xref: /netbsd-src/sys/arch/evbarm/adi_brh/brh_machdep.c (revision b2c35e17b976cf7ccd7250c86c6f5e95090ed636)
1 /*	$NetBSD: brh_machdep.c,v 1.56 2024/02/20 23:36:02 andvar Exp $	*/
2 
3 /*
4  * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed for the NetBSD Project by
20  *	Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * Copyright (c) 1997,1998 Mark Brinicombe.
40  * Copyright (c) 1997,1998 Causality Limited.
41  * All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by Mark Brinicombe
54  *	for the NetBSD Project.
55  * 4. The name of the company nor the name of the author may be used to
56  *    endorse or promote products derived from this software without specific
57  *    prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
60  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
61  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
63  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
65  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  * Machine dependent functions for kernel setup for the ADI Engineering
72  * BRH i80200 evaluation platform.
73  */
74 
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: brh_machdep.c,v 1.56 2024/02/20 23:36:02 andvar Exp $");
77 
78 #include "opt_arm_debug.h"
79 #include "opt_console.h"
80 #include "opt_ddb.h"
81 
82 #include <sys/param.h>
83 #include <sys/device.h>
84 #include <sys/systm.h>
85 #include <sys/kernel.h>
86 #include <sys/exec.h>
87 #include <sys/proc.h>
88 #include <sys/msgbuf.h>
89 #include <sys/reboot.h>
90 #include <sys/termios.h>
91 #include <sys/ksyms.h>
92 #include <sys/bus.h>
93 #include <sys/cpu.h>
94 
95 #include <uvm/uvm_extern.h>
96 
97 #include <dev/cons.h>
98 
99 #include <machine/db_machdep.h>
100 #include <ddb/db_sym.h>
101 #include <ddb/db_extern.h>
102 
103 #include <machine/bootconfig.h>
104 #include <arm/locore.h>
105 #include <arm/undefined.h>
106 
107 #include <arm/arm32/machdep.h>
108 
109 #include <arm/xscale/i80200reg.h>
110 #include <arm/xscale/i80200var.h>
111 
112 #include <dev/pci/ppbreg.h>
113 
114 #include <arm/xscale/beccreg.h>
115 #include <arm/xscale/beccvar.h>
116 
117 #include <evbarm/adi_brh/brhreg.h>
118 #include <evbarm/adi_brh/brhvar.h>
119 #include <evbarm/adi_brh/obiovar.h>
120 
121 #include "ksyms.h"
122 
123 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
124 #define	KERNEL_TEXT_BASE	(KERNEL_BASE + 0x00200000)
125 #define	KERNEL_VM_BASE		(KERNEL_BASE + 0x01000000)
126 
127 /*
128  * The range 0xc1000000 - 0xccffffff is available for kernel VM space
129  * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
130  */
131 #define KERNEL_VM_SIZE		0x0C000000
132 
133 BootConfig bootconfig;		/* Boot config storage */
134 char *boot_args = NULL;
135 char *boot_file = NULL;
136 
137 vaddr_t physical_start;
138 vaddr_t physical_freestart;
139 vaddr_t physical_freeend;
140 vaddr_t physical_end;
141 u_int free_pages;
142 
143 /*int debug_flags;*/
144 #ifndef PMAP_STATIC_L1S
145 int max_processes = 64;			/* Default number */
146 #endif	/* !PMAP_STATIC_L1S */
147 
148 /* Physical and virtual addresses for some global pages */
149 pv_addr_t minidataclean;
150 
151 paddr_t msgbufphys;
152 
153 #define KERNEL_PT_SYS		0	/* L2 table for mapping zero page */
154 
155 #define KERNEL_PT_KERNEL	1	/* L2 table for mapping kernel */
156 #define	KERNEL_PT_KERNEL_NUM	2
157 
158 					/* L2 tables for mapping kernel VM */
159 #define KERNEL_PT_VMDATA	(KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
160 #define	KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
161 #define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
162 
163 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
164 
165 /* Prototypes */
166 
167 void	consinit(void);
168 
169 #include "com.h"
170 #if NCOM > 0
171 #include <dev/ic/comreg.h>
172 #include <dev/ic/comvar.h>
173 #endif
174 
175 /*
176  * Define the default console speed for the board.  This is generally
177  * what the firmware provided with the board defaults to.
178  */
179 #ifndef CONSPEED
180 #define CONSPEED B57600
181 #endif /* ! CONSPEED */
182 
183 #ifndef CONUNIT
184 #define	CONUNIT	0
185 #endif
186 
187 #ifndef CONMODE
188 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
189 #endif
190 
191 int comcnspeed = CONSPEED;
192 int comcnmode = CONMODE;
193 int comcnunit = CONUNIT;
194 
195 /*
196  * void cpu_reboot(int howto, char *bootstr)
197  *
198  * Reboots the system
199  *
200  * Deal with any syncing, unmounting, dumping and shutdown hooks,
201  * then reset the CPU.
202  */
203 void
204 cpu_reboot(int howto, char *bootstr)
205 {
206 
207 	/*
208 	 * If we are still cold then hit the air brakes
209 	 * and crash to earth fast
210 	 */
211 	if (cold) {
212 		doshutdownhooks();
213 		pmf_system_shutdown(boothowto);
214 		printf("The operating system has halted.\n");
215 		printf("Please press any key to reboot.\n\n");
216 		cngetc();
217 		printf("rebooting...\n");
218 		goto reset;
219 	}
220 
221 	/* Disable console buffering */
222 
223 	/*
224 	 * If RB_NOSYNC was not specified sync the discs.
225 	 * Note: Unless cold is set to 1 here, syslogd will die during the
226 	 * unmount.  It looks like syslogd is getting woken up only to find
227 	 * that it cannot page part of the binary in as the filesystem has
228 	 * been unmounted.
229 	 */
230 	if (!(howto & RB_NOSYNC))
231 		bootsync();
232 
233 	/* Say NO to interrupts */
234 	splhigh();
235 
236 	/* Do a dump if requested. */
237 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
238 		dumpsys();
239 
240 	/* Run any shutdown hooks */
241 	doshutdownhooks();
242 
243 	pmf_system_shutdown(boothowto);
244 
245 	/* Make sure IRQ's are disabled */
246 	IRQdisable;
247 
248 	if (howto & RB_HALT) {
249 		brh_7seg('8');
250 		printf("The operating system has halted.\n");
251 		printf("Please press any key to reboot.\n\n");
252 		cngetc();
253 	}
254 
255 	printf("rebooting...\n\r");
256  reset:
257 	cpu_reset();
258 }
259 
260 /* Static device mappings. */
261 static const struct pmap_devmap brh_devmap[] = {
262     DEVMAP_ENTRY(
263 	BRH_PCI_CONF_VBASE,
264 	BECC_PCI_CONF_BASE,
265 	BRH_PCI_CONF_VSIZE
266     ),
267     DEVMAP_ENTRY(
268 	BRH_PCI_MEM1_VBASE,
269 	BECC_PCI_MEM1_BASE,
270 	BRH_PCI_MEM1_VSIZE
271     ),
272     DEVMAP_ENTRY(
273 	BRH_PCI_MEM2_VBASE,
274 	BECC_PCI_MEM2_BASE,
275 	BRH_PCI_MEM2_VSIZE
276     ),
277     DEVMAP_ENTRY(
278 	BRH_UART1_VBASE,
279 	BRH_UART1_BASE,
280 	BRH_UART1_VSIZE
281     ),
282     DEVMAP_ENTRY(
283 	BRH_UART2_VBASE,
284 	BRH_UART2_BASE,
285 	BRH_UART2_VSIZE
286     ),
287     DEVMAP_ENTRY(
288 	BRH_LED_VBASE,
289 	BRH_LED_BASE,
290 	BRH_LED_VSIZE
291     ),
292     DEVMAP_ENTRY(
293 	BRH_PCI_IO_VBASE,
294 	BECC_PCI_IO_BASE,
295 	BRH_PCI_IO_VSIZE
296     ),
297     DEVMAP_ENTRY(
298 	BRH_BECC_VBASE,
299 	BECC_REG_BASE,
300 	BRH_BECC_VSIZE
301     ),
302     DEVMAP_ENTRY_END
303 };
304 
305 static void
306 brh_hardclock_hook(void)
307 {
308 	static int snakefreq;
309 
310 	if ((snakefreq++ & 15) == 0)
311 		brh_7seg_snake();
312 }
313 
314 /*
315  * vaddr_t initarm(...)
316  *
317  * Initial entry point on startup. This gets called before main() is
318  * entered.
319  * It should be responsible for setting up everything that must be
320  * in place when main is called.
321  * This includes
322  *   Taking a copy of the boot configuration structure.
323  *   Initialising the physical console so characters can be printed.
324  *   Setting up page tables for the kernel
325  *   Relocating the kernel to the bottom of physical memory
326  */
327 vaddr_t
328 initarm(void *arg)
329 {
330 	int loop;
331 	int loop1;
332 	u_int l1pagetable;
333 	paddr_t memstart;
334 	psize_t memsize;
335 
336 	/*
337 	 * Clear out the 7-segment display.  Whee, the first visual
338 	 * indication that we're running kernel code.
339 	 */
340 	brh_7seg(' ');
341 
342 	/*
343 	 * Since we have mapped the on-board devices at their permanent
344 	 * locations already, it is possible for us to initialize
345 	 * the console now.
346 	 */
347 	consinit();
348 
349 #ifdef VERBOSE_INIT_ARM
350 	/* Talk to the user */
351 	printf("\nNetBSD/evbarm (ADI BRH) booting ...\n");
352 #endif
353 
354 	/* Calibrate the delay loop. */
355 	becc_hardclock_hook = brh_hardclock_hook;
356 
357 	/*
358 	 * Heads up ... Setup the CPU / MMU / TLB functions
359 	 */
360 	if (set_cpufuncs())
361 		panic("CPU not recognized!");
362 
363 	/*
364 	 * We are currently running with the MMU enabled and the
365 	 * entire address space mapped VA==PA.  Memory conveniently
366 	 * starts at 0xc0000000, which is where we want it.  Certain
367 	 * on-board devices have already been mapped where we want
368 	 * them to be.  There is an L1 page table at 0xc0004000.
369 	 */
370 
371 	becc_icu_init();
372 
373 	/*
374 	 * Memory always starts at 0xc0000000 on a BRH, and the
375 	 * memory size is always 128M.
376 	 */
377 	memstart = 0xc0000000UL;
378 	memsize = (128UL * 1024 * 1024);
379 
380 #ifdef VERBOSE_INIT_ARM
381 	printf("initarm: Configuring system ...\n");
382 #endif
383 
384 	/* Fake bootconfig structure for the benefit of pmap.c */
385 	/* XXX must make the memory description h/w independent */
386 	bootconfig.dramblocks = 1;
387 	bootconfig.dram[0].address = memstart;
388 	bootconfig.dram[0].pages = memsize / PAGE_SIZE;
389 
390 	/*
391 	 * Set up the variables that define the availability of
392 	 * physical memory.  For now, we're going to set
393 	 * physical_freestart to 0xc0200000 (where the kernel
394 	 * was loaded), and allocate the memory we need downwards.
395 	 * If we get too close to the L1 table that we set up, we
396 	 * will panic.  We will update physical_freestart and
397 	 * physical_freeend later to reflect what pmap_bootstrap()
398 	 * wants to see.
399 	 *
400 	 * XXX pmap_bootstrap() needs an enema.
401 	 */
402 	physical_start = bootconfig.dram[0].address;
403 	physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
404 
405 	physical_freestart = 0xc0009000UL;
406 	physical_freeend = 0xc0200000UL;
407 
408 #ifdef VERBOSE_INIT_ARM
409 	/* Tell the user about the memory */
410 	printf("physmemory: 0x%"PRIxPSIZE" pages at "
411 	    "0x%08"PRIxPADDR" -> 0x%08"PRIxPADDR"\n",
412 	    physmem, physical_start, physical_end - 1);
413 #endif
414 
415 	/*
416 	 * Okay, the kernel starts 2MB in from the bottom of physical
417 	 * memory.  We are going to allocate our bootstrap pages downwards
418 	 * from there.
419 	 *
420 	 * We need to allocate some fixed page tables to get the kernel
421 	 * going.  We allocate one page directory and a number of page
422 	 * tables and store the physical addresses in the kernel_pt_table
423 	 * array.
424 	 *
425 	 * The kernel page directory must be on a 16K boundary.  The page
426 	 * tables must be on 4K boundaries.  What we do is allocate the
427 	 * page directory on the first 16K boundary that we encounter, and
428 	 * the page tables on 4K boundaries otherwise.  Since we allocate
429 	 * at least 3 L2 page tables, we are guaranteed to encounter at
430 	 * least one 16K aligned region.
431 	 */
432 
433 #ifdef VERBOSE_INIT_ARM
434 	printf("Allocating page tables\n");
435 #endif
436 
437 	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
438 
439 #ifdef VERBOSE_INIT_ARM
440 	printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
441 	       physical_freestart, free_pages, free_pages);
442 #endif
443 
444 	/* Define a macro to simplify memory allocation */
445 #define	valloc_pages(var, np)				\
446 	alloc_pages((var).pv_pa, (np));			\
447 	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
448 
449 #define alloc_pages(var, np)				\
450 	physical_freeend -= ((np) * PAGE_SIZE);		\
451 	if (physical_freeend < physical_freestart)	\
452 		panic("initarm: out of memory");	\
453 	(var) = physical_freeend;			\
454 	free_pages -= (np);				\
455 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
456 
457 	loop1 = 0;
458 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
459 		/* Are we 16KB aligned for an L1 ? */
460 		if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
461 		    && kernel_l1pt.pv_pa == 0) {
462 			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
463 		} else {
464 			valloc_pages(kernel_pt_table[loop1],
465 			    L2_TABLE_SIZE / PAGE_SIZE);
466 			++loop1;
467 		}
468 	}
469 
470 	/* This should never be able to happen but better confirm that. */
471 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
472 		panic("initarm: Failed to align the kernel page directory\n");
473 
474 	/*
475 	 * Allocate a page for the system page mapped to V0x00000000
476 	 * This page will just contain the system vectors and can be
477 	 * shared by all processes.
478 	 */
479 	alloc_pages(systempage.pv_pa, 1);
480 
481 	/* Allocate stacks for all modes */
482 	valloc_pages(irqstack, IRQ_STACK_SIZE);
483 	valloc_pages(abtstack, ABT_STACK_SIZE);
484 	valloc_pages(undstack, UND_STACK_SIZE);
485 	valloc_pages(kernelstack, UPAGES);
486 
487 	/* Allocate enough pages for cleaning the Mini-Data cache. */
488 	KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
489 	valloc_pages(minidataclean, 1);
490 
491 #ifdef VERBOSE_INIT_ARM
492 	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
493 	    irqstack.pv_va);
494 	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
495 	    abtstack.pv_va);
496 	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
497 	    undstack.pv_va);
498 	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
499 	    kernelstack.pv_va);
500 #endif
501 
502 	/*
503 	 * XXX Defer this to later so that we can reclaim the memory
504 	 * XXX used by the RedBoot page tables.
505 	 */
506 	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
507 
508 	/*
509 	 * Ok we have allocated physical pages for the primary kernel
510 	 * page tables
511 	 */
512 
513 #ifdef VERBOSE_INIT_ARM
514 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
515 #endif
516 
517 	/*
518 	 * Now we start construction of the L1 page table
519 	 * We start by mapping the L2 page tables into the L1.
520 	 * This means that we can replace L1 mappings later on if necessary
521 	 */
522 	l1pagetable = kernel_l1pt.pv_pa;
523 
524 	/* Map the L2 pages tables in the L1 page table */
525 	pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
526 	    &kernel_pt_table[KERNEL_PT_SYS]);
527 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
528 		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
529 		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
530 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
531 		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
532 		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
533 
534 	/* update the top of the kernel VM */
535 	pmap_curmaxkvaddr =
536 	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
537 
538 #ifdef VERBOSE_INIT_ARM
539 	printf("Mapping kernel\n");
540 #endif
541 
542 	/* Now we fill in the L2 pagetable for the kernel static code/data */
543 	{
544 		extern char etext[], _end[];
545 		size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
546 		size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
547 		u_int logical;
548 
549 		textsize = (textsize + PGOFSET) & ~PGOFSET;
550 		totalsize = (totalsize + PGOFSET) & ~PGOFSET;
551 
552 		logical = 0x00200000;	/* offset of kernel in RAM */
553 
554 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
555 		    physical_start + logical, textsize,
556 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
557 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
558 		    physical_start + logical, totalsize - textsize,
559 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
560 	}
561 
562 #ifdef VERBOSE_INIT_ARM
563 	printf("Constructing L2 page tables\n");
564 #endif
565 
566 	/* Map the stack pages */
567 	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
568 	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
569 	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
570 	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
571 	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
572 	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
573 	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
574 	    UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
575 
576 	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
577 	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
578 
579 	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
580 		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
581 		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
582 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
583 	}
584 
585 	/* Map the Mini-Data cache clean area. */
586 	xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
587 	    minidataclean.pv_pa);
588 
589 	/* Map the vector page. */
590 	pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
591 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
592 
593 	/* Map the statically mapped devices. */
594 	pmap_devmap_bootstrap(l1pagetable, brh_devmap);
595 
596 	/*
597 	 * Give the XScale global cache clean code an appropriately
598 	 * sized chunk of unmapped VA space starting at 0xff500000
599 	 * (our device mappings end before this address).
600 	 */
601 	xscale_cache_clean_addr = 0xff500000U;
602 
603 	/*
604 	 * Now we have the real page tables in place so we can switch to them.
605 	 * Once this is done we will be running with the REAL kernel page
606 	 * tables.
607 	 */
608 
609 	/* Switch tables */
610 #ifdef VERBOSE_INIT_ARM
611 	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
612 #endif
613 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
614 	cpu_setttb(kernel_l1pt.pv_pa, true);
615 	cpu_tlb_flushID();
616 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
617 
618 	/*
619 	 * Move from cpu_startup() as data_abort_handler() references
620 	 * this during uvm init
621 	 */
622 	uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
623 
624 #ifdef VERBOSE_INIT_ARM
625 	printf("done!\n");
626 #endif
627 
628 #ifdef VERBOSE_INIT_ARM
629 	printf("bootstrap done.\n");
630 #endif
631 
632 	/*
633 	 * Inform the BECC code where the BECC is mapped.
634 	 */
635 	becc_vaddr = BRH_BECC_VBASE;
636 
637 	/*
638 	 * Now that we have becc_vaddr set, calibrate delay.
639 	 */
640 	becc_calibrate_delay();
641 
642 	/*
643 	 * BECC <= Rev7 can only address 64M through the inbound
644 	 * PCI windows.  Limit memory to 64M on those revs.  (This
645 	 * problem was fixed in Rev8 of the BECC; get an FPGA upgrade.)
646 	 */
647 	{
648 		vaddr_t va = BRH_PCI_CONF_VBASE | (1U << BECC_IDSEL_BIT) |
649 		    PCI_CLASS_REG;
650 		uint32_t reg;
651 
652 		reg = *(volatile uint32_t *) va;
653 		becc_rev = PCI_REVISION(reg);
654 		if (becc_rev <= BECC_REV_V7 &&
655 		    memsize > (64UL * 1024 * 1024)) {
656 			memsize = (64UL * 1024 * 1024);
657 			bootconfig.dram[0].pages = memsize / PAGE_SIZE;
658 			physical_end = physical_start +
659 			    (bootconfig.dram[0].pages * PAGE_SIZE);
660 			printf("BECC <= Rev7: memory truncated to 64M\n");
661 		}
662 	}
663 
664 	/*
665 	 * Update the physical_freestart/physical_freeend/free_pages
666 	 * variables.
667 	 */
668 	{
669 		extern char _end[];
670 
671 		physical_freestart = physical_start +
672 		    (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
673 		     KERNEL_BASE);
674 		physical_freeend = physical_end;
675 		free_pages =
676 		    (physical_freeend - physical_freestart) / PAGE_SIZE;
677 	}
678 #ifdef VERBOSE_INIT_ARM
679 	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
680 	       physical_freestart, free_pages, free_pages);
681 #endif
682 
683 	physmem = (physical_end - physical_start) / PAGE_SIZE;
684 
685 	arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
686 
687 	/*
688 	 * Pages were allocated during the secondary bootstrap for the
689 	 * stacks for different CPU modes.
690 	 * We must now set the r13 registers in the different CPU modes to
691 	 * point to these stacks.
692 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
693 	 * of the stack memory.
694 	 */
695 #ifdef VERBOSE_INIT_ARM
696 	printf("init subsystems: stacks ");
697 #endif
698 
699 	set_stackptr(PSR_IRQ32_MODE,
700 	    irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
701 	set_stackptr(PSR_ABT32_MODE,
702 	    abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
703 	set_stackptr(PSR_UND32_MODE,
704 	    undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
705 
706 	/*
707 	 * Well we should set a data abort handler.
708 	 * Once things get going this will change as we will need a proper
709 	 * handler.
710 	 * Until then we will use a handler that just panics but tells us
711 	 * why.
712 	 * Initialisation of the vectors will just panic on a data abort.
713 	 * This just fills in a slightly better one.
714 	 */
715 #ifdef VERBOSE_INIT_ARM
716 	printf("vectors ");
717 #endif
718 	data_abort_handler_address = (u_int)data_abort_handler;
719 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
720 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
721 
722 	/* Initialise the undefined instruction handlers */
723 #ifdef VERBOSE_INIT_ARM
724 	printf("undefined ");
725 #endif
726 	undefined_init();
727 
728 	/* Load memory into UVM. */
729 #ifdef VERBOSE_INIT_ARM
730 	printf("page ");
731 #endif
732 	uvm_md_init();
733 	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
734 	    atop(physical_freestart), atop(physical_freeend),
735 	    VM_FREELIST_DEFAULT);
736 
737 	/* Boot strap pmap telling it where the managed kernel virtual memory is */
738 #ifdef VERBOSE_INIT_ARM
739 	printf("pmap ");
740 #endif
741 	pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
742 
743 	/* Setup the IRQ system */
744 #ifdef VERBOSE_INIT_ARM
745 	printf("irq ");
746 #endif
747 	becc_intr_init();
748 #ifdef VERBOSE_INIT_ARM
749 	printf("done.\n");
750 #endif
751 
752 #ifdef DDB
753 	db_machine_init();
754 	if (boothowto & RB_KDB)
755 		Debugger();
756 #endif
757 
758 	/* We return the new stack pointer address */
759 	return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
760 }
761 
762 void
763 consinit(void)
764 {
765 	static const bus_addr_t comcnaddrs[] = {
766 		BRH_UART1_BASE,		/* com0 */
767 		BRH_UART2_BASE,		/* com1 */
768 	};
769 	static int consinit_called;
770 
771 	if (consinit_called != 0)
772 		return;
773 
774 	consinit_called = 1;
775 
776 	/*
777 	 * brh_start() has mapped the console devices for us per
778 	 * the devmap, so register it now so drivers can map the
779 	 * console device.
780 	 */
781 	pmap_devmap_register(brh_devmap);
782 
783 #if NCOM > 0
784 	if (comcnattach(&obio_bs_tag, comcnaddrs[comcnunit], comcnspeed,
785 	    BECC_PERIPH_CLOCK, COM_TYPE_NORMAL, comcnmode))
786 		panic("can't init serial console @%lx", comcnaddrs[comcnunit]);
787 #else
788 	panic("serial console @%lx not configured", comcnaddrs[comcnunit]);
789 #endif
790 }
791