");
729 #endif
730 		(*sc->disable)(sc);
731 		sc->enabled = 0;
732 	}
733 }
734 
735 int
736 plcomopen(dev_t dev, int flag, int mode, struct lwp *l)
737 {
738 	struct plcom_softc *sc;
739 	struct plcom_instance *pi;
740 	struct tty *tp;
741 	int s;
742 	int error;
743 
744 	sc = device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
745 	if (sc == NULL || !ISSET(sc->sc_hwflags, PLCOM_HW_DEV_OK) ||
746 		sc->sc_rbuf == NULL)
747 		return ENXIO;
748 
749 	if (!device_is_active(sc->sc_dev))
750 		return ENXIO;
751 
752 	pi = &sc->sc_pi;
753 
754 #ifdef KGDB
755 	/*
756 	 * If this is the kgdb port, no other use is permitted.
757 	 */
758 	if (ISSET(sc->sc_hwflags, PLCOM_HW_KGDB))
759 		return EBUSY;
760 #endif
761 
762 	tp = sc->sc_tty;
763 
764 	if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
765 		return (EBUSY);
766 
767 	s = spltty();
768 
769 	/*
770 	 * Do the following iff this is a first open.
771 	 */
772 	if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
773 		struct termios t;
774 		struct timeval now, diff;
775 
776 		tp->t_dev = dev;
777 
778 		if (sc->enable) {
779 			if ((*sc->enable)(sc)) {
780 				splx(s);
781 				aprint_error_dev(sc->sc_dev,
782 				    "device enable failed\n");
783 				return EIO;
784 			}
785 			mutex_spin_enter(&sc->sc_lock);
786 			sc->enabled = 1;
787 			plcom_config(sc);
788 		} else {
789 			mutex_spin_enter(&sc->sc_lock);
790 		}
791 
792 		if (timerisset(&sc->sc_hup_pending)) {
793 			microuptime(&now);
794 			while (timercmp(&now, &sc->sc_hup_pending, <)) {
795 				timersub(&sc->sc_hup_pending, &now, &diff);
796 				const int ms = diff.tv_sec * 100 +
797 				    diff.tv_usec / 1000;
798 				kpause(ttclos, false, uimax(mstohz(ms), 1),
799 				    &sc->sc_lock);
800 				microuptime(&now);
801 			}
802 			timerclear(&sc->sc_hup_pending);
803 		}
804 
805 		/* Turn on interrupts. */
806 		/* IER_ERXRDY | IER_ERLS | IER_EMSC;  */
807 		/* Fetch the current modem control status, needed later. */
808 		sc->sc_cr = PL01X_CR_UARTEN;
809 		switch (pi->pi_type) {
810 		case PLCOM_TYPE_PL010:
811 			SET(sc->sc_cr,
812 			    PL010_CR_RIE | PL010_CR_RTIE | PL010_CR_MSIE);
813 			PWRITE1(pi, PL010COM_CR, sc->sc_cr);
814 			sc->sc_msr = PREAD1(pi, PL01XCOM_FR);
815 			break;
816 		case PLCOM_TYPE_PL011:
817 			SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
818 			SET(sc->sc_imsc, PL011_INT_RT | PL011_INT_RX |
819 			    PL011_INT_MSMASK);
820 			PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
821 			sc->sc_msr = PREAD4(pi, PL01XCOM_FR);
822 			break;
823 		}
824 
825 		/* Clear PPS capture state on first open. */
826 
827 		mutex_spin_enter(&timecounter_lock);
828 		sc->sc_ppsmask = 0;
829 		sc->ppsparam.mode = 0;
830 		mutex_spin_exit(&timecounter_lock);
831 
832 		mutex_spin_exit(&sc->sc_lock);
833 
834 		/*
835 		 * Initialize the termios status to the defaults.  Add in the
836 		 * sticky bits from TIOCSFLAGS.
837 		 */
838 		if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
839 			t.c_ospeed = plcomconsrate;
840 			t.c_cflag = plcomconscflag;
841 		} else {
842 			t.c_ospeed = TTYDEF_SPEED;
843 			t.c_cflag = TTYDEF_CFLAG;
844 		}
845 		t.c_ispeed = t.c_ospeed;
846 
847 		if (ISSET(sc->sc_swflags, TIOCFLAG_CLOCAL))
848 			SET(t.c_cflag, CLOCAL);
849 		if (ISSET(sc->sc_swflags, TIOCFLAG_CRTSCTS))
850 			SET(t.c_cflag, CRTSCTS);
851 		if (ISSET(sc->sc_swflags, TIOCFLAG_MDMBUF))
852 			SET(t.c_cflag, MDMBUF);
853 		/* Make sure plcomparam() will do something. */
854 		tp->t_ospeed = 0;
855 		(void) plcomparam(tp, &t);
856 		tp->t_iflag = TTYDEF_IFLAG;
857 		tp->t_oflag = TTYDEF_OFLAG;
858 		tp->t_lflag = TTYDEF_LFLAG;
859 		ttychars(tp);
860 		ttsetwater(tp);
861 
862 		mutex_spin_enter(&sc->sc_lock);
863 
864 		/*
865 		 * Turn on DTR.  We must always do this, even if carrier is not
866 		 * present, because otherwise we'd have to use TIOCSDTR
867 		 * immediately after setting CLOCAL, which applications do not
868 		 * expect.  We always assert DTR while the device is open
869 		 * unless explicitly requested to deassert it.
870 		 */
871 		plcom_modem(sc, 1);
872 
873 		/* Clear the input ring, and unblock. */
874 		sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf;
875 		sc->sc_rbavail = plcom_rbuf_size;
876 		plcom_iflush(sc);
877 		CLR(sc->sc_rx_flags, RX_ANY_BLOCK);
878 		plcom_hwiflow(sc);
879 
880 #ifdef PLCOM_DEBUG
881 		if (plcom_debug)
882 			plcomstatus(sc, "plcomopen  ");
883 #endif
884 
885 		mutex_spin_exit(&sc->sc_lock);
886 	}
887 
888 	splx(s);
889 
890 	error = ttyopen(tp, PLCOMDIALOUT(dev), ISSET(flag, O_NONBLOCK));
891 	if (error)
892 		goto bad;
893 
894 	error = (*tp->t_linesw->l_open)(dev, tp);
895 	if (error)
896 		goto bad;
897 
898 	return 0;
899 
900 bad:
901 	if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
902 		/*
903 		 * We failed to open the device, and nobody else had it opened.
904 		 * Clean up the state as appropriate.
905 		 */
906 		plcom_shutdown(sc);
907 	}
908 
909 	return error;
910 }
911 
912 int
913 plcomclose(dev_t dev, int flag, int mode, struct lwp *l)
914 {
915 	struct plcom_softc *sc =
916 		device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
917 	struct tty *tp = sc->sc_tty;
918 
919 	/* XXX This is for cons.c. */
920 	if (!ISSET(tp->t_state, TS_ISOPEN))
921 		return 0;
922 
923 	(*tp->t_linesw->l_close)(tp, flag);
924 	ttyclose(tp);
925 
926 	if (PLCOM_ISALIVE(sc) == 0)
927 		return 0;
928 
929 	if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
930 		/*
931 		 * Although we got a last close, the device may still be in
932 		 * use; e.g. if this was the dialout node, and there are still
933 		 * processes waiting for carrier on the non-dialout node.
934 		 */
935 		plcom_shutdown(sc);
936 	}
937 
938 	return 0;
939 }
940 
941 int
942 plcomread(dev_t dev, struct uio *uio, int flag)
943 {
944 	struct plcom_softc *sc =
945 		device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
946 	struct tty *tp = sc->sc_tty;
947 
948 	if (PLCOM_ISALIVE(sc) == 0)
949 		return EIO;
950 
951 	return (*tp->t_linesw->l_read)(tp, uio, flag);
952 }
953 
954 int
955 plcomwrite(dev_t dev, struct uio *uio, int flag)
956 {
957 	struct plcom_softc *sc =
958 		device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
959 	struct tty *tp = sc->sc_tty;
960 
961 	if (PLCOM_ISALIVE(sc) == 0)
962 		return EIO;
963 
964 	return (*tp->t_linesw->l_write)(tp, uio, flag);
965 }
966 
967 int
968 plcompoll(dev_t dev, int events, struct lwp *l)
969 {
970 	struct plcom_softc *sc =
971 		device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
972 	struct tty *tp = sc->sc_tty;
973 
974 	if (PLCOM_ISALIVE(sc) == 0)
975 		return EIO;
976 
977 	return (*tp->t_linesw->l_poll)(tp, events, l);
978 }
979 
980 struct tty *
981 plcomtty(dev_t dev)
982 {
983 	struct plcom_softc *sc =
984 		device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
985 	struct tty *tp = sc->sc_tty;
986 
987 	return tp;
988 }
989 
990 int
991 plcomioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
992 {
993 	struct plcom_softc *sc =
994 		device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
995 	struct tty *tp;
996 	int error;
997 
998 	if (sc == NULL)
999 		return ENXIO;
1000 	if (PLCOM_ISALIVE(sc) == 0)
1001 		return EIO;
1002 
1003 	tp = sc->sc_tty;
1004 
1005 	error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l);
1006 	if (error != EPASSTHROUGH)
1007 		return error;
1008 
1009 	error = ttioctl(tp, cmd, data, flag, l);
1010 	if (error != EPASSTHROUGH)
1011 		return error;
1012 
1013 	error = 0;
1014 	switch (cmd) {
1015 	case TIOCSFLAGS:
1016 		error = kauth_authorize_device_tty(l->l_cred,
1017 		    KAUTH_DEVICE_TTY_PRIVSET, tp);
1018 		break;
1019 	default:
1020 		/* nothing */
1021 		break;
1022 	}
1023 	if (error) {
1024 		return error;
1025 	}
1026 
1027 	mutex_spin_enter(&sc->sc_lock);
1028 	switch (cmd) {
1029 	case TIOCSBRK:
1030 		plcom_break(sc, 1);
1031 		break;
1032 
1033 	case TIOCCBRK:
1034 		plcom_break(sc, 0);
1035 		break;
1036 
1037 	case TIOCSDTR:
1038 		plcom_modem(sc, 1);
1039 		break;
1040 
1041 	case TIOCCDTR:
1042 		plcom_modem(sc, 0);
1043 		break;
1044 
1045 	case TIOCGFLAGS:
1046 		*(int *)data = sc->sc_swflags;
1047 		break;
1048 
1049 	case TIOCSFLAGS:
1050 		sc->sc_swflags = *(int *)data;
1051 		break;
1052 
1053 	case TIOCMSET:
1054 	case TIOCMBIS:
1055 	case TIOCMBIC:
1056 		tiocm_to_plcom(sc, cmd, *(int *)data);
1057 		break;
1058 
1059 	case TIOCMGET:
1060 		*(int *)data = plcom_to_tiocm(sc);
1061 		break;
1062 
1063 	case PPS_IOC_CREATE:
1064 		break;
1065 
1066 	case PPS_IOC_DESTROY:
1067 		break;
1068 
1069 	case PPS_IOC_GETPARAMS: {
1070 		pps_params_t *pp;
1071 		pp = (pps_params_t *)data;
1072 		mutex_spin_enter(&timecounter_lock);
1073 		*pp = sc->ppsparam;
1074 		mutex_spin_exit(&timecounter_lock);
1075 		break;
1076 	}
1077 
1078 	case PPS_IOC_SETPARAMS: {
1079 	  	pps_params_t *pp;
1080 		int mode;
1081 		pp = (pps_params_t *)data;
1082 		mutex_spin_enter(&timecounter_lock);
1083 		if (pp->mode & ~ppscap) {
1084 			error = EINVAL;
1085 			mutex_spin_exit(&timecounter_lock);
1086 			break;
1087 		}
1088 		sc->ppsparam = *pp;
1089 	 	/*
1090 		 * Compute msr masks from user-specified timestamp state.
1091 		 */
1092 		mode = sc->ppsparam.mode;
1093 #ifdef	PPS_SYNC
1094 		if (mode & PPS_HARDPPSONASSERT) {
1095 			mode |= PPS_CAPTUREASSERT;
1096 			/* XXX revoke any previous HARDPPS source */
1097 		}
1098 		if (mode & PPS_HARDPPSONCLEAR) {
1099 			mode |= PPS_CAPTURECLEAR;
1100 			/* XXX revoke any previous HARDPPS source */
1101 		}
1102 #endif	/* PPS_SYNC */
1103 		switch (mode & PPS_CAPTUREBOTH) {
1104 		case 0:
1105 			sc->sc_ppsmask = 0;
1106 			break;
1107 
1108 		case PPS_CAPTUREASSERT:
1109 			sc->sc_ppsmask = PL01X_MSR_DCD;
1110 			sc->sc_ppsassert = PL01X_MSR_DCD;
1111 			sc->sc_ppsclear = -1;
1112 			break;
1113 
1114 		case PPS_CAPTURECLEAR:
1115 			sc->sc_ppsmask = PL01X_MSR_DCD;
1116 			sc->sc_ppsassert = -1;
1117 			sc->sc_ppsclear = 0;
1118 			break;
1119 
1120 		case PPS_CAPTUREBOTH:
1121 			sc->sc_ppsmask = PL01X_MSR_DCD;
1122 			sc->sc_ppsassert = PL01X_MSR_DCD;
1123 			sc->sc_ppsclear = 0;
1124 			break;
1125 
1126 		default:
1127 			error = EINVAL;
1128 			break;
1129 		}
1130 		mutex_spin_exit(&timecounter_lock);
1131 		break;
1132 	}
1133 
1134 	case PPS_IOC_GETCAP:
1135 		*(int*)data = ppscap;
1136 		break;
1137 
1138 	case PPS_IOC_FETCH: {
1139 		pps_info_t *pi;
1140 		pi = (pps_info_t *)data;
1141 		mutex_spin_enter(&timecounter_lock);
1142 		*pi = sc->ppsinfo;
1143 		mutex_spin_exit(&timecounter_lock);
1144 		break;
1145 	}
1146 
1147 	case TIOCDCDTIMESTAMP:	/* XXX old, overloaded  API used by xntpd v3 */
1148 		/*
1149 		 * Some GPS clocks models use the falling rather than
1150 		 * rising edge as the on-the-second signal.
1151 		 * The old API has no way to specify PPS polarity.
1152 		 */
1153 		mutex_spin_enter(&timecounter_lock);
1154 		sc->sc_ppsmask = PL01X_MSR_DCD;
1155 #ifndef PPS_TRAILING_EDGE
1156 		sc->sc_ppsassert = PL01X_MSR_DCD;
1157 		sc->sc_ppsclear = -1;
1158 		TIMESPEC_TO_TIMEVAL((struct timeval *)data,
1159 		    &sc->ppsinfo.assert_timestamp);
1160 #else
1161 		sc->sc_ppsassert = -1
1162 		sc->sc_ppsclear = 0;
1163 		TIMESPEC_TO_TIMEVAL((struct timeval *)data,
1164 		    &sc->ppsinfo.clear_timestamp);
1165 #endif
1166 		mutex_spin_exit(&timecounter_lock);
1167 		break;
1168 
1169 	default:
1170 		error = EPASSTHROUGH;
1171 		break;
1172 	}
1173 
1174 	mutex_spin_exit(&sc->sc_lock);
1175 
1176 #ifdef PLCOM_DEBUG
1177 	if (plcom_debug)
1178 		plcomstatus(sc, "plcomioctl ");
1179 #endif
1180 
1181 	return error;
1182 }
1183 
1184 integrate void
1185 plcom_schedrx(struct plcom_softc *sc)
1186 {
1187 
1188 	sc->sc_rx_ready = 1;
1189 
1190 	/* Wake up the poller. */
1191 	softint_schedule(sc->sc_si);
1192 }
1193 
1194 void
1195 plcom_break(struct plcom_softc *sc, int onoff)
1196 {
1197 
1198 	if (onoff)
1199 		SET(sc->sc_lcr, PL01X_LCR_BRK);
1200 	else
1201 		CLR(sc->sc_lcr, PL01X_LCR_BRK);
1202 
1203 	if (!sc->sc_heldchange) {
1204 		if (sc->sc_tx_busy) {
1205 			sc->sc_heldtbc = sc->sc_tbc;
1206 			sc->sc_tbc = 0;
1207 			sc->sc_heldchange = 1;
1208 		} else
1209 			plcom_loadchannelregs(sc);
1210 	}
1211 }
1212 
1213 void
1214 plcom_modem(struct plcom_softc *sc, int onoff)
1215 {
1216 
1217 	if (sc->sc_mcr_dtr == 0)
1218 		return;
1219 
1220 	if (onoff)
1221 		SET(sc->sc_mcr, sc->sc_mcr_dtr);
1222 	else
1223 		CLR(sc->sc_mcr, sc->sc_mcr_dtr);
1224 
1225 	if (!sc->sc_heldchange) {
1226 		if (sc->sc_tx_busy) {
1227 			sc->sc_heldtbc = sc->sc_tbc;
1228 			sc->sc_tbc = 0;
1229 			sc->sc_heldchange = 1;
1230 		} else
1231 			plcom_loadchannelregs(sc);
1232 	}
1233 }
1234 
1235 void
1236 tiocm_to_plcom(struct plcom_softc *sc, u_long how, int ttybits)
1237 {
1238 	u_char plcombits;
1239 
1240 	plcombits = 0;
1241 	if (ISSET(ttybits, TIOCM_DTR))
1242 		SET(plcombits, PL01X_MCR_DTR);
1243 	if (ISSET(ttybits, TIOCM_RTS))
1244 		SET(plcombits, PL01X_MCR_RTS);
1245 
1246 	switch (how) {
1247 	case TIOCMBIC:
1248 		CLR(sc->sc_mcr, plcombits);
1249 		break;
1250 
1251 	case TIOCMBIS:
1252 		SET(sc->sc_mcr, plcombits);
1253 		break;
1254 
1255 	case TIOCMSET:
1256 		CLR(sc->sc_mcr, PL01X_MCR_DTR | PL01X_MCR_RTS);
1257 		SET(sc->sc_mcr, plcombits);
1258 		break;
1259 	}
1260 
1261 	if (!sc->sc_heldchange) {
1262 		if (sc->sc_tx_busy) {
1263 			sc->sc_heldtbc = sc->sc_tbc;
1264 			sc->sc_tbc = 0;
1265 			sc->sc_heldchange = 1;
1266 		} else
1267 			plcom_loadchannelregs(sc);
1268 	}
1269 }
1270 
1271 int
1272 plcom_to_tiocm(struct plcom_softc *sc)
1273 {
1274 	u_char plcombits;
1275 	int ttybits = 0;
1276 
1277 	plcombits = sc->sc_mcr;
1278 	if (ISSET(plcombits, PL01X_MCR_DTR))
1279 		SET(ttybits, TIOCM_DTR);
1280 	if (ISSET(plcombits, PL01X_MCR_RTS))
1281 		SET(ttybits, TIOCM_RTS);
1282 
1283 	plcombits = sc->sc_msr;
1284 	if (ISSET(plcombits, PL01X_MSR_DCD))
1285 		SET(ttybits, TIOCM_CD);
1286 	if (ISSET(plcombits, PL01X_MSR_CTS))
1287 		SET(ttybits, TIOCM_CTS);
1288 	if (ISSET(plcombits, PL01X_MSR_DSR))
1289 		SET(ttybits, TIOCM_DSR);
1290 	if (ISSET(plcombits, PL011_MSR_RI))
1291 		SET(ttybits, TIOCM_RI);
1292 
1293 	if (sc->sc_cr != 0)
1294 		SET(ttybits, TIOCM_LE);
1295 
1296 	return ttybits;
1297 }
1298 
1299 static u_char
1300 cflag2lcr(tcflag_t cflag)
1301 {
1302 	u_char lcr = 0;
1303 
1304 	switch (ISSET(cflag, CSIZE)) {
1305 	case CS5:
1306 		SET(lcr, PL01X_LCR_5BITS);
1307 		break;
1308 	case CS6:
1309 		SET(lcr, PL01X_LCR_6BITS);
1310 		break;
1311 	case CS7:
1312 		SET(lcr, PL01X_LCR_7BITS);
1313 		break;
1314 	case CS8:
1315 		SET(lcr, PL01X_LCR_8BITS);
1316 		break;
1317 	}
1318 	if (ISSET(cflag, PARENB)) {
1319 		SET(lcr, PL01X_LCR_PEN);
1320 		if (!ISSET(cflag, PARODD))
1321 			SET(lcr, PL01X_LCR_EPS);
1322 	}
1323 	if (ISSET(cflag, CSTOPB))
1324 		SET(lcr, PL01X_LCR_STP2);
1325 
1326 	return lcr;
1327 }
1328 
1329 int
1330 plcomparam(struct tty *tp, struct termios *t)
1331 {
1332 	struct plcom_softc *sc =
1333 		device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1334 	struct plcom_instance *pi = &sc->sc_pi;
1335 	int ospeed = -1;
1336 	u_char lcr;
1337 
1338 	if (PLCOM_ISALIVE(sc) == 0)
1339 		return EIO;
1340 
1341 	switch (pi->pi_type) {
1342 	case PLCOM_TYPE_PL010:
1343 		ospeed = pl010comspeed(t->c_ospeed, sc->sc_frequency);
1344 		break;
1345 	case PLCOM_TYPE_PL011:
1346 		ospeed = pl011comspeed(t->c_ospeed, sc->sc_frequency);
1347 		break;
1348 	}
1349 
1350 	/* Check requested parameters. */
1351 	if (ospeed < 0)
1352 		return EINVAL;
1353 	if (t->c_ispeed && t->c_ispeed != t->c_ospeed)
1354 		return EINVAL;
1355 
1356 	/*
1357 	 * For the console, always force CLOCAL and !HUPCL, so that the port
1358 	 * is always active.
1359 	 */
1360 	if (ISSET(sc->sc_swflags, TIOCFLAG_SOFTCAR) ||
1361 	    ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
1362 		SET(t->c_cflag, CLOCAL);
1363 		CLR(t->c_cflag, HUPCL);
1364 	}
1365 
1366 	/*
1367 	 * If there were no changes, don't do anything.  This avoids dropping
1368 	 * input and improves performance when all we did was frob things like
1369 	 * VMIN and VTIME.
1370 	 */
1371 	if (tp->t_ospeed == t->c_ospeed &&
1372 	    tp->t_cflag == t->c_cflag)
1373 		return 0;
1374 
1375 	lcr = ISSET(sc->sc_lcr, PL01X_LCR_BRK) | cflag2lcr(t->c_cflag);
1376 
1377 	mutex_spin_enter(&sc->sc_lock);
1378 
1379 	sc->sc_lcr = lcr;
1380 
1381 	/*
1382 	 * PL010 has a fixed-length FIFO trigger point.
1383 	 */
1384 	if (ISSET(sc->sc_hwflags, PLCOM_HW_FIFO))
1385 		sc->sc_fifo = 1;
1386 	else
1387 		sc->sc_fifo = 0;
1388 
1389 	if (sc->sc_fifo)
1390 		SET(sc->sc_lcr, PL01X_LCR_FEN);
1391 
1392 	/*
1393 	 * If we're not in a mode that assumes a connection is present, then
1394 	 * ignore carrier changes.
1395 	 */
1396 	if (ISSET(t->c_cflag, CLOCAL | MDMBUF))
1397 		sc->sc_msr_dcd = 0;
1398 	else
1399 		sc->sc_msr_dcd = PL01X_MSR_DCD;
1400 	/*
1401 	 * Set the flow control pins depending on the current flow control
1402 	 * mode.
1403 	 */
1404 	if (ISSET(t->c_cflag, CRTSCTS)) {
1405 		sc->sc_mcr_dtr = PL01X_MCR_DTR;
1406 		sc->sc_mcr_rts = PL01X_MCR_RTS;
1407 		sc->sc_msr_cts = PL01X_MSR_CTS;
1408 	} else if (ISSET(t->c_cflag, MDMBUF)) {
1409 		/*
1410 		 * For DTR/DCD flow control, make sure we don't toggle DTR for
1411 		 * carrier detection.
1412 		 */
1413 		sc->sc_mcr_dtr = 0;
1414 		sc->sc_mcr_rts = PL01X_MCR_DTR;
1415 		sc->sc_msr_cts = PL01X_MSR_DCD;
1416 	} else {
1417 		/*
1418 		 * If no flow control, then always set RTS.  This will make
1419 		 * the other side happy if it mistakenly thinks we're doing
1420 		 * RTS/CTS flow control.
1421 		 */
1422 		sc->sc_mcr_dtr = PL01X_MCR_DTR | PL01X_MCR_RTS;
1423 		sc->sc_mcr_rts = 0;
1424 		sc->sc_msr_cts = 0;
1425 		if (ISSET(sc->sc_mcr, PL01X_MCR_DTR))
1426 			SET(sc->sc_mcr, PL01X_MCR_RTS);
1427 		else
1428 			CLR(sc->sc_mcr, PL01X_MCR_RTS);
1429 	}
1430 	sc->sc_msr_mask = sc->sc_msr_cts | sc->sc_msr_dcd;
1431 
1432 #if 0
1433 	if (ospeed == 0)
1434 		CLR(sc->sc_mcr, sc->sc_mcr_dtr);
1435 	else
1436 		SET(sc->sc_mcr, sc->sc_mcr_dtr);
1437 #endif
1438 
1439 	switch (pi->pi_type) {
1440 	case PLCOM_TYPE_PL010:
1441 		sc->sc_ratel = ospeed & 0xff;
1442 		sc->sc_rateh = (ospeed >> 8) & 0xff;
1443 		break;
1444 	case PLCOM_TYPE_PL011:
1445 		sc->sc_ratel = ospeed & ((1 << 6) - 1);
1446 		sc->sc_rateh = ospeed >> 6;
1447 		break;
1448 	}
1449 
1450 	/* And copy to tty. */
1451 	tp->t_ispeed = t->c_ospeed;
1452 	tp->t_ospeed = t->c_ospeed;
1453 	tp->t_cflag = t->c_cflag;
1454 
1455 	if (!sc->sc_heldchange) {
1456 		if (sc->sc_tx_busy) {
1457 			sc->sc_heldtbc = sc->sc_tbc;
1458 			sc->sc_tbc = 0;
1459 			sc->sc_heldchange = 1;
1460 		} else
1461 			plcom_loadchannelregs(sc);
1462 	}
1463 
1464 	if (!ISSET(t->c_cflag, CHWFLOW)) {
1465 		/* Disable the high water mark. */
1466 		sc->sc_r_hiwat = 0;
1467 		sc->sc_r_lowat = 0;
1468 		if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) {
1469 			CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1470 			plcom_schedrx(sc);
1471 		}
1472 		if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) {
1473 			CLR(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED);
1474 			plcom_hwiflow(sc);
1475 		}
1476 	} else {
1477 		sc->sc_r_hiwat = plcom_rbuf_hiwat;
1478 		sc->sc_r_lowat = plcom_rbuf_lowat;
1479 	}
1480 
1481 	mutex_spin_exit(&sc->sc_lock);
1482 
1483 	/*
1484 	 * Update the tty layer's idea of the carrier bit, in case we changed
1485 	 * CLOCAL or MDMBUF.  We don't hang up here; we only do that by
1486 	 * explicit request.
1487 	 */
1488 	(void) (*tp->t_linesw->l_modem)(tp, ISSET(sc->sc_msr, PL01X_MSR_DCD));
1489 
1490 #ifdef PLCOM_DEBUG
1491 	if (plcom_debug)
1492 		plcomstatus(sc, "plcomparam ");
1493 #endif
1494 
1495 	if (!ISSET(t->c_cflag, CHWFLOW)) {
1496 		if (sc->sc_tx_stopped) {
1497 			sc->sc_tx_stopped = 0;
1498 			plcomstart(tp);
1499 		}
1500 	}
1501 
1502 	return 0;
1503 }
1504 
1505 void
1506 plcom_iflush(struct plcom_softc *sc)
1507 {
1508 	struct plcom_instance *pi = &sc->sc_pi;
1509 #ifdef DIAGNOSTIC
1510 	int reg;
1511 #endif
1512 	int timo;
1513 
1514 #ifdef DIAGNOSTIC
1515 	reg = 0xffff;
1516 #endif
1517 	timo = 50000;
1518 	/* flush any pending I/O */
1519 	while (! ISSET(PREAD1(pi, PL01XCOM_FR), PL01X_FR_RXFE)
1520 	    && --timo)
1521 #ifdef DIAGNOSTIC
1522 		reg =
1523 #else
1524 		    (void)
1525 #endif
1526 		    PREAD1(pi, PL01XCOM_DR);
1527 #ifdef DIAGNOSTIC
1528 	if (!timo)
1529 		aprint_error_dev(sc->sc_dev, ": %s timeout %02x\n", __func__,
1530 		    reg);
1531 #endif
1532 }
1533 
1534 void
1535 plcom_loadchannelregs(struct plcom_softc *sc)
1536 {
1537 	struct plcom_instance *pi = &sc->sc_pi;
1538 
1539 	/* XXXXX necessary? */
1540 	plcom_iflush(sc);
1541 
1542 	switch (pi->pi_type) {
1543 	case PLCOM_TYPE_PL010:
1544 		PWRITE1(pi, PL010COM_CR, 0);
1545 		if (sc->sc_frequency != 0) {
1546 			PWRITE1(pi, PL010COM_DLBL, sc->sc_ratel);
1547 			PWRITE1(pi, PL010COM_DLBH, sc->sc_rateh);
1548 		}
1549 		PWRITE1(pi, PL010COM_LCR, sc->sc_lcr);
1550 
1551 		/* XXX device_unit() abuse */
1552 		if (sc->sc_set_mcr)
1553 			sc->sc_set_mcr(sc->sc_set_mcr_arg,
1554 			    device_unit(sc->sc_dev),
1555 			    sc->sc_mcr_active = sc->sc_mcr);
1556 
1557 		PWRITE1(pi, PL010COM_CR, sc->sc_cr);
1558 		break;
1559 
1560 	case PLCOM_TYPE_PL011:
1561 		PWRITE4(pi, PL011COM_CR, 0);
1562 		if (sc->sc_frequency != 0) {
1563 			PWRITE1(pi, PL011COM_FBRD, sc->sc_ratel);
1564 			PWRITE4(pi, PL011COM_IBRD, sc->sc_rateh);
1565 		}
1566 		PWRITE1(pi, PL011COM_LCRH, sc->sc_lcr);
1567 		sc->sc_mcr_active = sc->sc_mcr;
1568 		CLR(sc->sc_cr, PL011_MCR(PL01X_MCR_RTS | PL01X_MCR_DTR));
1569 		SET(sc->sc_cr, PL011_MCR(sc->sc_mcr_active));
1570 		PWRITE4(pi, PL011COM_CR, sc->sc_cr);
1571 		break;
1572 	}
1573 }
1574 
1575 int
1576 plcomhwiflow(struct tty *tp, int block)
1577 {
1578 	struct plcom_softc *sc =
1579 		device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1580 
1581 	if (PLCOM_ISALIVE(sc) == 0)
1582 		return 0;
1583 
1584 	if (sc->sc_mcr_rts == 0)
1585 		return 0;
1586 
1587 	mutex_spin_enter(&sc->sc_lock);
1588 
1589 	if (block) {
1590 		if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1591 			SET(sc->sc_rx_flags, RX_TTY_BLOCKED);
1592 			plcom_hwiflow(sc);
1593 		}
1594 	} else {
1595 		if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) {
1596 			CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1597 			plcom_schedrx(sc);
1598 		}
1599 		if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1600 			CLR(sc->sc_rx_flags, RX_TTY_BLOCKED);
1601 			plcom_hwiflow(sc);
1602 		}
1603 	}
1604 
1605 	mutex_spin_exit(&sc->sc_lock);
1606 	return 1;
1607 }
1608 
1609 /*
1610  * (un)block input via hw flowcontrol
1611  */
1612 void
1613 plcom_hwiflow(struct plcom_softc *sc)
1614 {
1615 	struct plcom_instance *pi = &sc->sc_pi;
1616 
1617 	if (sc->sc_mcr_rts == 0)
1618 		return;
1619 
1620 	if (ISSET(sc->sc_rx_flags, RX_ANY_BLOCK)) {
1621 		CLR(sc->sc_mcr, sc->sc_mcr_rts);
1622 		CLR(sc->sc_mcr_active, sc->sc_mcr_rts);
1623 	} else {
1624 		SET(sc->sc_mcr, sc->sc_mcr_rts);
1625 		SET(sc->sc_mcr_active, sc->sc_mcr_rts);
1626 	}
1627 	switch (pi->pi_type) {
1628 	case PLCOM_TYPE_PL010:
1629 		if (sc->sc_set_mcr)
1630 			/* XXX device_unit() abuse */
1631 			sc->sc_set_mcr(sc->sc_set_mcr_arg,
1632 			     device_unit(sc->sc_dev), sc->sc_mcr_active);
1633 		break;
1634 	case PLCOM_TYPE_PL011:
1635 		CLR(sc->sc_cr, PL011_MCR(PL01X_MCR_RTS | PL01X_MCR_DTR));
1636 		SET(sc->sc_cr, PL011_MCR(sc->sc_mcr_active));
1637 		PWRITE4(pi, PL011COM_CR, sc->sc_cr);
1638 		break;
1639 	}
1640 }
1641 
1642 
1643 void
1644 plcomstart(struct tty *tp)
1645 {
1646 	struct plcom_softc *sc =
1647 		device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1648 	struct plcom_instance *pi = &sc->sc_pi;
1649 	int s;
1650 
1651 	if (PLCOM_ISALIVE(sc) == 0)
1652 		return;
1653 
1654 	s = spltty();
1655 	if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
1656 		goto out;
1657 	if (sc->sc_tx_stopped)
1658 		goto out;
1659 
1660 	if (!ttypull(tp))
1661 		goto out;
1662 
1663 	/* Grab the first contiguous region of buffer space. */
1664 	{
1665 		u_char *tba;
1666 		int tbc;
1667 
1668 		tba = tp->t_outq.c_cf;
1669 		tbc = ndqb(&tp->t_outq, 0);
1670 
1671 		mutex_spin_enter(&sc->sc_lock);
1672 
1673 		sc->sc_tba = tba;
1674 		sc->sc_tbc = tbc;
1675 	}
1676 
1677 	SET(tp->t_state, TS_BUSY);
1678 	sc->sc_tx_busy = 1;
1679 
1680 	/* Enable transmit completion interrupts if necessary. */
1681 	switch (pi->pi_type) {
1682 	case PLCOM_TYPE_PL010:
1683 		if (!ISSET(sc->sc_cr, PL010_CR_TIE)) {
1684 			SET(sc->sc_cr, PL010_CR_TIE);
1685 			PWRITE1(pi, PL010COM_CR, sc->sc_cr);
1686 		}
1687 		break;
1688 	case PLCOM_TYPE_PL011:
1689 		if (!ISSET(sc->sc_imsc, PL011_INT_TX)) {
1690 			SET(sc->sc_imsc, PL011_INT_TX);
1691 			PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
1692 		}
1693 		break;
1694 	}
1695 
1696 	/* Output the first chunk of the contiguous buffer. */
1697 	{
1698 		int n;
1699 
1700 		n = sc->sc_tbc;
1701 		if (n > sc->sc_fifolen)
1702 			n = sc->sc_fifolen;
1703 		PWRITEM1(pi, PL01XCOM_DR, sc->sc_tba, n);
1704 		sc->sc_tbc -= n;
1705 		sc->sc_tba += n;
1706 	}
1707 	mutex_spin_exit(&sc->sc_lock);
1708 out:
1709 	splx(s);
1710 	return;
1711 }
1712 
1713 /*
1714  * Stop output on a line.
1715  */
1716 void
1717 plcomstop(struct tty *tp, int flag)
1718 {
1719 	struct plcom_softc *sc =
1720 		device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev));
1721 
1722 	mutex_spin_enter(&sc->sc_lock);
1723 	if (ISSET(tp->t_state, TS_BUSY)) {
1724 		/* Stop transmitting at the next chunk. */
1725 		sc->sc_tbc = 0;
1726 		sc->sc_heldtbc = 0;
1727 		if (!ISSET(tp->t_state, TS_TTSTOP))
1728 			SET(tp->t_state, TS_FLUSH);
1729 	}
1730 	mutex_spin_exit(&sc->sc_lock);
1731 }
1732 
1733 void
1734 plcomdiag(void *arg)
1735 {
1736 	struct plcom_softc *sc = arg;
1737 	int overflows, floods;
1738 
1739 	mutex_spin_enter(&sc->sc_lock);
1740 	overflows = sc->sc_overflows;
1741 	sc->sc_overflows = 0;
1742 	floods = sc->sc_floods;
1743 	sc->sc_floods = 0;
1744 	sc->sc_errors = 0;
1745 	mutex_spin_exit(&sc->sc_lock);
1746 
1747 	log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n",
1748 	    device_xname(sc->sc_dev),
1749 	    overflows, overflows == 1 ? "" : "s",
1750 	    floods, floods == 1 ? "" : "s");
1751 }
1752 
1753 integrate void
1754 plcom_rxsoft(struct plcom_softc *sc, struct tty *tp)
1755 {
1756 	int (*rint) (int, struct tty *) = tp->t_linesw->l_rint;
1757 	struct plcom_instance *pi = &sc->sc_pi;
1758 	u_char *get, *end;
1759 	u_int cc, scc;
1760 	u_char rsr;
1761 	int code;
1762 
1763 	end = sc->sc_ebuf;
1764 	get = sc->sc_rbget;
1765 	scc = cc = plcom_rbuf_size - sc->sc_rbavail;
1766 
1767 	if (cc == plcom_rbuf_size) {
1768 		sc->sc_floods++;
1769 		if (sc->sc_errors++ == 0)
1770 			callout_reset(&sc->sc_diag_callout, 60 * hz,
1771 			    plcomdiag, sc);
1772 	}
1773 
1774 	while (cc) {
1775 		code = get[0];
1776 		rsr = get[1];
1777 		if (ISSET(rsr, PL01X_RSR_ERROR)) {
1778 			if (ISSET(rsr, PL01X_RSR_OE)) {
1779 				sc->sc_overflows++;
1780 				if (sc->sc_errors++ == 0)
1781 					callout_reset(&sc->sc_diag_callout,
1782 					    60 * hz, plcomdiag, sc);
1783 			}
1784 			if (ISSET(rsr, PL01X_RSR_BE | PL01X_RSR_FE))
1785 				SET(code, TTY_FE);
1786 			if (ISSET(rsr, PL01X_RSR_PE))
1787 				SET(code, TTY_PE);
1788 		}
1789 		if ((*rint)(code, tp) == -1) {
1790 			/*
1791 			 * The line discipline's buffer is out of space.
1792 			 */
1793 			if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
1794 				/*
1795 				 * We're either not using flow control, or the
1796 				 * line discipline didn't tell us to block for
1797 				 * some reason.  Either way, we have no way to
1798 				 * know when there's more space available, so
1799 				 * just drop the rest of the data.
1800 				 */
1801 				get += cc << 1;
1802 				if (get >= end)
1803 					get -= plcom_rbuf_size << 1;
1804 				cc = 0;
1805 			} else {
1806 				/*
1807 				 * Don't schedule any more receive processing
1808 				 * until the line discipline tells us there's
1809 				 * space available (through plcomhwiflow()).
1810 				 * Leave the rest of the data in the input
1811 				 * buffer.
1812 				 */
1813 				SET(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
1814 			}
1815 			break;
1816 		}
1817 		get += 2;
1818 		if (get >= end)
1819 			get = sc->sc_rbuf;
1820 		cc--;
1821 	}
1822 
1823 	if (cc != scc) {
1824 		sc->sc_rbget = get;
1825 		mutex_spin_enter(&sc->sc_lock);
1826 
1827 		cc = sc->sc_rbavail += scc - cc;
1828 		/* Buffers should be ok again, release possible block. */
1829 		if (cc >= sc->sc_r_lowat) {
1830 			if (ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) {
1831 				CLR(sc->sc_rx_flags, RX_IBUF_OVERFLOWED);
1832 				switch (pi->pi_type) {
1833 				case PLCOM_TYPE_PL010:
1834 					SET(sc->sc_cr,
1835 					    PL010_CR_RIE | PL010_CR_RTIE);
1836 					PWRITE1(pi, PL010COM_CR, sc->sc_cr);
1837 					break;
1838 				case PLCOM_TYPE_PL011:
1839 					SET(sc->sc_imsc,
1840 					    PL011_INT_RX | PL011_INT_RT);
1841 					PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
1842 					break;
1843 				}
1844 			}
1845 			if (ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED)) {
1846 				CLR(sc->sc_rx_flags, RX_IBUF_BLOCKED);
1847 				plcom_hwiflow(sc);
1848 			}
1849 		}
1850 		mutex_spin_exit(&sc->sc_lock);
1851 	}
1852 }
1853 
1854 integrate void
1855 plcom_txsoft(struct plcom_softc *sc, struct tty *tp)
1856 {
1857 
1858 	CLR(tp->t_state, TS_BUSY);
1859 	if (ISSET(tp->t_state, TS_FLUSH))
1860 		CLR(tp->t_state, TS_FLUSH);
1861 	else
1862 		ndflush(&tp->t_outq, (int)(sc->sc_tba - tp->t_outq.c_cf));
1863 	(*tp->t_linesw->l_start)(tp);
1864 }
1865 
1866 integrate void
1867 plcom_stsoft(struct plcom_softc *sc, struct tty *tp)
1868 {
1869 	u_char msr, delta;
1870 
1871 	mutex_spin_enter(&sc->sc_lock);
1872 	msr = sc->sc_msr;
1873 	delta = sc->sc_msr_delta;
1874 	sc->sc_msr_delta = 0;
1875 	mutex_spin_exit(&sc->sc_lock);
1876 
1877 	if (ISSET(delta, sc->sc_msr_dcd)) {
1878 		/*
1879 		 * Inform the tty layer that carrier detect changed.
1880 		 */
1881 		(void) (*tp->t_linesw->l_modem)(tp, ISSET(msr, PL01X_MSR_DCD));
1882 	}
1883 
1884 	if (ISSET(delta, sc->sc_msr_cts)) {
1885 		/* Block or unblock output according to flow control. */
1886 		if (ISSET(msr, sc->sc_msr_cts)) {
1887 			sc->sc_tx_stopped = 0;
1888 			(*tp->t_linesw->l_start)(tp);
1889 		} else {
1890 			sc->sc_tx_stopped = 1;
1891 		}
1892 	}
1893 
1894 #ifdef PLCOM_DEBUG
1895 	if (plcom_debug)
1896 		plcomstatus(sc, "plcom_stsoft");
1897 #endif
1898 }
1899 
1900 void
1901 plcomsoft(void *arg)
1902 {
1903 	struct plcom_softc *sc = arg;
1904 	struct tty *tp;
1905 
1906 	if (PLCOM_ISALIVE(sc) == 0)
1907 		return;
1908 
1909 	tp = sc->sc_tty;
1910 
1911 	if (sc->sc_rx_ready) {
1912 		sc->sc_rx_ready = 0;
1913 		plcom_rxsoft(sc, tp);
1914 	}
1915 
1916 	if (sc->sc_st_check) {
1917 		sc->sc_st_check = 0;
1918 		plcom_stsoft(sc, tp);
1919 	}
1920 
1921 	if (sc->sc_tx_done) {
1922 		sc->sc_tx_done = 0;
1923 		plcom_txsoft(sc, tp);
1924 	}
1925 }
1926 
1927 bool
1928 plcom_intstatus(struct plcom_instance *pi, u_int *istatus)
1929 {
1930 	bool ret = false;
1931 	u_int stat = 0;
1932 
1933 	switch (pi->pi_type) {
1934 	case PLCOM_TYPE_PL010:
1935 		stat = PREAD1(pi, PL010COM_IIR);
1936 		ret = ISSET(stat, PL010_IIR_IMASK);
1937 		break;
1938 	case PLCOM_TYPE_PL011:
1939 		stat = PREAD4(pi, PL011COM_MIS);
1940 		ret = ISSET(stat, PL011_INT_ALLMASK);
1941 		break;
1942 	}
1943 	*istatus = stat;
1944 
1945 	return ret;
1946 }
1947 
1948 int
1949 plcomintr(void *arg)
1950 {
1951 	struct plcom_softc *sc = arg;
1952 	struct plcom_instance *pi = &sc->sc_pi;
1953 	u_char *put, *end;
1954 	u_int cc;
1955 	u_int istatus = 0;
1956 	u_char rsr;
1957 	bool intr = false;
1958 
1959 	PLCOM_BARRIER(pi, BR | BW);
1960 
1961 	if (PLCOM_ISALIVE(sc) == 0)
1962 		return 0;
1963 
1964 	mutex_spin_enter(&sc->sc_lock);
1965 	intr = plcom_intstatus(pi, &istatus);
1966 	if (!intr) {
1967 		mutex_spin_exit(&sc->sc_lock);
1968 		return 0;
1969 	}
1970 
1971 	end = sc->sc_ebuf;
1972 	put = sc->sc_rbput;
1973 	cc = sc->sc_rbavail;
1974 
1975 	do {
1976 		u_int msr = 0, delta, fr;
1977 		bool rxintr = false, txintr = false, msintr;
1978 
1979 		/* don't need RI here*/
1980 		fr = PREAD1(pi, PL01XCOM_FR);
1981 
1982 		if (!ISSET(fr, PL01X_FR_RXFE) &&
1983 		    !ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) {
1984 			while (cc > 0) {
1985 				int cn_trapped = 0;
1986 				put[0] = PREAD1(pi, PL01XCOM_DR);
1987 				rsr = PREAD1(pi, PL01XCOM_RSR);
1988 				/* Clear any error status.  */
1989 				if (ISSET(rsr, PL01X_RSR_ERROR))
1990 					PWRITE1(pi, PL01XCOM_ECR, 0);
1991 				if (ISSET(rsr, PL01X_RSR_BE)) {
1992 					cn_trapped = 0;
1993 					cn_check_magic(sc->sc_tty->t_dev,
1994 					    CNC_BREAK, plcom_cnm_state);
1995 					if (cn_trapped)
1996 						continue;
1997 #if defined(KGDB)
1998 					if (ISSET(sc->sc_hwflags,
1999 					    PLCOM_HW_KGDB)) {
2000 						kgdb_connect(1);
2001 						continue;
2002 					}
2003 #endif
2004 				}
2005 
2006 				put[1] = rsr;
2007 				cn_trapped = 0;
2008 				cn_check_magic(sc->sc_tty->t_dev, put[0],
2009 				    plcom_cnm_state);
2010 				if (cn_trapped) {
2011 					fr = PREAD1(pi, PL01XCOM_FR);
2012 					if (ISSET(fr, PL01X_FR_RXFE))
2013 						break;
2014 
2015 					continue;
2016 				}
2017 				put += 2;
2018 				if (put >= end)
2019 					put = sc->sc_rbuf;
2020 				cc--;
2021 
2022 				/* don't need RI here*/
2023 				fr = PREAD1(pi, PL01XCOM_FR);
2024 				if (ISSET(fr, PL01X_FR_RXFE))
2025 					break;
2026 			}
2027 
2028 			/*
2029 			 * Current string of incoming characters ended because
2030 			 * no more data was available or we ran out of space.
2031 			 * Schedule a receive event if any data was received.
2032 			 * If we're out of space, turn off receive interrupts.
2033 			 */
2034 			sc->sc_rbput = put;
2035 			sc->sc_rbavail = cc;
2036 			if (!ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED))
2037 				sc->sc_rx_ready = 1;
2038 
2039 			/*
2040 			 * See if we are in danger of overflowing a buffer. If
2041 			 * so, use hardware flow control to ease the pressure.
2042 			 */
2043 			if (!ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED) &&
2044 			    cc < sc->sc_r_hiwat) {
2045 				SET(sc->sc_rx_flags, RX_IBUF_BLOCKED);
2046 				plcom_hwiflow(sc);
2047 			}
2048 
2049 			/*
2050 			 * If we're out of space, disable receive interrupts
2051 			 * until the queue has drained a bit.
2052 			 */
2053 			if (!cc) {
2054 				SET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED);
2055 				switch (pi->pi_type) {
2056 				case PLCOM_TYPE_PL010:
2057 					CLR(sc->sc_cr,
2058 					    PL010_CR_RIE | PL010_CR_RTIE);
2059 					PWRITE1(pi, PL010COM_CR, sc->sc_cr);
2060 					break;
2061 				case PLCOM_TYPE_PL011:
2062 					CLR(sc->sc_imsc,
2063 					    PL011_INT_RT | PL011_INT_RX);
2064 					PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
2065 					break;
2066 				}
2067 			}
2068 		} else {
2069 			switch (pi->pi_type) {
2070 			case PLCOM_TYPE_PL010:
2071 				rxintr = ISSET(istatus, PL010_IIR_RIS);
2072 				if (rxintr) {
2073 					PWRITE1(pi, PL010COM_CR, 0);
2074 					delay(10);
2075 					PWRITE1(pi, PL010COM_CR, sc->sc_cr);
2076 					continue;
2077 				}
2078 				break;
2079 			case PLCOM_TYPE_PL011:
2080 				rxintr = ISSET(istatus, PL011_INT_RX);
2081 				if (rxintr) {
2082 					PWRITE4(pi, PL011COM_CR, 0);
2083 					delay(10);
2084 					PWRITE4(pi, PL011COM_CR, sc->sc_cr);
2085 					continue;
2086 				}
2087 				break;
2088 			}
2089 		}
2090 
2091 		switch (pi->pi_type) {
2092 		case PLCOM_TYPE_PL010:
2093 			msr = PREAD1(pi, PL01XCOM_FR);
2094 			break;
2095 		case PLCOM_TYPE_PL011:
2096 			msr = PREAD4(pi, PL01XCOM_FR);
2097 			break;
2098 		}
2099 		delta = msr ^ sc->sc_msr;
2100 		sc->sc_msr = msr;
2101 
2102 		/* Clear any pending modem status interrupt.  */
2103 		switch (pi->pi_type) {
2104 		case PLCOM_TYPE_PL010:
2105 			msintr = ISSET(istatus, PL010_IIR_MIS);
2106 			if (msintr) {
2107 				PWRITE1(pi, PL010COM_ICR, 0);
2108 			}
2109 			break;
2110 		case PLCOM_TYPE_PL011:
2111 			msintr = ISSET(istatus, PL011_INT_MSMASK);
2112 			if (msintr) {
2113 				PWRITE4(pi, PL011COM_ICR, PL011_INT_MSMASK);
2114 			}
2115 			break;
2116 		}
2117 		/*
2118 		 * Pulse-per-second (PSS) signals on edge of DCD?
2119 		 * Process these even if line discipline is ignoring DCD.
2120 		 */
2121 		if (delta & sc->sc_ppsmask) {
2122 			struct timeval tv;
2123 			mutex_spin_enter(&timecounter_lock);
2124 		    	if ((msr & sc->sc_ppsmask) == sc->sc_ppsassert) {
2125 				/* XXX nanotime() */
2126 				microtime(&tv);
2127 				TIMEVAL_TO_TIMESPEC(&tv,
2128 				    &sc->ppsinfo.assert_timestamp);
2129 				if (sc->ppsparam.mode & PPS_OFFSETASSERT) {
2130 					timespecadd(&sc->ppsinfo.assert_timestamp,
2131 					    &sc->ppsparam.assert_offset,
2132 						    &sc->ppsinfo.assert_timestamp);
2133 				}
2134 
2135 #ifdef PPS_SYNC
2136 				if (sc->ppsparam.mode & PPS_HARDPPSONASSERT)
2137 					hardpps(&tv, tv.tv_usec);
2138 #endif
2139 				sc->ppsinfo.assert_sequence++;
2140 				sc->ppsinfo.current_mode = sc->ppsparam.mode;
2141 
2142 			} else if ((msr & sc->sc_ppsmask) == sc->sc_ppsclear) {
2143 				/* XXX nanotime() */
2144 				microtime(&tv);
2145 				TIMEVAL_TO_TIMESPEC(&tv,
2146 				    &sc->ppsinfo.clear_timestamp);
2147 				if (sc->ppsparam.mode & PPS_OFFSETCLEAR) {
2148 					timespecadd(&sc->ppsinfo.clear_timestamp,
2149 					    &sc->ppsparam.clear_offset,
2150 					    &sc->ppsinfo.clear_timestamp);
2151 				}
2152 
2153 #ifdef PPS_SYNC
2154 				if (sc->ppsparam.mode & PPS_HARDPPSONCLEAR)
2155 					hardpps(&tv, tv.tv_usec);
2156 #endif
2157 				sc->ppsinfo.clear_sequence++;
2158 				sc->ppsinfo.current_mode = sc->ppsparam.mode;
2159 			}
2160 			mutex_spin_exit(&timecounter_lock);
2161 		}
2162 
2163 		/*
2164 		 * Process normal status changes
2165 		 */
2166 		if (ISSET(delta, sc->sc_msr_mask)) {
2167 			SET(sc->sc_msr_delta, delta);
2168 
2169 			/*
2170 			 * Stop output immediately if we lose the output
2171 			 * flow control signal or carrier detect.
2172 			 */
2173 			if (ISSET(~msr, sc->sc_msr_mask)) {
2174 				sc->sc_tbc = 0;
2175 				sc->sc_heldtbc = 0;
2176 #ifdef PLCOM_DEBUG
2177 				if (plcom_debug)
2178 					plcomstatus(sc, "plcomintr  ");
2179 #endif
2180 			}
2181 
2182 			sc->sc_st_check = 1;
2183 		}
2184 
2185 		/*
2186 		 * Done handling any receive interrupts. See if data
2187 		 * can be transmitted as well. Schedule tx done
2188 		 * event if no data left and tty was marked busy.
2189 		 */
2190 
2191 		switch (pi->pi_type) {
2192 		case PLCOM_TYPE_PL010:
2193 			txintr = ISSET(istatus, PL010_IIR_TIS);
2194 			break;
2195 		case PLCOM_TYPE_PL011:
2196 			txintr = ISSET(istatus, PL011_INT_TX);
2197 			break;
2198 		}
2199 		if (txintr) {
2200 			/*
2201 			 * If we've delayed a parameter change, do it
2202 			 * now, and restart * output.
2203 			 */
2204 // PWRITE4(pi, PL011COM_ICR, PL011_INT_TX);
2205 			if (sc->sc_heldchange) {
2206 				plcom_loadchannelregs(sc);
2207 				sc->sc_heldchange = 0;
2208 				sc->sc_tbc = sc->sc_heldtbc;
2209 				sc->sc_heldtbc = 0;
2210 			}
2211 
2212 			/*
2213 			 * Output the next chunk of the contiguous
2214 			 * buffer, if any.
2215 			 */
2216 			if (sc->sc_tbc > 0) {
2217 				int n;
2218 
2219 				n = sc->sc_tbc;
2220 				if (n > sc->sc_fifolen)
2221 					n = sc->sc_fifolen;
2222 				PWRITEM1(pi, PL01XCOM_DR, sc->sc_tba, n);
2223 				sc->sc_tbc -= n;
2224 				sc->sc_tba += n;
2225 			} else {
2226 				/*
2227 				 * Disable transmit completion
2228 				 * interrupts if necessary.
2229 				 */
2230 				switch (pi->pi_type) {
2231 				case PLCOM_TYPE_PL010:
2232 					if (ISSET(sc->sc_cr, PL010_CR_TIE)) {
2233 						CLR(sc->sc_cr, PL010_CR_TIE);
2234 						PWRITE1(pi, PL010COM_CR,
2235 						    sc->sc_cr);
2236 					}
2237 					break;
2238 				case PLCOM_TYPE_PL011:
2239 					if (ISSET(sc->sc_imsc, PL011_INT_TX)) {
2240 						CLR(sc->sc_imsc, PL011_INT_TX);
2241 						PWRITE4(pi, PL011COM_IMSC,
2242 						    sc->sc_imsc);
2243 					}
2244 					break;
2245 				}
2246 				if (sc->sc_tx_busy) {
2247 					sc->sc_tx_busy = 0;
2248 					sc->sc_tx_done = 1;
2249 				}
2250 			}
2251 		}
2252 
2253 	} while (plcom_intstatus(pi, &istatus));
2254 
2255 	mutex_spin_exit(&sc->sc_lock);
2256 
2257 	/* Wake up the poller. */
2258 	softint_schedule(sc->sc_si);
2259 
2260 #ifdef RND_COM
2261 	rnd_add_uint32(&sc->rnd_source, istatus | rsr);
2262 #endif
2263 
2264 	PLCOM_BARRIER(pi, BR | BW);
2265 
2266 	return 1;
2267 }
2268 
2269 /*
2270  * The following functions are polled getc and putc routines, shared
2271  * by the console and kgdb glue.
2272  *
2273  * The read-ahead code is so that you can detect pending in-band
2274  * cn_magic in polled mode while doing output rather than having to
2275  * wait until the kernel decides it needs input.
2276  */
2277 
2278 #define MAX_READAHEAD	20
2279 static int plcom_readahead[MAX_READAHEAD];
2280 static int plcom_readaheadcount = 0;
2281 
2282 int
2283 plcom_common_getc(dev_t dev, struct plcom_instance *pi)
2284 {
2285 	int s = splserial();
2286 	u_char c;
2287 
2288 	/* got a character from reading things earlier */
2289 	if (plcom_readaheadcount > 0) {
2290 		int i;
2291 
2292 		c = plcom_readahead[0];
2293 		for (i = 1; i < plcom_readaheadcount; i++) {
2294 			plcom_readahead[i-1] = plcom_readahead[i];
2295 		}
2296 		plcom_readaheadcount--;
2297 		splx(s);
2298 		return c;
2299 	}
2300 
2301 	if (ISSET(PREAD1(pi, PL01XCOM_FR), PL01X_FR_RXFE)) {
2302 		splx(s);
2303 		return -1;
2304 	}
2305 
2306 	c = PREAD1(pi, PL01XCOM_DR);
2307 	{
2308 		int cn_trapped __unused = 0;
2309 #ifdef DDB
2310 		extern int db_active;
2311 		if (!db_active)
2312 #endif
2313 			cn_check_magic(dev, c, plcom_cnm_state);
2314 	}
2315 	splx(s);
2316 	return c;
2317 }
2318 
2319 void
2320 plcom_common_putc(dev_t dev, struct plcom_instance *pi, int c)
2321 {
2322 	int s = splserial();
2323 	int timo;
2324 
2325 	int cin, stat;
2326 	if (plcom_readaheadcount < MAX_READAHEAD
2327 	     && !ISSET(stat = PREAD1(pi, PL01XCOM_FR), PL01X_FR_RXFE)) {
2328 		int cn_trapped __unused = 0;
2329 		cin = PREAD1(pi, PL01XCOM_DR);
2330 		cn_check_magic(dev, cin, plcom_cnm_state);
2331 		plcom_readahead[plcom_readaheadcount++] = cin;
2332 	}
2333 
2334 	/* wait for any pending transmission to finish */
2335 	timo = 150000;
2336 	while (ISSET(PREAD1(pi, PL01XCOM_FR), PL01X_FR_TXFF) && --timo)
2337 		continue;
2338 
2339 	PWRITE1(pi, PL01XCOM_DR, c);
2340 	PLCOM_BARRIER(pi, BR | BW);
2341 
2342 	splx(s);
2343 }
2344 
2345 /*
2346  * Initialize UART for use as console or KGDB line.
2347  */
2348 int
2349 plcominit(struct plcom_instance *pi, int rate, int frequency, tcflag_t cflag)
2350 {
2351 	u_char lcr;
2352 
2353 	switch (pi->pi_type) {
2354 	case PLCOM_TYPE_PL010:
2355 		if (pi->pi_size == 0)
2356 			pi->pi_size = PL010COM_UART_SIZE;
2357 		break;
2358 	case PLCOM_TYPE_PL011:
2359 		if (pi->pi_size == 0)
2360 			pi->pi_size = PL011COM_UART_SIZE;
2361 		break;
2362 	default:
2363 		panic("Unknown plcom type");
2364 	}
2365 
2366 	if (bus_space_map(pi->pi_iot, pi->pi_iobase, pi->pi_size, 0,
2367 	    &pi->pi_ioh))
2368 		return ENOMEM; /* ??? */
2369 
2370 	lcr = cflag2lcr(cflag) | PL01X_LCR_FEN;
2371 	switch (pi->pi_type) {
2372 	case PLCOM_TYPE_PL010:
2373 		PWRITE1(pi, PL010COM_CR, 0);
2374 
2375 		if (rate && frequency) {
2376 			rate = pl010comspeed(rate, frequency);
2377 			PWRITE1(pi, PL010COM_DLBL, (rate & 0xff));
2378 			PWRITE1(pi, PL010COM_DLBH, ((rate >> 8) & 0xff));
2379 		}
2380 		PWRITE1(pi, PL010COM_LCR, lcr);
2381 		PWRITE1(pi, PL010COM_CR, PL01X_CR_UARTEN);
2382 		break;
2383 	case PLCOM_TYPE_PL011:
2384 		PWRITE4(pi, PL011COM_CR, 0);
2385 
2386 		if (rate && frequency) {
2387 			rate = pl011comspeed(rate, frequency);
2388 			PWRITE1(pi, PL011COM_FBRD, rate & ((1 << 6) - 1));
2389 			PWRITE4(pi, PL011COM_IBRD, rate >> 6);
2390 		}
2391 		PWRITE1(pi, PL011COM_LCRH, lcr);
2392 		PWRITE4(pi, PL011COM_CR,
2393 		    PL01X_CR_UARTEN | PL011_CR_RXE | PL011_CR_TXE);
2394 		break;
2395 	}
2396 
2397 #if 0
2398 	/* Ought to do something like this, but we have no sc to
2399 	   dereference. */
2400 	/* XXX device_unit() abuse */
2401 	sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(sc->sc_dev),
2402 	    PL01X_MCR_DTR | PL01X_MCR_RTS);
2403 #endif
2404 
2405 	return 0;
2406 }
2407 
2408 /*
2409  * Following are all routines needed for PLCOM to act as console
2410  */
2411 struct consdev plcomcons = {
2412 	NULL, NULL, plcomcngetc, plcomcnputc, plcomcnpollc, NULL,
2413 	plcomcnhalt, NULL, NODEV, CN_NORMAL
2414 };
2415 
2416 int
2417 plcomcnattach(struct plcom_instance *pi, int rate, int frequency,
2418     tcflag_t cflag, int unit)
2419 {
2420 	int res;
2421 
2422 	plcomcons_info = *pi;
2423 
2424 	res = plcominit(&plcomcons_info, rate, frequency, cflag);
2425 	if (res)
2426 		return res;
2427 
2428 	cn_tab = &plcomcons;
2429 	cn_init_magic(&plcom_cnm_state);
2430 	cn_set_magic("\047\001"); /* default magic is BREAK */
2431 
2432 	plcomconsunit = unit;
2433 	plcomconsrate = rate;
2434 	plcomconscflag = cflag;
2435 
2436 	return 0;
2437 }
2438 
2439 void
2440 plcomcndetach(void)
2441 {
2442 
2443 	bus_space_unmap(plcomcons_info.pi_iot, plcomcons_info.pi_ioh,
2444 	    plcomcons_info.pi_size);
2445 	plcomcons_info.pi_iot = NULL;
2446 
2447 	cn_tab = NULL;
2448 }
2449 
2450 int
2451 plcomcngetc(dev_t dev)
2452 {
2453 	return plcom_common_getc(dev, &plcomcons_info);
2454 }
2455 
2456 /*
2457  * Console kernel output character routine.
2458  */
2459 void
2460 plcomcnputc(dev_t dev, int c)
2461 {
2462 	plcom_common_putc(dev, &plcomcons_info, c);
2463 }
2464 
2465 void
2466 plcomcnpollc(dev_t dev, int on)
2467 {
2468 
2469 	plcom_readaheadcount = 0;
2470 }
2471 
2472 void
2473 plcomcnhalt(dev_t dev)
2474 {
2475 	struct plcom_instance *pi = &plcomcons_info;
2476 
2477 	switch (pi->pi_type) {
2478 	case PLCOM_TYPE_PL010:
2479 		PWRITE1(pi, PL010COM_CR, PL01X_CR_UARTEN);
2480 		break;
2481 	case PLCOM_TYPE_PL011:
2482 		PWRITE4(pi, PL011COM_CR,
2483 		    PL01X_CR_UARTEN | PL011_CR_RXE | PL011_CR_TXE);
2484 		PWRITE4(pi, PL011COM_IMSC, 0);
2485 		break;
2486 	}
2487 }
2488 
2489 #ifdef KGDB
2490 int
2491 plcom_kgdb_attach(struct plcom_instance *pi, int rate, int frequency,
2492     tcflag_t cflag, int unit)
2493 {
2494 	int res;
2495 
2496 	if (pi->pi_iot == plcomcons_info.pi_iot &&
2497 	    pi->pi_iobase == plcomcons_info.pi_iobase)
2498 		return EBUSY; /* cannot share with console */
2499 
2500 	res = plcominit(pi, rate, frequency, cflag);
2501 	if (res)
2502 		return res;
2503 
2504 	kgdb_attach(plcom_kgdb_getc, plcom_kgdb_putc, NULL);
2505 	kgdb_dev = 123; /* unneeded, only to satisfy some tests */
2506 
2507 	plcomkgdb_info.pi_iot = pi->pi_iot;
2508 	plcomkgdb_info.pi_ioh = pi->pi_ioh;
2509 	plcomkgdb_info.pi_iobase = pi->pi_iobase;
2510 
2511 	return 0;
2512 }
2513 
2514 /* ARGSUSED */
2515 int
2516 plcom_kgdb_getc(void *arg)
2517 {
2518 	return plcom_common_getc(NODEV, &plcomkgdb_info);
2519 }
2520 
2521 /* ARGSUSED */
2522 void
2523 plcom_kgdb_putc(void *arg, int c)
2524 {
2525 	plcom_common_putc(NODEV, &plcomkgdb_info, c);
2526 }
2527 #endif /* KGDB */
2528 
2529 /* helper function to identify the plcom ports used by
2530  console or KGDB (and not yet autoconf attached) */
2531 int
2532 plcom_is_console(bus_space_tag_t iot, bus_addr_t iobase,
2533     bus_space_handle_t *ioh)
2534 {
2535 	bus_space_handle_t help;
2536 
2537 	if (!plcomconsattached &&
2538 	    bus_space_is_equal(iot, plcomcons_info.pi_iot) &&
2539 	    iobase == plcomcons_info.pi_iobase)
2540 		help = plcomcons_info.pi_ioh;
2541 #ifdef KGDB
2542 	else if (!plcom_kgdb_attached &&
2543 	    bus_space_is_equal(iot, plcomkgdb_info.pi_iot) &&
2544 	    iobase == plcomkgdb_info.pi_iobase)
2545 		help = plcomkgdb_info.pi_ioh;
2546 #endif
2547 	else
2548 		return 0;
2549 
2550 	if (ioh)
2551 		*ioh = help;
2552 	return 1;
2553 }
2554