xref: /netbsd-src/sys/arch/evbarm/adi_brh/brh_machdep.c (revision 0953dc8744b62dfdecb2f203329e730593755659)
1 /*	$NetBSD: brh_machdep.c,v 1.38 2011/07/01 20:38:16 dyoung Exp $	*/
2 
3 /*
4  * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed for the NetBSD Project by
20  *	Wasabi Systems, Inc.
21  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22  *    or promote products derived from this software without specific prior
23  *    written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
29  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * Copyright (c) 1997,1998 Mark Brinicombe.
40  * Copyright (c) 1997,1998 Causality Limited.
41  * All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by Mark Brinicombe
54  *	for the NetBSD Project.
55  * 4. The name of the company nor the name of the author may be used to
56  *    endorse or promote products derived from this software without specific
57  *    prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
60  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
61  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
62  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
63  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
64  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
65  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  * Machine dependent functions for kernel setup for the ADI Engineering
72  * BRH i80200 evaluation platform.
73  */
74 
75 #include <sys/cdefs.h>
76 __KERNEL_RCSID(0, "$NetBSD: brh_machdep.c,v 1.38 2011/07/01 20:38:16 dyoung Exp $");
77 
78 #include "opt_ddb.h"
79 #include "opt_pmap_debug.h"
80 
81 #include <sys/param.h>
82 #include <sys/device.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/exec.h>
86 #include <sys/proc.h>
87 #include <sys/msgbuf.h>
88 #include <sys/reboot.h>
89 #include <sys/termios.h>
90 #include <sys/ksyms.h>
91 
92 #include <uvm/uvm_extern.h>
93 
94 #include <dev/cons.h>
95 
96 #include <machine/db_machdep.h>
97 #include <ddb/db_sym.h>
98 #include <ddb/db_extern.h>
99 
100 #include <machine/bootconfig.h>
101 #include <sys/bus.h>
102 #include <machine/cpu.h>
103 #include <machine/frame.h>
104 #include <arm/undefined.h>
105 
106 #include <arm/arm32/machdep.h>
107 
108 #include <arm/xscale/i80200reg.h>
109 #include <arm/xscale/i80200var.h>
110 
111 #include <dev/pci/ppbreg.h>
112 
113 #include <arm/xscale/beccreg.h>
114 #include <arm/xscale/beccvar.h>
115 
116 #include <evbarm/adi_brh/brhreg.h>
117 #include <evbarm/adi_brh/brhvar.h>
118 #include <evbarm/adi_brh/obiovar.h>
119 
120 #include "ksyms.h"
121 
122 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
123 #define	KERNEL_TEXT_BASE	(KERNEL_BASE + 0x00200000)
124 #define	KERNEL_VM_BASE		(KERNEL_BASE + 0x01000000)
125 
126 /*
127  * The range 0xc1000000 - 0xccffffff is available for kernel VM space
128  * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
129  */
130 #define KERNEL_VM_SIZE		0x0C000000
131 
132 /*
133  * Address to call from cpu_reset() to reset the machine.
134  * This is machine architecture dependent as it varies depending
135  * on where the ROM appears when you turn the MMU off.
136  */
137 
138 u_int cpu_reset_address = 0x00000000;
139 
140 /* Define various stack sizes in pages */
141 #define IRQ_STACK_SIZE	1
142 #define ABT_STACK_SIZE	1
143 #define UND_STACK_SIZE	1
144 
145 BootConfig bootconfig;		/* Boot config storage */
146 char *boot_args = NULL;
147 char *boot_file = NULL;
148 
149 vm_offset_t physical_start;
150 vm_offset_t physical_freestart;
151 vm_offset_t physical_freeend;
152 vm_offset_t physical_end;
153 u_int free_pages;
154 
155 /*int debug_flags;*/
156 #ifndef PMAP_STATIC_L1S
157 int max_processes = 64;			/* Default number */
158 #endif	/* !PMAP_STATIC_L1S */
159 
160 /* Physical and virtual addresses for some global pages */
161 pv_addr_t irqstack;
162 pv_addr_t undstack;
163 pv_addr_t abtstack;
164 pv_addr_t kernelstack;
165 pv_addr_t minidataclean;
166 
167 vm_offset_t msgbufphys;
168 
169 extern u_int data_abort_handler_address;
170 extern u_int prefetch_abort_handler_address;
171 extern u_int undefined_handler_address;
172 
173 #ifdef PMAP_DEBUG
174 extern int pmap_debug_level;
175 #endif
176 
177 #define KERNEL_PT_SYS		0	/* L2 table for mapping zero page */
178 
179 #define KERNEL_PT_KERNEL	1	/* L2 table for mapping kernel */
180 #define	KERNEL_PT_KERNEL_NUM	2
181 
182 					/* L2 tables for mapping kernel VM */
183 #define KERNEL_PT_VMDATA	(KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
184 #define	KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
185 #define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
186 
187 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
188 
189 /* Prototypes */
190 
191 void	consinit(void);
192 
193 #include "com.h"
194 #if NCOM > 0
195 #include <dev/ic/comreg.h>
196 #include <dev/ic/comvar.h>
197 #endif
198 
199 /*
200  * Define the default console speed for the board.  This is generally
201  * what the firmware provided with the board defaults to.
202  */
203 #ifndef CONSPEED
204 #define CONSPEED B57600
205 #endif /* ! CONSPEED */
206 
207 #ifndef CONUNIT
208 #define	CONUNIT	0
209 #endif
210 
211 #ifndef CONMODE
212 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
213 #endif
214 
215 int comcnspeed = CONSPEED;
216 int comcnmode = CONMODE;
217 int comcnunit = CONUNIT;
218 
219 /*
220  * void cpu_reboot(int howto, char *bootstr)
221  *
222  * Reboots the system
223  *
224  * Deal with any syncing, unmounting, dumping and shutdown hooks,
225  * then reset the CPU.
226  */
227 void
228 cpu_reboot(int howto, char *bootstr)
229 {
230 
231 	/*
232 	 * If we are still cold then hit the air brakes
233 	 * and crash to earth fast
234 	 */
235 	if (cold) {
236 		doshutdownhooks();
237 		pmf_system_shutdown(boothowto);
238 		printf("The operating system has halted.\n");
239 		printf("Please press any key to reboot.\n\n");
240 		cngetc();
241 		printf("rebooting...\n");
242 		goto reset;
243 	}
244 
245 	/* Disable console buffering */
246 
247 	/*
248 	 * If RB_NOSYNC was not specified sync the discs.
249 	 * Note: Unless cold is set to 1 here, syslogd will die during the
250 	 * unmount.  It looks like syslogd is getting woken up only to find
251 	 * that it cannot page part of the binary in as the filesystem has
252 	 * been unmounted.
253 	 */
254 	if (!(howto & RB_NOSYNC))
255 		bootsync();
256 
257 	/* Say NO to interrupts */
258 	splhigh();
259 
260 	/* Do a dump if requested. */
261 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
262 		dumpsys();
263 
264 	/* Run any shutdown hooks */
265 	doshutdownhooks();
266 
267 	pmf_system_shutdown(boothowto);
268 
269 	/* Make sure IRQ's are disabled */
270 	IRQdisable;
271 
272 	if (howto & RB_HALT) {
273 		brh_7seg('8');
274 		printf("The operating system has halted.\n");
275 		printf("Please press any key to reboot.\n\n");
276 		cngetc();
277 	}
278 
279 	printf("rebooting...\n\r");
280  reset:
281 	cpu_reset();
282 }
283 
284 /* Static device mappings. */
285 static const struct pmap_devmap brh_devmap[] = {
286     {
287 	BRH_PCI_CONF_VBASE,
288 	BECC_PCI_CONF_BASE,
289 	BRH_PCI_CONF_VSIZE,
290 	VM_PROT_READ|VM_PROT_WRITE,
291 	PTE_NOCACHE,
292     },
293     {
294 	BRH_PCI_MEM1_VBASE,
295 	BECC_PCI_MEM1_BASE,
296 	BRH_PCI_MEM1_VSIZE,
297 	VM_PROT_READ|VM_PROT_WRITE,
298 	PTE_NOCACHE,
299     },
300     {
301 	BRH_PCI_MEM2_VBASE,
302 	BECC_PCI_MEM2_BASE,
303 	BRH_PCI_MEM2_VSIZE,
304 	VM_PROT_READ|VM_PROT_WRITE,
305 	PTE_NOCACHE,
306     },
307     {
308 	BRH_UART1_VBASE,
309 	BRH_UART1_BASE,
310 	BRH_UART1_VSIZE,
311 	VM_PROT_READ|VM_PROT_WRITE,
312 	PTE_NOCACHE,
313     },
314     {
315 	BRH_UART2_VBASE,
316 	BRH_UART2_BASE,
317 	BRH_UART2_VSIZE,
318 	VM_PROT_READ|VM_PROT_WRITE,
319 	PTE_NOCACHE,
320     },
321     {
322 	BRH_LED_VBASE,
323 	BRH_LED_BASE,
324 	BRH_LED_VSIZE,
325 	VM_PROT_READ|VM_PROT_WRITE,
326 	PTE_NOCACHE,
327     },
328     {
329 	BRH_PCI_IO_VBASE,
330 	BECC_PCI_IO_BASE,
331 	BRH_PCI_IO_VSIZE,
332 	VM_PROT_READ|VM_PROT_WRITE,
333 	PTE_NOCACHE,
334     },
335     {
336 	BRH_BECC_VBASE,
337 	BECC_REG_BASE,
338 	BRH_BECC_VSIZE,
339 	VM_PROT_READ|VM_PROT_WRITE,
340 	PTE_NOCACHE,
341     },
342     {
343 	0,
344 	0,
345 	0,
346 	0,
347 	0,
348     }
349 };
350 
351 static void
352 brh_hardclock_hook(void)
353 {
354 	static int snakefreq;
355 
356 	if ((snakefreq++ & 15) == 0)
357 		brh_7seg_snake();
358 }
359 
360 /*
361  * u_int initarm(...)
362  *
363  * Initial entry point on startup. This gets called before main() is
364  * entered.
365  * It should be responsible for setting up everything that must be
366  * in place when main is called.
367  * This includes
368  *   Taking a copy of the boot configuration structure.
369  *   Initialising the physical console so characters can be printed.
370  *   Setting up page tables for the kernel
371  *   Relocating the kernel to the bottom of physical memory
372  */
373 u_int
374 initarm(void *arg)
375 {
376 	extern vaddr_t xscale_cache_clean_addr;
377 #ifdef DIAGNOSTIC
378 	extern vsize_t xscale_minidata_clean_size;
379 #endif
380 	int loop;
381 	int loop1;
382 	u_int l1pagetable;
383 	paddr_t memstart;
384 	psize_t memsize;
385 
386 	/*
387 	 * Clear out the 7-segment display.  Whee, the first visual
388 	 * indication that we're running kernel code.
389 	 */
390 	brh_7seg(' ');
391 
392 	/*
393 	 * Since we have mapped the on-board devices at their permanent
394 	 * locations already, it is possible for us to initialize
395 	 * the console now.
396 	 */
397 	consinit();
398 
399 #ifdef VERBOSE_INIT_ARM
400 	/* Talk to the user */
401 	printf("\nNetBSD/evbarm (ADI BRH) booting ...\n");
402 #endif
403 
404 	/* Calibrate the delay loop. */
405 	becc_hardclock_hook = brh_hardclock_hook;
406 
407 	/*
408 	 * Heads up ... Setup the CPU / MMU / TLB functions
409 	 */
410 	if (set_cpufuncs())
411 		panic("CPU not recognized!");
412 
413 	/*
414 	 * We are currently running with the MMU enabled and the
415 	 * entire address space mapped VA==PA.  Memory conveniently
416 	 * starts at 0xc0000000, which is where we want it.  Certain
417 	 * on-board devices have already been mapped where we want
418 	 * them to be.  There is an L1 page table at 0xc0004000.
419 	 */
420 
421 	becc_icu_init();
422 
423 	/*
424 	 * Memory always starts at 0xc0000000 on a BRH, and the
425 	 * memory size is always 128M.
426 	 */
427 	memstart = 0xc0000000UL;
428 	memsize = (128UL * 1024 * 1024);
429 
430 #ifdef VERBOSE_INIT_ARM
431 	printf("initarm: Configuring system ...\n");
432 #endif
433 
434 	/* Fake bootconfig structure for the benefit of pmap.c */
435 	/* XXX must make the memory description h/w independent */
436 	bootconfig.dramblocks = 1;
437 	bootconfig.dram[0].address = memstart;
438 	bootconfig.dram[0].pages = memsize / PAGE_SIZE;
439 
440 	/*
441 	 * Set up the variables that define the availablilty of
442 	 * physical memory.  For now, we're going to set
443 	 * physical_freestart to 0xc0200000 (where the kernel
444 	 * was loaded), and allocate the memory we need downwards.
445 	 * If we get too close to the L1 table that we set up, we
446 	 * will panic.  We will update physical_freestart and
447 	 * physical_freeend later to reflect what pmap_bootstrap()
448 	 * wants to see.
449 	 *
450 	 * XXX pmap_bootstrap() needs an enema.
451 	 */
452 	physical_start = bootconfig.dram[0].address;
453 	physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
454 
455 	physical_freestart = 0xc0009000UL;
456 	physical_freeend = 0xc0200000UL;
457 
458 #ifdef VERBOSE_INIT_ARM
459 	/* Tell the user about the memory */
460 	printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
461 	    physical_start, physical_end - 1);
462 #endif
463 
464 	/*
465 	 * Okay, the kernel starts 2MB in from the bottom of physical
466 	 * memory.  We are going to allocate our bootstrap pages downwards
467 	 * from there.
468 	 *
469 	 * We need to allocate some fixed page tables to get the kernel
470 	 * going.  We allocate one page directory and a number of page
471 	 * tables and store the physical addresses in the kernel_pt_table
472 	 * array.
473 	 *
474 	 * The kernel page directory must be on a 16K boundary.  The page
475 	 * tables must be on 4K boundaries.  What we do is allocate the
476 	 * page directory on the first 16K boundary that we encounter, and
477 	 * the page tables on 4K boundaries otherwise.  Since we allocate
478 	 * at least 3 L2 page tables, we are guaranteed to encounter at
479 	 * least one 16K aligned region.
480 	 */
481 
482 #ifdef VERBOSE_INIT_ARM
483 	printf("Allocating page tables\n");
484 #endif
485 
486 	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
487 
488 #ifdef VERBOSE_INIT_ARM
489 	printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
490 	       physical_freestart, free_pages, free_pages);
491 #endif
492 
493 	/* Define a macro to simplify memory allocation */
494 #define	valloc_pages(var, np)				\
495 	alloc_pages((var).pv_pa, (np));			\
496 	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
497 
498 #define alloc_pages(var, np)				\
499 	physical_freeend -= ((np) * PAGE_SIZE);		\
500 	if (physical_freeend < physical_freestart)	\
501 		panic("initarm: out of memory");	\
502 	(var) = physical_freeend;			\
503 	free_pages -= (np);				\
504 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
505 
506 	loop1 = 0;
507 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
508 		/* Are we 16KB aligned for an L1 ? */
509 		if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
510 		    && kernel_l1pt.pv_pa == 0) {
511 			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
512 		} else {
513 			valloc_pages(kernel_pt_table[loop1],
514 			    L2_TABLE_SIZE / PAGE_SIZE);
515 			++loop1;
516 		}
517 	}
518 
519 	/* This should never be able to happen but better confirm that. */
520 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
521 		panic("initarm: Failed to align the kernel page directory\n");
522 
523 	/*
524 	 * Allocate a page for the system page mapped to V0x00000000
525 	 * This page will just contain the system vectors and can be
526 	 * shared by all processes.
527 	 */
528 	alloc_pages(systempage.pv_pa, 1);
529 
530 	/* Allocate stacks for all modes */
531 	valloc_pages(irqstack, IRQ_STACK_SIZE);
532 	valloc_pages(abtstack, ABT_STACK_SIZE);
533 	valloc_pages(undstack, UND_STACK_SIZE);
534 	valloc_pages(kernelstack, UPAGES);
535 
536 	/* Allocate enough pages for cleaning the Mini-Data cache. */
537 	KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
538 	valloc_pages(minidataclean, 1);
539 
540 #ifdef VERBOSE_INIT_ARM
541 	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
542 	    irqstack.pv_va);
543 	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
544 	    abtstack.pv_va);
545 	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
546 	    undstack.pv_va);
547 	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
548 	    kernelstack.pv_va);
549 #endif
550 
551 	/*
552 	 * XXX Defer this to later so that we can reclaim the memory
553 	 * XXX used by the RedBoot page tables.
554 	 */
555 	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
556 
557 	/*
558 	 * Ok we have allocated physical pages for the primary kernel
559 	 * page tables
560 	 */
561 
562 #ifdef VERBOSE_INIT_ARM
563 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
564 #endif
565 
566 	/*
567 	 * Now we start construction of the L1 page table
568 	 * We start by mapping the L2 page tables into the L1.
569 	 * This means that we can replace L1 mappings later on if necessary
570 	 */
571 	l1pagetable = kernel_l1pt.pv_pa;
572 
573 	/* Map the L2 pages tables in the L1 page table */
574 	pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
575 	    &kernel_pt_table[KERNEL_PT_SYS]);
576 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
577 		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
578 		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
579 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
580 		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
581 		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
582 
583 	/* update the top of the kernel VM */
584 	pmap_curmaxkvaddr =
585 	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
586 
587 #ifdef VERBOSE_INIT_ARM
588 	printf("Mapping kernel\n");
589 #endif
590 
591 	/* Now we fill in the L2 pagetable for the kernel static code/data */
592 	{
593 		extern char etext[], _end[];
594 		size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
595 		size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
596 		u_int logical;
597 
598 		textsize = (textsize + PGOFSET) & ~PGOFSET;
599 		totalsize = (totalsize + PGOFSET) & ~PGOFSET;
600 
601 		logical = 0x00200000;	/* offset of kernel in RAM */
602 
603 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
604 		    physical_start + logical, textsize,
605 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
606 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
607 		    physical_start + logical, totalsize - textsize,
608 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
609 	}
610 
611 #ifdef VERBOSE_INIT_ARM
612 	printf("Constructing L2 page tables\n");
613 #endif
614 
615 	/* Map the stack pages */
616 	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
617 	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
618 	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
619 	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
620 	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
621 	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
622 	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
623 	    UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
624 
625 	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
626 	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
627 
628 	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
629 		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
630 		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
631 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
632 	}
633 
634 	/* Map the Mini-Data cache clean area. */
635 	xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
636 	    minidataclean.pv_pa);
637 
638 	/* Map the vector page. */
639 	pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
640 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
641 
642 	/* Map the statically mapped devices. */
643 	pmap_devmap_bootstrap(l1pagetable, brh_devmap);
644 
645 	/*
646 	 * Give the XScale global cache clean code an appropriately
647 	 * sized chunk of unmapped VA space starting at 0xff500000
648 	 * (our device mappings end before this address).
649 	 */
650 	xscale_cache_clean_addr = 0xff500000U;
651 
652 	/*
653 	 * Now we have the real page tables in place so we can switch to them.
654 	 * Once this is done we will be running with the REAL kernel page
655 	 * tables.
656 	 */
657 
658 	/* Switch tables */
659 #ifdef VERBOSE_INIT_ARM
660 	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
661 #endif
662 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
663 	cpu_setttb(kernel_l1pt.pv_pa);
664 	cpu_tlb_flushID();
665 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
666 
667 	/*
668 	 * Move from cpu_startup() as data_abort_handler() references
669 	 * this during uvm init
670 	 */
671 	uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
672 
673 #ifdef VERBOSE_INIT_ARM
674 	printf("done!\n");
675 #endif
676 
677 #ifdef VERBOSE_INIT_ARM
678 	printf("bootstrap done.\n");
679 #endif
680 
681 	/*
682 	 * Inform the BECC code where the BECC is mapped.
683 	 */
684 	becc_vaddr = BRH_BECC_VBASE;
685 
686 	/*
687 	 * Now that we have becc_vaddr set, calibrate delay.
688 	 */
689 	becc_calibrate_delay();
690 
691 	/*
692 	 * BECC <= Rev7 can only address 64M through the inbound
693 	 * PCI windows.  Limit memory to 64M on those revs.  (This
694 	 * problem was fixed in Rev8 of the BECC; get an FPGA upgrade.)
695 	 */
696 	{
697 		vaddr_t va = BRH_PCI_CONF_VBASE | (1U << BECC_IDSEL_BIT) |
698 		    PCI_CLASS_REG;
699 		uint32_t reg;
700 
701 		reg = *(volatile uint32_t *) va;
702 		becc_rev = PCI_REVISION(reg);
703 		if (becc_rev <= BECC_REV_V7 &&
704 		    memsize > (64UL * 1024 * 1024)) {
705 			memsize = (64UL * 1024 * 1024);
706 			bootconfig.dram[0].pages = memsize / PAGE_SIZE;
707 			physical_end = physical_start +
708 			    (bootconfig.dram[0].pages * PAGE_SIZE);
709 			printf("BECC <= Rev7: memory truncated to 64M\n");
710 		}
711 	}
712 
713 	/*
714 	 * Update the physical_freestart/physical_freeend/free_pages
715 	 * variables.
716 	 */
717 	{
718 		extern char _end[];
719 
720 		physical_freestart = physical_start +
721 		    (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
722 		     KERNEL_BASE);
723 		physical_freeend = physical_end;
724 		free_pages =
725 		    (physical_freeend - physical_freestart) / PAGE_SIZE;
726 	}
727 #ifdef VERBOSE_INIT_ARM
728 	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
729 	       physical_freestart, free_pages, free_pages);
730 #endif
731 
732 	physmem = (physical_end - physical_start) / PAGE_SIZE;
733 
734 	arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
735 
736 	/*
737 	 * Pages were allocated during the secondary bootstrap for the
738 	 * stacks for different CPU modes.
739 	 * We must now set the r13 registers in the different CPU modes to
740 	 * point to these stacks.
741 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
742 	 * of the stack memory.
743 	 */
744 #ifdef VERBOSE_INIT_ARM
745 	printf("init subsystems: stacks ");
746 #endif
747 
748 	set_stackptr(PSR_IRQ32_MODE,
749 	    irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
750 	set_stackptr(PSR_ABT32_MODE,
751 	    abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
752 	set_stackptr(PSR_UND32_MODE,
753 	    undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
754 
755 	/*
756 	 * Well we should set a data abort handler.
757 	 * Once things get going this will change as we will need a proper
758 	 * handler.
759 	 * Until then we will use a handler that just panics but tells us
760 	 * why.
761 	 * Initialisation of the vectors will just panic on a data abort.
762 	 * This just fills in a slightly better one.
763 	 */
764 #ifdef VERBOSE_INIT_ARM
765 	printf("vectors ");
766 #endif
767 	data_abort_handler_address = (u_int)data_abort_handler;
768 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
769 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
770 
771 	/* Initialise the undefined instruction handlers */
772 #ifdef VERBOSE_INIT_ARM
773 	printf("undefined ");
774 #endif
775 	undefined_init();
776 
777 	/* Load memory into UVM. */
778 #ifdef VERBOSE_INIT_ARM
779 	printf("page ");
780 #endif
781 	uvm_setpagesize();	/* initialize PAGE_SIZE-dependent variables */
782 	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
783 	    atop(physical_freestart), atop(physical_freeend),
784 	    VM_FREELIST_DEFAULT);
785 
786 	/* Boot strap pmap telling it where the kernel page table is */
787 #ifdef VERBOSE_INIT_ARM
788 	printf("pmap ");
789 #endif
790 	pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
791 
792 	/* Setup the IRQ system */
793 #ifdef VERBOSE_INIT_ARM
794 	printf("irq ");
795 #endif
796 	becc_intr_init();
797 #ifdef VERBOSE_INIT_ARM
798 	printf("done.\n");
799 #endif
800 
801 #ifdef DDB
802 	db_machine_init();
803 	if (boothowto & RB_KDB)
804 		Debugger();
805 #endif
806 
807 	/* We return the new stack pointer address */
808 	return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
809 }
810 
811 void
812 consinit(void)
813 {
814 	static const bus_addr_t comcnaddrs[] = {
815 		BRH_UART1_BASE,		/* com0 */
816 		BRH_UART2_BASE,		/* com1 */
817 	};
818 	static int consinit_called;
819 
820 	if (consinit_called != 0)
821 		return;
822 
823 	consinit_called = 1;
824 
825 	/*
826 	 * brh_start() has mapped the console devices for us per
827 	 * the devmap, so register it now so drivers can map the
828 	 * console device.
829 	 */
830 	pmap_devmap_register(brh_devmap);
831 
832 #if NCOM > 0
833 	if (comcnattach(&obio_bs_tag, comcnaddrs[comcnunit], comcnspeed,
834 	    BECC_PERIPH_CLOCK, COM_TYPE_NORMAL, comcnmode))
835 		panic("can't init serial console @%lx", comcnaddrs[comcnunit]);
836 #else
837 	panic("serial console @%lx not configured", comcnaddrs[comcnunit]);
838 #endif
839 }
840